JP3931222B2 - Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower - Google Patents

Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower Download PDF

Info

Publication number
JP3931222B2
JP3931222B2 JP2001269387A JP2001269387A JP3931222B2 JP 3931222 B2 JP3931222 B2 JP 3931222B2 JP 2001269387 A JP2001269387 A JP 2001269387A JP 2001269387 A JP2001269387 A JP 2001269387A JP 3931222 B2 JP3931222 B2 JP 3931222B2
Authority
JP
Japan
Prior art keywords
melt
cooling member
braking
uniform composition
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001269387A
Other languages
Japanese (ja)
Other versions
JP2003080361A (en
Inventor
猛 奥谷
善徳 中田
秀明 永井
秀紀 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001269387A priority Critical patent/JP3931222B2/en
Publication of JP2003080361A publication Critical patent/JP2003080361A/en
Application granted granted Critical
Publication of JP3931222B2 publication Critical patent/JP3931222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、融液内の対流が抑制される微小重力環境が得られる自由落下状態で得られる均質な溶融液(融液)を落下塔での自由落下終了時の制動を利用して冷却用部材に衝突させて凝固することにより、均一組成・均一組織材料を製造する方法に関するものである。
【0002】
【従来の技術】
半導体などの熱融解性材料の溶融液を急冷することによりアモルファス材料の製造が行われている。この溶融液急冷法には単一ローラー溶融液スピニング法、双ローラー溶融液スピニング法、回転シリンダ法、溶融液引き出し法、溶融液ドラッグ法、Gun法などがある。(参考文献:「先端材料辞典」p.591、産業調査会(1996);S.J. Savage and F.H. Froes, J. Metals, 36, (4) (1984), pp.20-33.)。単一ローラー溶融液スピニング法やGun法などの方法ではローラーや急冷板などに溶融液を加速射出して急冷する。また、溶融液引き出し法や溶融液ドラッグ法では、回転ドラムに溶融液を付着させて冷却するが、この時溶融液には遠心力が作用する。これらの方法では104〜108℃/秒程度の急速冷却速度を得ることができ、また、連続的にリボン状薄膜が得られる様に工夫されている。得られる薄膜はアモルファスがほとんどであるが、これを加熱処理して結晶化させると組成と組織が冷却ローラーなどに接触している部分と接触していない部分では異なり、均一組成・組織から成る材料は製造できない。半導体単結晶はチョクラルスキー法などの結晶引き上げ法、ブリッジマン法や帯域溶融法などの結晶育成法で製造されている(参考文献:「金属活用事典」p.856、産業調査会(1999))。融点の異なる二つ以上の元素からなり、全組成にわたって固溶体を形成する半導体結晶の場合、従来の結晶育成法を適用すると組成分布が不均一な単結晶が作製される。(例えば、SiGe合金結晶について;I. Yonezawa, A. Matsui, S. Tozawa, K. Sumino and T. Fukuda, J. Crystal Growth, 154(1995), pp.275-279)
【0003】
【発明が解決しようとする課題】
本発明は、組成・組織が均一な材料を、融液を衝突させて凝固させる簡便なプロセスで製造する方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を行った結果、本発明を完成するに至った。
すなわち、本発明によれば、部分によって組成と組織が異ならない均一組成・均一組織材料を製造する方法であって、カプセル内に、底部に小孔が形成された容器内に溶融した状態の熱融解性材料を収容するとともに、該容器の下方に冷却用部材を離間配置した後、該カプセルを自由落下させ、自由落下しているカプセルを減速させて制動することにより停止させ、そのときの制動を利用して、該熱融解性材料を該冷却用部材に衝突させて凝固させることを特徴とする均一組成・均一組織材料の製造方法が提供される。
【0005】
【発明の実施の形態】
本発明で用いる被処理原料は、熱融解性材料である。この材料は加熱により融解して溶融液を形成するものであり、その融点は、通常、100℃以上、特に500℃以上であり、その上限値は、特に制約されないが、通常、2500℃程度である。熱融解性材料は、金属や合金であることができるほか、金属化合物(酸化物等)や高分子材料であることができる。このような熱融解性材料にはチタン、鉄などが包含される。合金にはチタン−ニッケル、銅−アルミニウム、銅−インジウム等が包含される。半導体にはゲルマニウム、シリコン、インジウム−アンチモン、鉄−シリコン、銅−インジウム−セレンなどが包含される。セラミックスにはアルミナ−ガーネット複合材料(MGCマテリアル)酸化物超伝導材料等が包含される。高分子材料にはポリエチレン、ポリスチレン、ポリアミド等やこれらを組み合わせたポリマーアロイが包含される。これらの材料は粉末状やフィルム状等の各種の形状であることができる。
【0006】
本発明により均一組成・組織の材料を製造するには、先ず、熱融解性材料の溶融液を形成する。この溶融液はるつぼ等の容器に熱融解性材料の粉末状や塊状、フィルム状の原料を入れ、電気抵抗炉、赤外線炉等の加熱装置で原料を融点以上に加熱、融解する。その時の雰囲気はアルゴンやヘリウムの不活性ガス、水素などの活性ガス、又は、2660Pa以下、好ましくは133Pa以下の真空の雰囲気が原料に応じて選択される。蒸気圧の高い材料を取り扱う場合は、材料の蒸発を抑制するように高圧の不活性ガス雰囲気中、又は、活性ガス雰囲気中で融点以上に加熱し、融解する。るつぼの底部には小孔が設けられているが、溶融液が自然に落下しない程度の穴である。穴の径は、溶融液の粘性、容器と溶融液の濡れ性、溶融液の比重などにより決定されるが、通常は径が0.1〜50mm、好ましくは2〜10mmである。溶融液が存在する雰囲気は上に示した融解時と同じである。溶融液はるつぼや加熱装置とともに落下塔で自由落下に供されるカプセルなどの架台に設置されているので、溶融液は自由落下中は容器内に維持されている。自由落下終了時の自由落下するカプセルは加速され、例えば10mの自由落下終了時には50km/hrの速度になる。落下カプセルを減速するためにカプセルを砂場や発泡スチロール砕片の緩衝物中に突入させる方法や、エアーダンパー、リニアーモーターを用いる方法が利用されている。自由落下してるカプセルを制動し、減速する際の垂直下方に働く力を利用してるつぼ内の溶融液をるつぼ下方から放出させて金属板等の冷却用部材に衝突させ、その衝突個所から凝固させる。溶融液が自由落下状態を経由することは必須で、るつぼ下部の小孔と冷却用部材との距離は短い方がよいが、冷却用部材がるつぼの放熱の影響を受けないようにする必要がある。さらに、本発明では溶融液が冷却用部材に衝突することにより凝固を開始する必要があり、るつぼ下部の小孔と冷却用部材との距離を選定する必要がある。自由落下を制動する場合の減速度は、0.14〜200m/秒、好ましくは5〜100m/秒程度である。
