JP3930200B2 - Method for manufacturing wind turbine blades - Google Patents

Method for manufacturing wind turbine blades Download PDF

Info

Publication number
JP3930200B2
JP3930200B2 JP16412199A JP16412199A JP3930200B2 JP 3930200 B2 JP3930200 B2 JP 3930200B2 JP 16412199 A JP16412199 A JP 16412199A JP 16412199 A JP16412199 A JP 16412199A JP 3930200 B2 JP3930200 B2 JP 3930200B2
Authority
JP
Japan
Prior art keywords
main girder
prepreg material
frame
skin
outer skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16412199A
Other languages
Japanese (ja)
Other versions
JP2000179448A (en
Inventor
英也 江越
川節  望
昌明 柴田
英司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16412199A priority Critical patent/JP3930200B2/en
Publication of JP2000179448A publication Critical patent/JP2000179448A/en
Application granted granted Critical
Publication of JP3930200B2 publication Critical patent/JP3930200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス繊維の織布にエポキシ樹脂をあらかじめ含浸させてシート状に成形したもの(以下予備成形シートという)を使用して製造された風力発電用風車の風力発電翼および風力発電翼の製造方法、特に、風力発電翼の主要構成部品である主桁および外皮の製造方法に関するものである。
【0002】
【従来の技術】
従来の風力発電用風車に使用されている風力発電翼(以下単に翼という)の構造およびその製造方法を図17に基づいて説明する。
図において、01は主桁で、翼07の中央部を翼幅方向に延長され翼07の主要部品を構成する。
この主桁01の製造は次の要領で行う。
まず、主桁01の内表面形状が外表面に形成された主桁成形用の金型、すなわち、主桁型の表面をアセトンで洗浄したのち離型剤を塗る。
【0003】
次に、この主桁型の表面にガラス繊維からなるガラスマットとロービングクロスとを、交互にポリエステル樹脂を含浸させながら積層していく。
この際含浸させる樹脂が不足する部分には樹脂を追加し、ガラスマットとロービングクロスに十分に含浸させて積層した後、ローラで積層外面を押圧し、含浸させた余分な樹脂を脱脂するとともに、積層部内の脱泡を行い、硬化させる。
この後、主桁型から油圧ジャッキ等を用いて、積層、硬化した主桁01を抜型して主桁01が製作される。
【0004】
また、図において、02は翼07の外表面を形成する外皮で、主桁01と同じく翼07の主要部品を構成し、次の要領で製造される。
まず、外皮02の外表面形状が外表面に凹設された外皮成形用の金型、すなわち、外皮型の外表面を主桁01の製造時と同様にアセトンで洗浄したのち、離型剤を塗る。
次に、この離型剤の表面に塗料をスプレイガンで吹き付けた後、この塗料塗膜上に主桁01の製造時と同様にガラスマットとロービングクロスを、交互にポリエステル樹脂を含浸させながら積層していく。
【0005】
この際、樹脂不足の部分には樹脂を追加し、樹脂十分に含浸させて積層した後、ローラで積層外面を押圧し、脱脂、脱泡して硬化させる点は、主桁01の製造時と同様にして行う。
なお、外皮02は1体の翼07に対して背側を形成する外皮と腹側を形成する外皮との2枚が製造される。
また、外皮02の製造においては、脱脂、脱泡し、硬化させた時点では、外皮02はまだ外皮型から外さず一体のままにしておく。
【0006】
次いで、主桁01と外皮型と一体化されている翼07の腹側に設けられる外皮02の接着部に、接着剤03としてガラスマットにポリエステル樹脂を含浸させたものを、隙間分だけ外皮02の内面側に積層する。
次いで、上述のように主桁枠から抜型された主桁01を腹側の外皮02上に積層された接着剤03の上方に載せる。
つぎに、主桁01の背側に、腹側の外皮02の内周面に積層した接着剤03と同様にして、主桁01と背側の外皮02の組立時に生じる隙間分の厚さに接着剤03を積層したのち、翼07の背側に設けられる外皮02を外皮型ごと主桁01に積層した接着剤03の上方にかぶせて接着し、硬化させる。
【0007】
次いで、接着剤03が積層されて接着されている主桁01が内設されている部分を除く、腹側の外皮02と背側の外皮02との間に形成される空間にウレタンフォーム04を注入し、このウレタンフォーム04を充分養生、硬化させてから外皮型より腹側および背側の外皮02を抜型する。
【0008】
このようにして成形された翼07は、最後に仕上げを次の要領で行う。
まず、翼07の前縁05、後縁06、および翼根部を研磨し、アセトンで研磨時に生じる微粉等を完全に除去し、翼根部と翼前縁および翼後縁部の腹側の外皮02と背側の外皮02とのつなぎ目にそれぞれ、さらにガラスマットとロービングクロスを交互にポリエステル樹脂を含浸させながら所定厚さの積層を行い翼根部の成形および腹側と背側の外皮02の接合を行う。
このように、主桁01と外皮02とを接合して1体化された翼07は、全体外表面を成形研磨した後塗料を塗布し、風力発電装置との接続を行う翼根部の端面加工を行って翼07の製造が完了する。
【0009】
【発明が解決しようとする課題】
(1)上述の従来の風力発電翼においては、翼の大型化に対しては、上述した従来から使用されている材料では材料強度上限界があり、これを補うために肉厚を増加させてやる必要があり、これにより翼の重量が増加する。
【0010】
(2)また、上述した材料、すなわち、ガラス繊維からなるガラスマットとロービングクロスとから材料では、積層する際にポリエステル樹脂を充分含浸させて積層する必要があるが、このポリエステル樹脂には、人体に有害な有機溶剤スチレンが含まれており、作業員は防護マスクが必要である等、作業上の制約により作業効率の低下を来す。
【0011】
(3)風力発電翼の背側と腹側とにそれぞれ配置される外皮を接着する際、エッジ部の研磨が必要であるが、この作業時には粉塵が多量に発生する等、作業環境の悪い状態での製造作業となる。
【0012】
(4)ガラス繊維にポリエステル樹脂を含浸させて積層する従来の材料の積層は、湿式積層でなされるので、ローラによる脱脂、脱泡作業が非常に重要なものとなる。
さらに、この脱脂、脱泡作業によっては、成形品である主桁、外皮の強度および寸法に与える影響が大きく、作業者の技術力によっては製造された風力発電翼の重量、寸法、材料強度にばらつきを生じることがある。
【0013】
(5)主桁配置部以外の外皮の間に充填するウレタンフォームは、材料自体には何も問題はなく、軽量であり、適度の強度もあり理想的な材料であるが、ウレタンフォームの発泡に使用しているフロンガスは、オゾン層破壊の原因となることから2020年に使用禁止となることが決定しており使用できず、現在、代替フロンが使用されているが、この代替フロンにも使用禁止の規制が設けられようと現在論議されている。
このため、外皮の間にこれまで充填していた発泡ウレタンフォームに代わる素材を充填する構造の風力発電翼にする場合には、ウレタンフォームに代る材料の開発が必要である。
【0014】
(6)ガラスマットとロービングクロスを交互にポリエステル樹脂を含浸させながら積層して形成された外皮および主桁の硬化は、必ずしも加熱して行う必要はないが、この場合硬化に時間がかかるとともに、ポリエステル樹脂の硬化に未反応分が残ることがあり、外皮および主桁の硬化が均等に行われないことがあり、材料強度上、特に、風力発電翼全体の強度分布に問題が生じることがある。
【0015】
(7)また、風力発電翼の製造にあたって、硬化時間を短くして作業時間を短縮し、均等な強度分布を持ち、しかも、高強度の風力発電翼を製作するために、加熱を行うようにした場合には、風力発電翼の長さ以上の加熱保温装置を準備する必要がある。