【0007】
冷却用部材としては、通常、金属(合金を含む)やセラミックスなどからなる基板が用いられ、その表面形状は、平坦状や曲面状などであることができる。このような金属基板としては、銅、鉄などが一般的に用いられる。また、セラミックス基板としては、ガラスや窒化アルミニウムなどが用いられる。また、冷却用部材の形状は円盤、単ロール、双ロールの形状で、回転している状態でも用いることができる。その基板の表面温度は、通常、その液滴を構成する熱融解性材料の融点以下の温度で、好ましくは融点より100℃程度以上低い温度、特に融点より200〜2500℃程度低い温度である。
【0008】
凝固生成物の形態は表面が平らな冷却用部材表面の場合は、薄板状であり、その面積及び厚さは液滴が冷却板に衝突した時点での温度、粘性、衝突速度、冷却板の温度等による。冷却板の形状を選択することにより円形あるいは四角形などの薄板の形状のものの製造が可能である。回転円盤や単ロールを用いる場合はフレーク状あるいは薄片状である。冷却部材に衝突した溶融液は溶融液容器下部の小孔から放出されて衝突するまでは完全な自由落下であり、溶融液は微小重力環境下にある。従って、溶融液内に熱対流はなく、組成が均質である。冷却部材に衝突した個所から溶融液の熱は奪われ、凝固を開始し、衝突個所以外へと広がっていく。この凝固は自由落下終了時の制動を利用して均質な溶融液に運動エネルギーを与えることによって、溶融液と冷却部材の接触面積を大きくでき、均質な溶融液の状態を維持して凝固する。その結果、得られる凝固物は均一組成・均一組織である。
【0009】
【実施例】
次に、本発明を実施例によりさらに詳細に説明する。
【0010】
実施例1
径22mm、高さ210mmの石英ガラスから成る反応管内に、その頂部から、内径6mm、長さ150mmで、その先端に直径が4mmの小孔を持つアルミナ管を石英ガラス管内に挿入装着した。この内径6mmアルミナ管内部に、原子比9:1のSi−Ge合金0.13gを充填し、管内を2×10-2Pa以下の真空とした。径22mmの石英ガラス管外側には赤外線加熱炉取り付けた。次に、自由落下距離10mリニアーモーターによる制動部3m、制動加速度が4g、10-3gの微小重力環境が1.43秒、装置が搭載できるスペースが直径72cm高さ92cmの落下カプセルに実験装置全体を設置し、径22mmの石英ガラス管外側に取り付けた赤外線加熱炉でSi−Ge合金を1450℃以上に加熱して融解した。Si−Ge合金融解後、実験装置全体を自由落下させた。この自由落下中、溶融液は微小重力状態にある。実験装置の自由落下1.43秒後、自由落下実験装置の制動のため、実験装置そのものは減速するが、溶融液はアルミナ管底部のアルミナ管底部に設けた小孔を通して制動部にカプセルが突入したときの落下速度を維持したまま冷却用部材に衝突する。アルミナ管底部に設けた小孔の径はアルミナ管の径とほぼ等しいため、小孔通過時の抵抗もほとんどなく、衝突凝固直前まで自由落下状態が保たれる。小孔の垂直下200mmのチャンバー内に、40mm角、厚さ15mmの銅板を冷却用部材として室温にて設置し、Si−Ge合金溶融液をこの冷却用部材に衝突させて凝固させた。この時、小孔から冷却用部材の間及び冷却用部材の雰囲気は石英反応管と同じ2×10-2Pa以下の真空とした。凝固物を回収し、断面を研磨し、走査型電子顕微鏡で凝固物の組織を観察し、電子線マイクロアナライザーでSiとGeの分布を観察した。その結果、凝固物断面は均一な組織であることが確認された。また、SiとGeの凝固物断面の分布観察から、SiとGeの組成が原子比で9:1の均一な組成であることが確認された。これらの結果より、本発明の方法により、組成・組織の均一なSi−Ge合金が得られたことは明らかである。
【0011】
また、冷却用部材として銅板の代わりに径30mm長さ60mmの銅製ロールを2個並べ、ロール間のギャップを0.2mmに設置し、この二つのロールを1500rpmで回転させ、このロール間のギャップに溶融液が衝突するように落下カプセル内のアルミナ管下部から200mmに設置した。溶融部、小孔から冷却用部材の間及び冷却用部材の雰囲気は2×10-2Pa以下の真空とした。このような冷却部材を用いた場合も組成・組織の均一なSi−Ge合金が得られた。
【0012】
比較例1
次に、比較のために、Si−Ge合金溶融液を溶融液内に対流が存在する常重力下で作製し、溶融液上部に落下塔での制動時にかかる力と同じ4atomのアルゴンガスを溶融液の入っているアルミナ管上部に導入し、管下部から溶融液を噴出させて、アルミナ管上部に設けた小孔から垂直下200mmに設置した40mm角、厚さ15mmの銅板及び双ロールを冷却用部材に衝突させ、凝固させた。溶融部、小孔から冷却用部材の間及び冷却用部材の雰囲気は落下塔の実験と同様な2×10-2Pa以下の真空とした。この凝固物の研磨断面を走査型顕微鏡で組織観察し、電子線マイクロアナライザーでSiとGeの分布を観察した。その結果、凝固物断面には幅20μm長さ70μm程度の粒状組織が断面全体に観察された。また、SiとGeの凝固物断面の分布観察から、粒内では、SiとGeの組成が原子比で98.3:1.7で出発原料の9:1よりSiリッチになっていた。Si及びGeの密度は2.33及び5.32g/cm3とGeの方が2倍以上で、常重力下でアルゴンガス噴出させるときにはSiとGeの密度の差による分離が生じ、不均一な組成・組織になったことが明らかである。
【0013】
【発明の効果】
本発明によれば、微小重力環境下では対流がなく液体は均一性を維持でき、この状態から自由落下終了時の制動を利用して金属板や金属ローラーなどに衝突させ、急速に凝固させることによって、粒界や組成分布のない均一な材料を製造することができる。本発明により得られる均一組成・均一組織材料は、例えば、熱電半導体などの素子の原材料として有利に利用される。
[0001]
BACKGROUND OF THE INVENTION
The present invention is for cooling a homogeneous melt (melt) obtained in a free fall state in which a microgravity environment in which convection in the melt is suppressed is obtained by using braking at the end of free fall in a drop tower. The present invention relates to a method for producing a uniform composition / homogeneous tissue material by colliding with a member and solidifying.
[0002]
[Prior art]