特に、近年の風力発電翼のように大型化した風力発電翼を、主桁型、外皮型ごとに挿入して加熱、硬化して製造するようにした場合には、これらを収容できる大容積の加熱保温装置が必要となるとともに、加熱保温装置の大容積化に伴い、加熱用に大容量のエネルギ(熱源)が必要となる。
【0016】
【課題を解決するための手段】
本発明は、上記従来の風力発電翼の製造方法において生じている課題を解決するために、以下の各手段を以って図る。
【0021】
)本発明は、風力発電翼の主要部品である主桁および外皮からなる風力発電翼の製造方法として、
ガラス繊維強化プラスチックの予備成形シートを主桁型上に積層し、予備成形シートにより桁の形状に形成されたプリプレグ材の外面側を真空フィルムで被包して、主桁型上のプリプレグ材の外周部に密閉された空間部を形成したのち、この空間部を真空吸引することにより、プリプレグ材を形成する積層された予備成形シートの密着性を高めて主桁を形成すると共に、
ガラス繊維強化プラスチックの予備成形シートを外皮型上に積層し、固体発泡体を主桁が配置される位置の翼弦方向の前後に配置し、固体発泡体の上方および固体発泡体が積層されてない予備成形シートの上方にさらに予備成形シートを積層したのち、予備成形シート及び固体発泡体により外皮の形状に形成されたプリプレグ材の外面側を真空フィルムで被包して、外皮型上のプリプレグ材の外周部に密閉された空間部を形成したのち、空間部を真空吸引することにより、プリプレグ材を形成する積層された予備成形シートおよび固体発泡体相互の密着性を高めて外皮を形成した後、
形成された主桁と外皮とを接合して風力発電翼を製造することを特徴とする風力発電翼の製造方法を提供する。
)これにより、本発明の風力発電翼の製造方法によれば、上述()の手段の採用により成形作業が容易で、しかも、積層してプリプレグ材を形成する予備成形シートの積層間の密着性に秀れるものにできるとともに、予備成形シートが均等に、しかも強力に密着したプリプレグ材による主桁、外皮の製作ができるので、これにより軽量かつ高強度の風力発電翼を製作することができる。
【0022】
)また、上述()の手段の採用に加え、80℃以上の温風が導入される加熱保温室内に、プリプレグ材の外周を密閉するようにした空間部、すなわち、予備成形シートを積層して主桁または外皮形状のプリプレグ材を形成し、このプリプレグ材を被包するように真空フィルムで覆った主桁型または外皮型を設け、加熱保温室内に導入される温風により、この空間部内に密閉されたプリプレグ材を加熱しながら、空間部内を真空吸引することにより、積層した予備成形シートで主桁および外皮等の形状に形成されたプリプレグ材の硬化を促進させることを特徴とする風力発電翼の製造方法を提供する。
)本発明の風力発電翼の製造方法によれば、上述()の手段を採用したので上述()に加え、積層した予備成形シートで形成されたプリプレグ材の硬化が促進され、風力発電翼の製作期間を短縮することができる。さらに、エポキシ樹脂内の硬化剤が加熱により反応が促進されるとともに、硬化未反応分の残留がなくなり、また気泡等が残ることが少くなるため、主桁、外皮を主要部品とする風力発電翼は、より軽量化され、かつより耐熱、耐圧性に秀れ、圧縮、曲げ、引張り座屈に対して秀れた強度を有する風力発電翼にすることができる。
【0023】
)また、上述()の手段の採用に加え、予備成形シートを積層してプリプレグ材が成形されるとともに、真空吸引されるプリプレグ材を密閉できるようにした空間部が形成される主桁枠または外皮枠と、主桁枠または外皮枠を所定位置に保持できるようにしたフレームと、主桁枠または外皮枠のそれぞれの底面に設置された空間部を加熱するヒータとにより主桁型または外皮型を形成したのち、ヒータにより主桁枠または外皮枠で成形されたプリプレグ材を80℃以上に加熱しながら、空間部を真空吸引することによりプリプレグ材の硬化を促進させることを特徴とする風力発電翼の製造方法を提供する。
)本発明の風力発電翼の製造方法によれば、上述()の手段を採用したので上述()に加え、上述()と同様の作用・効果が得られる。さらに、本発明では空間部の加熱が主桁枠または外皮枠の底面に設置されたヒータにより行われるので、一体成形された長大な風力発電翼を主桁枠および外皮枠とともに収容できる大容積の加熱保温室等の加熱保温装置が不要になるとともに、加熱硬化用に必要とするエネルギーを小容量のものとすることができる。
【0024】
【発明の実施の形態】
以下、本発明の風車発電翼及び風車発電翼の実施の一形態を、図面にもとづき説明する。
図1は本発明の風車発電翼の実施の第1形態を示す主桁を一体成形した場合の風力発電翼の横断面図である。
【0025】
図において、1は主桁で図の上側が風力発電翼5の背側、下側が腹側をそれぞれ示す。
2は外皮で、背側外皮21と腹側外皮22の2枚からなり、上下から主桁1をはさんで組み合わされるとともに、背側外皮21と腹側外皮22とは前縁104および後縁105で接合されている。
3は接着剤で、主桁1と外皮2との接合部に積層されて主桁1と外皮2とを接着し、主要部品である主桁1と外皮2とが強力に接合され、一体成形された風力発電翼5を形成する。
4は外皮2内に配設された主桁1の翼弦方向前後の外皮2の内周面に介装した固形発泡体で、塩ビ発泡体(例えば鐘淵化学工業(株)製の商品名クレゲセル)等が使用可能である。
【0026】
図2は本発明の風力発電翼の実施の第2形態を示す主桁を前縁側主桁と後縁側主桁に2分割成形した場合の風力発電翼の横断面図である。
【0027】
図に示すように、本実施の形態の風力発電翼5は、主桁1が前縁側主桁11と後縁側主桁12に分割、成形されるとともに、両主桁11,12は、背側外皮21と腹側外皮22との間に、翼弦方向に離隔して配置されるようにしている。
実施の第1形態と同様にして、接着剤3で主桁1と外皮2とが接着されて一体成形され風力発電翼5を形成する。
【0028】
次に、図3から図12により本発明にかかる風力発電翼の製造方法の実施の第1形態を説明する。
図3及び図4は、主桁1を2分割して成形する場合を示す図で、2分割成形用主桁型1にガラス繊維強化プラスチックからなる織布にエポキシ樹脂をあらかじめ含浸させてシート状に成形したもの、いわゆる、予備成形シートを10〜30層積層して、2分割された主桁1の一方を形成する、ガラス繊維強化プラスチック材料の中間基材である成形材料、いわゆるプリプレグ材を製作する。
【0029】
なお、後述する説明から明らかになるように、2分型成形用主桁型61で製作されるプリプレグ材は、必ずしも、図2に示すように、前縁側主桁11又は後縁側主桁12を形成するものでなくても良く、分割面を接合して、図1に示すような一体成形された主桁1を形成することもできるものである。
また、図5は主桁1を一体で成形する場合を示す図、筒状主桁型62の外周にエポキシ樹脂をあらかじめ含浸させた予備成形シートを巻き付け積層し、一体に成形された主桁1のプリプレグ材を成形する。
【0030】
図6及び図7は、腹側外皮2の成形を外皮型7で行う場合を示す図である。
まず、腹側外皮2の外面形状にされた外皮型7の上面に予備成形シートS1を4〜6層積層する。
次に、塩ビ発泡体からなる固体発泡体4を風力発電翼5の前縁側と後縁側、すなわち、主桁1が配置される位置の翼弦方向の前後に配置、積層された予備成形シートの2個所内周面側に、それぞれ成形された状態で積層する。
この上に、さらに固体発泡体4の上方および固体発泡体4が積層されてない予備成形シートS1の積層体の上方に、予備成形シートS2を4〜6層積層して腹側外皮2の形状にされたプリプレグ材を成形する。
【0031】
そして、風力発電翼5の腹側外皮2を製作するプリプレグ材と背側外皮2を製作するプリプレグ材との2枚のプリプレグ材を成形する。
すなわち、腹側外皮2および背側外皮2は主桁1が配設される部分以外の内周面の殆んど部分には固体発泡体4を積層するようにしている。
【0032】
次に、図8に示すように、外皮型7上に形成された腹側外皮2の形状に成形されたプリプレグ材の上方を真空フィルム81で覆う。
このために、外皮型7の腹側外皮2が成形されない部分と真空フィルム81との間には、真空破壊防止用の真空シールテープ82を全周に設け、外皮型7上に形成された腹側外皮2のプリプレグ材の外周囲には、プリプレグ材を被包した空間部が形成される。
また、この真空フィルム81には空間部を真空状態にするための真空吸引用の管83が貫通して設けられ、この管83によって空間部を真空引きすることにより、積層した前記予備成形シートおよび固体発泡体4からなる外皮形状に成形されたプリプレグ材を外皮型61に密着させるとともに、積層された予備成形シートが相互に強力に密着されたものにする、いわゆる、真空パックという工程が行われる(背側外皮21も同様)
【0033】