An amorphous material is manufactured by rapidly cooling a melt of a heat-meltable material such as a semiconductor. Examples of the melt quenching method include a single roller melt spinning method, a double roller melt spinning method, a rotating cylinder method, a melt drawing method, a melt drag method, and a Gun method. (Reference: “Advanced Materials Dictionary” p.591, Industrial Research Council (1996); SJ Savage and FH Froes, J. Metals, 36, (4) (1984), pp.20-33.). In the method such as a single roller melt spinning method or Gun method quenched accelerating injecting a melt into a roller or quenching plate. In the melt drawing method and the melt drag method, the melt is attached to the rotating drum and cooled, and at this time, centrifugal force acts on the melt. These methods are devised so that a rapid cooling rate of about 10 4 to 10 8 ° C./second can be obtained, and a ribbon-like thin film can be obtained continuously. The thin film obtained is mostly amorphous, but when it is crystallized by heat treatment, the composition and structure differ between the part that is in contact with the cooling roller and the part that is not in contact, and a material that has a uniform composition and structure Cannot be manufactured. Semiconductor single crystals are manufactured by crystal pulling methods such as Czochralski method, crystal growth methods such as Bridgman method and zone melting method (Reference: “Metal Utilization Dictionary” p.856, Industrial Research Committee (1999). ). In the case of a semiconductor crystal composed of two or more elements having different melting points and forming a solid solution over the entire composition, a single crystal having a non-uniform composition distribution is produced by applying a conventional crystal growth method. (For example, about SiGe alloy crystals; I. Yonezawa, A. Matsui, S. Tozawa, K. Sumino and T. Fukuda, J. Crystal Growth, 154 (1995), pp.275-279)
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a material having a uniform composition and structure by a simple process in which a melt is allowed to collide and solidify .
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, according to the present invention, there is provided a method for producing a uniform composition / homogeneous structure material in which the composition and the structure do not differ from part to part, and the heat in a state of being melted in a capsule and a container having a small hole formed in the bottom. After storing the meltable material and disposing a cooling member below the container, the capsule is freely dropped, and the capsule that is freely falling is decelerated and braked to stop, and braking at that time A method for producing a homogeneous composition / homogeneous tissue material is provided, wherein the heat-meltable material is allowed to collide with the cooling member and solidify.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The raw material to be used used in the present invention is a heat-meltable material. This material is melted by heating to form a melt, and its melting point is usually 100 ° C. or higher, particularly 500 ° C. or higher, and its upper limit is not particularly limited, but is usually about 2500 ° C. is there. The heat-meltable material can be a metal or an alloy, and can be a metal compound (oxide or the like) or a polymer material. Such heat-meltable materials include titanium, iron and the like. Alloys include titanium-nickel, copper-aluminum, copper-indium and the like. Semiconductors include germanium, silicon, indium-antimony, iron-silicon, copper-indium-selenium, and the like. Ceramics include alumina-garnet composite material (MGC material) oxide superconducting material and the like. Examples of the polymer material include polyethylene, polystyrene, polyamide and the like, and polymer alloys obtained by combining these. These materials can be in various shapes such as powder and film.
[0006]