次に、図9に示すように、真空パックされた外皮形状のプリプレグ材をプリプレグ材が成形されている外皮型7ごと加熱保温室91に移送して、ダクト92から温風を導入することにより、加熱してプリプレグ材を硬化させ外皮2が製作される。
この温風による加熱温度は80℃、加熱時間は2時間程度でよいが、この加熱温度を、さらに高くすることにより、加熱時間はより短くすることができる。
この温風による加熱を行っている間、さらに、管83で空間部の真空引きすることにより、真空フィルム8が硬化中のプリプレグ材に密着して、予備成形シートと固体発泡体とにできる気泡を取り除き、予備成形シートと固体発泡体4との機密性を高め、さらには、積層された予備成形シートの積層面の結合力を高め、外皮2をより強度の大きいものとすることができる。
【0034】
また、エポキシ樹脂の硬化も、この加熱により反応が促進され、外皮2全体が均等に硬化し、上述した気泡が除去されることと相俟って、外皮2の強度はより大きいものとすることができる。
外皮2の形状に成形されたプリプレグ材に行われる上述の真空パック及び加熱は、前述した主桁1の形状に成形されたプリプレグ材についても同様にして行われる。
【0035】
次に主桁の組立を次のようにして行う。
まず、主桁形状に成形されたプリプレグ材に、真空バック及び加熱が行われ、硬化した図3又は図5に示す主桁1を、主桁型61又は62から取り外す。
【0036】
図10〜図11は、図3,図4に示す2分割成形用主桁61により2分割成形された主桁2の組立の場合を示すもので、図10に示すように主桁翼根部101の接着部102で2分割成形された主桁2と接合して接着し一体化する。
この2分割成形された主桁2を接合する翼根部101の外周には、図12に示すような翼支持用のボルト103を等間隔に複数本配置した後、ボルト103の間及びボルト103の外周を順次積層して翼根部10を円筒形に仕上げる。
【0037】
次に、主桁1と外皮2とを組み立てる。
この組立てにおいては、先ず腹側外皮2と主桁1とを接着剤で接着し、次いで、腹側外皮2が接着された側と反対側の主桁1に背側外皮2をかぶせて接着剤で主桁1と背側外皮2、及び腹側外皮22と背側外皮21とを同時に接着剤で接着する。
最後に仕上げを行うが、これは従来から行われている前述した仕上げ方法とほぼ同様の要領で行い、これにより、軽量かつ高強度の風力発電翼の製造が完了する。
【0038】
次に、図13〜図16により本発明にかかる風力発電翼の製造方法の実施の第2形態を説明する。
本実施の形態では、上述した実施の第1形態における風力発電翼5の製造に当っては、プリプレグ材の硬化時に風力発電翼5の長さ以上の加熱保温室91を準備する必要があり、近年の風力発電翼5の大型化に対しては主桁型6および外皮型7ごと挿入できる大容積の加熱保温室91が必要とされると共に、大容積の加熱保温室91内で真空引きしながら主桁1および外皮2を成形したプリプレグ材を加熱する為には大容積のエネルギ(熱源)が必要となる不具合があり、これを解消しようとしたものである。
【0039】
図13及び図14は、本実施の形態の風力発電翼5の製造方法に使用される主桁型6および外皮型7を示す図である。
すなわち、図13に示すように主桁型6はフレーム64に主桁1の外面形状が上面に形成された主桁枠63を取り付けて構成するようにしている。
同様に、図14に示すように外皮型7は、(外皮)フレーム72に外皮2の外皮2の外面形状が上面に形成された外皮枠71を取り付けて構成するようにしている。
【0040】
この主桁枠63及び外皮枠71は、鋼板あるいは、ガラス繊維強化プラスチックで製作され、軽量のものにされている。
また、主桁枠63および外皮枠71の底面には、図15、図16に示すようにヒータ111が取り付けられるようになっている。
【0041】
本実施の形態の風力発電翼の製造方法に使用される主桁枠6および外皮枠7は、上述のように構成されているので、主桁枠63及び外皮枠72にガラス繊維強化プラスチックからなる織布にエポキシ樹脂をあらかじめ含浸させてシート状に成形した、いわゆる予備成形シートを積層して、主桁1および外皮2の形状にされたプリプレグ材を成形する。
【0042】
次に図15に示すように、外皮枠71上に形成された外皮2を製作するプリプレグ材を真空フィルム81で覆う。
この真空フィルム81でプリプレグ材を覆うときには、外皮枠71と真空フィルム81との間には真空破壊防止用の真空シールテープ82を全周に設け、プリプレグ材の外周には真空状態にし、保持できる空間部が前述した製造方法の実施の第1形態と同様に形成される。
また、真空フィルム81には真空吸引用の管83が貫通して設けられ、この管83から空間部を真空引きすることにより積層して外皮形状に成形されたプリプレグ材を外皮枠71に密着させる、いわゆる真空バックを行う。
【0043】
この真空バックをした状態で、さらに管83から真空引きする事により真空フィルム81を密着させ予備成形シートと固体発泡体4にできる気泡を取り除き、予備成形シートと固体発泡体4との機密性を高め、接合力を増大させることができる。
この状態で予備成形シートを積層して成形された外皮2形状にされたプリプレグ材を硬化させる為にはプリプレグ材を80℃以上で2時間加熱保持し、プリプレグ材が硬化された外皮2を製作することができる。
これは、主桁1のプリプレグ材を硬化するときも、同様であり、さらには実施の第1形態と同様である。
【0044】
しかし、図9に示すように、主枠型6および外皮型7ごと加熱保温室91内に入れねばならない為、実施の第1形態の場合には、大容積の加熱保温室91を必要とし、大容積による上に、熱容量の大きい主桁型6および外皮型7も加熱する事となるので大容量のエネルギー(熱源)が必要であった。
【0045】
これに対して、本実施の形態で使用するようにした主枠6および外皮枠7では、図15,図16に示すように外皮枠71の下方に電熱ヒータ等からなるヒータ111を貼りつける等して、外皮枠71をヒータ111で直接加熱することにより、硬化されて外皮2となる予備成形シートを積層して外皮2に成形されたプリプレグ材を直接加熱するようにした加熱時に、プリプレグ材から放出する熱量を無駄に廃棄しないように断熱材112を真空フィルム81の上に載せて保温する構造とした。
【0046】
このようにすることにより、大容積の加熱保温室91が不要になるとともに、主桁型6、外皮型7が熱容量の小さい主桁枠63、フレーム64および外皮枠71,フレーム72からなり、さらに加熱保温室91を加熱する必要がないことから、エポキシ樹脂をあらかじめ含浸させた予備成形シートを積層して、主桁1および外皮2の形状に成形されたプリプレグ材を硬化・成形させる為に、80℃以上に加熱させる必要がある場合においても、電熱ヒータ111で加熱して、断熱材112で保温して、主桁1、外皮2を硬化させて製作でき、次いで主桁1と硬化させて製作でき、次いで主桁1と外皮2とを実施の第1形態同様に接着する事によって風力発電翼5の製造が完了する。
【0047】
【発明の効果】
以上述べたように、本発明の風力発電翼の製造方法により製造された風力発電翼は、予備成形シートを積層して形成された主桁と外皮とを主要部品として構成される。
【0048】
これにより、風力発電翼の大型化に対しても、ガラス繊維強化プラスチックからなる予備成形シートを積層して形成するので、材料強度を大きくすることができ、また肉厚を薄くして軽量にでき、軽量かつ高強度の風力発電翼とすることができる。
また、外皮の間にウレタンフォームの充填が必要ないので、ウレタンフォームの発泡に必要となる代替フロンに代る発泡材又はウレタンフォームに代る充填材の開発が不要になる。
【0049】
また、本発明の風力発電翼の製造方法により製造された風力発電翼は、風力発電翼を構成する主桁と外皮とを形成する予備成形シートがガラス繊維強化プラスチックからなる繊維の織布にエポキシ樹脂を含浸させたものとなる
【0050】
これにより、プリプレグ材の成形が人体に有害な有機溶剤スチレンを含んでいるポリエステル樹脂に代え、エポキシ樹脂で良くなり、積層作業時の防護マスクの着用が不要になる等作業環境を大幅に改善することができる。
また、予備成形シートの積層は、乾式積層方式であり、積層作業が簡単で、しかも脱脂、脱泡作業が不要で、風力発電翼の強度及び寸法に与える影響が小さくでき、また製作者の技術力によって生じる重量、寸法、材料強度にばらつきを少なくすることができる。
さらに、含浸されるエポキシ樹脂は一定で、しかも真空脱気で行うので、風力発電翼の背側と腹側とにそれぞれ配置される外皮を接着する際エッジ部の研磨が少なくでき、この作業時の粉塵の発生を低減できる作業環境が悪くなるのを防止できる。
【0051】
さらに、本発明の風力発電翼の製造方法により製造された風力発電翼は、外皮の内面側に固形発泡体が介装されている
【0052】