In order to produce a material having a uniform composition and structure according to the present invention, first, a melt of a heat-meltable material is formed. This melt is put into a container such as a crucible in the form of a powder, lump or film of a heat-meltable material, and the raw material is heated and melted to a melting point or higher by a heating device such as an electric resistance furnace or an infrared furnace. At this time, an inert gas such as argon or helium, an active gas such as hydrogen, or a vacuum atmosphere of 2660 Pa or less, preferably 133 Pa or less is selected according to the raw material. When handling a material having a high vapor pressure, the material is melted by heating to a melting point or higher in a high-pressure inert gas atmosphere or an active gas atmosphere so as to suppress evaporation of the material. A small hole is provided at the bottom of the crucible, but the hole does not allow the melt to fall naturally. The diameter of the hole is determined by the viscosity of the melt, the wettability between the container and the melt, the specific gravity of the melt, etc., but the diameter is usually 0.1 to 50 mm, preferably 2 to 10 mm. The atmosphere in which the melt is present is the same as in the melting shown above. Since the molten liquid is installed on a base such as a capsule that is used for free fall in a dropping tower together with a crucible and a heating device, the molten liquid is maintained in the container during the free fall. The free-falling capsule at the end of the free fall is accelerated, for example at a speed of 50 km / hr at the end of the free fall of 10 m. In order to decelerate the falling capsule, a method of rushing the capsule into a sandbox or a foamed polystyrene buffer, or a method using an air damper or a linear motor is used. Brake the capsule you are free fall, the melt of the crucible utilizing the force acting vertically downwardly released from the crucible downward to collide with the cooling member such as a metal plate, at the time of deceleration, the collision point Solidify from. It is essential for the melt to go through a free-fall state, and the distance between the small hole at the bottom of the crucible and the cooling member should be short, but the cooling member should not be affected by the heat dissipation of the crucible. is there. Furthermore, in the present invention, it is necessary to start solidification when the molten liquid collides with the cooling member, and it is necessary to select a distance between the small hole at the lower part of the crucible and the cooling member. When braking free fall, the deceleration is about 0.14 to 200 m / sec, preferably about 5 to 100 m / sec.
[0007]
As the cooling member, a substrate made of a metal (including an alloy) or ceramics is usually used, and the surface shape can be flat or curved. As such a metal substrate, copper, iron or the like is generally used. As the ceramic substrate, glass, aluminum nitride, or the like is used. The shape of the cooling member can be a disk, a single roll, or a twin roll, and can be used even in a rotating state. The surface temperature of the substrate is usually a temperature not higher than the melting point of the heat-meltable material constituting the droplets, preferably about 100 ° C. or more lower than the melting point, particularly about 200 to 2500 ° C. lower than the melting point.
[0008]
The form of the solidified product is a thin plate in the case of a cooling member surface with a flat surface, and the area and thickness of the solidified product is the temperature, viscosity, collision speed, and temperature of the cooling plate when the droplet collides with the cooling plate. It depends on temperature. By selecting the shape of the cooling plate, it is possible to manufacture a thin plate shape such as a circle or a rectangle. When a rotating disk or a single roll is used, it is in the form of flakes or flakes. The molten liquid colliding with the cooling member is completely free-falling until it is released from the small hole at the lower part of the molten liquid container and collides, and the molten liquid is in a microgravity environment. Therefore, there is no thermal convection in the melt and the composition is homogeneous. The melt is deprived of heat from the location where it collided with the cooling member, solidification starts, and spreads to other locations. In this solidification, the contact area between the melt and the cooling member can be increased by applying kinetic energy to the homogeneous melt using braking at the end of the free fall, and solidify while maintaining the state of the homogeneous melt. As a result, the obtained coagulated product has a uniform composition and a uniform structure.
[0009]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0010]
Example 1
An alumina tube having an inner diameter of 6 mm, a length of 150 mm, and a small hole with a diameter of 4 mm at its tip was inserted and mounted in a quartz glass tube into a reaction tube made of quartz glass having a diameter of 22 mm and a height of 210 mm. This alumina tube having an inner diameter of 6 mm was filled with 0.13 g of an Si—Ge alloy having an atomic ratio of 9: 1, and the inside of the tube was evacuated to 2 × 10 −2 Pa or less. An infrared heating furnace was attached to the outside of the quartz glass tube having a diameter of 22 mm. Then, the free fall distance 10 m, the braking portion 3m by linear motors, braking acceleration 4g, 10 -3 g microgravity 1.43 seconds, the experimental space that device can be mounted within the drop capsule diameter 72cm height 92cm The entire apparatus was installed, and the Si—Ge alloy was heated to 1450 ° C. or higher and melted in an infrared heating furnace attached to the outside of the quartz glass tube having a diameter of 22 mm. After melting the Si—Ge alloy, the entire experimental apparatus was dropped freely. During this free fall, the melt is in a microgravity state. After 1.43 seconds of free fall of the experimental device, the experimental device itself slows down to brake the free fall experimental device, but the melt enters the brake part through the small hole provided at the bottom of the alumina tube at the bottom of the alumina tube. It collides with the cooling member while maintaining the falling speed. Since the diameter of the small hole provided in the bottom of the alumina tube is substantially equal to the diameter of the alumina tube, there is almost no resistance when passing through the small hole, and the free fall state is maintained until immediately before the collision solidification. A 40 mm square, 15 mm thick copper plate was placed as a cooling member at room temperature in a chamber 200 mm vertically below the small hole, and the Si— Ge alloy melt was allowed to collide with the cooling member to solidify. At this time, the atmosphere between the small holes and the cooling member and the cooling member was set to a vacuum of 2 × 10 −2 Pa or less, which is the same as that of the quartz reaction tube. The solidified material was collected, the cross section was polished, the structure of the solidified material was observed with a scanning electron microscope, and the distribution of Si and Ge was observed with an electron beam microanalyzer. As a result, it was confirmed that the cross-section of the solidified product had a uniform structure. Further, from observation of the distribution of the cross-section of the solidified product of Si and Ge, it was confirmed that the composition of Si and Ge was a uniform composition with an atomic ratio of 9: 1. From these results, it is apparent that a Si—Ge alloy having a uniform composition and structure was obtained by the method of the present invention.
[0011]
Also, instead of a copper plate, two copper rolls with a diameter of 30 mm and a length of 60 mm are arranged as a cooling member, the gap between the rolls is set to 0.2 mm, the two rolls are rotated at 1500 rpm, and the gap between the rolls It was installed 200 mm from the lower part of the alumina tube in the dropping capsule so that the molten liquid collided with it. The atmosphere between the melting part and the small hole to the cooling member and the cooling member was a vacuum of 2 × 10 −2 Pa or less. Even when such a cooling member was used, a Si-Ge alloy having a uniform composition and structure was obtained.
[0012]
Comparative Example 1
Next, for comparison, Si-Ge alloy melt prepared at normal under gravity convection is present in the melt in the melting argon gas having the same 4atom the force exerted during braking on the drop tower in the melt top It is introduced into the upper part of the alumina pipe containing the liquid, and the molten liquid is ejected from the lower part of the pipe to cool the 40 mm square, 15 mm thick copper plate and twin rolls installed 200 mm vertically from the small hole provided in the upper part of the alumina pipe. The material was allowed to collide and solidify. The atmosphere between the melting part and the small hole to the cooling member and the cooling member was set to a vacuum of 2 × 10 −2 Pa or less, which was the same as in the drop tower experiment. The polished cross section of the solidified product was observed with a scanning microscope, and the distribution of Si and Ge was observed with an electron beam microanalyzer. As a result, a granular structure having a width of about 20 μm and a length of about 70 μm was observed in the entire cross section of the solidified cross section. In addition, from the observation of the distribution of the cross-section of the solidified product of Si and Ge, the composition of Si and Ge in the grains was 98.3: 1.7, which was Si richer than the starting material 9: 1. The density of Si and Ge is 2.33 and 5.32 g / cm 3 and Ge is more than twice. When argon gas is ejected under normal gravity, separation occurs due to the difference in density between Si and Ge. It is clear that the composition / organization was new.
[0013]
【The invention's effect】
According to the present invention, there is no convection in a microgravity environment, the liquid can maintain uniformity, and from this state, it can collide with a metal plate, a metal roller, etc. by using braking at the end of free fall and rapidly solidify. Thus, a uniform material having no grain boundary or composition distribution can be produced. The uniform composition / homogeneous structure material obtained by the present invention is advantageously used as a raw material of an element such as a thermoelectric semiconductor.

Claims (1)

部分によって組成と組織が異ならない均一組成・均一組織材料を製造する方法であって、カプセル内に、底部に小孔が形成された容器内に溶融した状態の熱融解性材料を収容するとともに、該容器の下方に冷却用部材を離間配置した後、該カプセルを自由落下させ、自由落下しているカプセルを減速させて制動することにより停止させ、そのときの制動を利用して、該熱融解性材料を該冷却用部材に衝突させて凝固させることを特徴とする均一組成・均一組織材料の製造方法。 A method for producing a uniform composition / homogeneous tissue material in which the composition and structure do not differ depending on the part, and in the capsule, containing a heat-meltable material in a molten state in a container having a small hole formed in the bottom, After the cooling member is spaced apart below the container, the capsule is allowed to fall freely, and the free-falling capsule is decelerated and braked to stop, and the thermal melting is performed using the braking at that time. A method for producing a uniform composition / homogeneous tissue material, characterized in that a cohesive material collides with the cooling member and solidifies.
JP2001269387A 2001-09-05 2001-09-05 Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower Expired - Lifetime JP3931222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269387A JP3931222B2 (en) 2001-09-05 2001-09-05 Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269387A JP3931222B2 (en) 2001-09-05 2001-09-05 Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower

Publications (2)

Publication Number Publication Date
JP2003080361A JP2003080361A (en) 2003-03-18
JP3931222B2 true JP3931222B2 (en) 2007-06-13

Family

ID=19095217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269387A Expired - Lifetime JP3931222B2 (en) 2001-09-05 2001-09-05 Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower

Country Status (1)

Country Link
JP (1) JP3931222B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006007780D1 (en) * 2005-10-21 2009-08-27 Sulzer Metco Us Inc Process for the production of highly pure flowable metal oxide powder by plasma melting

Also Published As

Publication number Publication date
JP2003080361A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
US6120602A (en) Method and apparatus for fabricating near spherical semiconductor single crystal particulate and the spherical product produced
US3862658A (en) Extended retention of melt spun ribbon on quenching wheel
Jones Cooling, freezing and substrate impact of droplets formed by rotary atomization
US3845805A (en) Liquid quenching of free jet spun metal filaments
EP0226323B1 (en) Apparatus for preparing metal particles from molten metal
Tian et al. Production of fine calcium powders by centrifugal atomization with rotating quench bath
JP2006500219A (en) Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
US3297436A (en) Method for making a novel solid metal alloy and products produced thereby
JP3931222B2 (en) Method for producing uniform composition / homogeneous textured material by impact solidification using braking in drop tower
JP2009280877A (en) Method for producing clathrate compound
US5032172A (en) Method and apparatus for making rapidly solidified particulate
US5725042A (en) Method for producing hydrogen-absorbing alloy
US4355057A (en) Formation of alloy powders through solid particle quenching
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
JP3931223B2 (en) Method for producing homogeneous composition structure material by impact solidification of free-falling droplets
JP3087964B1 (en) Method for producing high quality crystalline material by impact solidification of free-falling droplets
JP2008239438A (en) Manufacturing process and manufacturing apparatus for spherical crystal
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
JP4074931B2 (en) Silicon spherical body manufacturing method and manufacturing apparatus thereof
JP2004098090A (en) Method for producing magnesium rapidly solidified alloy product
JP2004091857A (en) Method for manufacturing solid material having homogeneous composition/structure
JP3244332B2 (en) Method and apparatus for producing rare earth metal spherical particles
JP2005076059A (en) Method for manufacturing solid thin film having uniform composition and structure
JP2012514575A (en) Solidification of molten material on a layer of moving subdivided solid material
Okutani et al. Synthesis of homogeneous materials by splat solidification in short-duration microgravity

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3931222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term