これにより、風力発電翼、特に外皮に負荷される荷重の大きい部分を適宜補強することができ、耐熱、耐圧性に秀れ、圧縮、曲げ、引張り座屈に対して秀れた強度を有する風力発電翼にすることができる。
【0053】
さらに、本発明の風力発電翼の製造方法により製造された風力発電翼は、主桁が一体成形または複数個に分割成形されたものとすることができる
【0054】
これにより、主桁の成形が主桁の大きさに応じて容易にできるとともに、風力発電翼のサイズに応じて一体成形、分割成形のものを使い分けすることにより、圧縮、曲げ、引張り座屈に対して秀れた強度を有する風力発電翼にすることができる。
【0055】
即ち、本発明の風力発電翼製造方法は、主要部品である主桁および外皮の成形方法として、予備成形シートを主桁型または外皮型上に積層し、更に、外皮の場合は固体発泡体を主桁が配置される位置の翼弦方向の前後に配置して、主桁または外皮型に形成されたプリプレグ材の外面を真空フィルムで被包して、密閉された空間部を形成し、この空間部を真空吸引することにより積層された予備成形シートの密着性を高めて風力発電翼を製造するものとした。
【0056】
これにより、成形作業が容易で、しかも積層してプリプレグ材を形成する予備成形シート間の密着性に秀れ、軽量かつ高強度の風力発電翼を製作することができる。
【0057】
また、本発明の風力発電翼の製造方法は、80℃以上の温風が導入される加熱保温室内に密閉された空間部を設け、加熱保温室内に導入される温風により、空間部内のプリプレグ材を加熱しながら、空間部内を真空吸引し、積層した予備成形シートで形成されたプリプレグ材の硬化を促進させるものとした。
【0058】
これにより、積層した予備成形シートで形成されたプリプレグ材の硬化が促進され、風力発電翼の製作期間を短縮することができ、さらに、硬化剤が加熱により反応が促進され、未反応分として残留することがなくなり、主桁、外皮からなる風力発電翼は、より軽量化され、より耐熱、耐圧性に秀れ、圧縮、曲げ、引張り座屈に対して秀れた強度を有する風力発電翼にすることができる。
【0059】
また、本発明の風力発電翼の製造方法は、空間部が形成される主桁枠または外皮枠と、主桁枠または外皮枠を所定位置に保持するフレームと、主桁枠または外皮枠の底面に設置されたヒータとにより主桁型または外皮型を形成し、予備成形シートを積層してプリプレグ材を成形したのち、ヒータによりプリプレグ材を加熱しながら、空間部を真空吸引することによりプリプレグ材の硬化を促進させるものとした。
【0060】
これにより、空間部の加熱が主桁枠または外皮枠の底面に設置されたヒータにより行われるで一体成形された長大な風力発電翼を主桁枠および外皮枠とともに収容できる大容積の加熱保温室が不要になるとともに、加熱用に必要な大容量のエネルギーが不要となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る風力発電翼を示す横断面図で、主桁が一体成形された場合を示すものである。
【図2】本発明の実施の形態に係る風力発電翼を示す横断面図で、主桁が2分割成形された場合を示すものである。
【図3】主桁を2分割成形する本発明の製造方法の実施の第1形態における主桁型への積層工程を示す斜視図である。
【図4】図3のA部拡大図である。
【図5】主桁を一体成形する本発明製造方法の実施の第1形態における主桁型への積層工程を示す斜視図である。
【図6】外皮を成形する本発明の製造方法の実施の第1形態における外皮型への積層工程を示す斜視図である。
【図7】図6のB部拡大図である。
【図8】図6に示す外皮型の真空バック工程を行っている説明図である。
【図9】図6に示す外皮型の加熱工程を行っている説明図である。
【図10】主桁の組立工程を示す斜視図である。
【図11】翼根部の正面図である。
【図12】ボルトの形状を示す斜視図である。
【図13】主桁を2分割成形する製造方法の実施の第2形態における主桁型への積層工程を示す斜視図である。
【図14】外皮を成形する本発明の製造方法の実施の第2形態における外皮型への積層工程を示す斜視図である。
【図15】図14に示す外皮型の真空バック工程を行っている説明図である。
【図16】図14に示す外皮型の加熱工程を行っている説明図。
【図17】従来の風力発電翼の構造を示す断面図である。
【符号の説明】
1 主桁
11 前縁側主桁
12 後縁側主桁
2 外皮
21 背側外皮
22 腹側外皮
3 接着剤
4 固体発泡体
5 風力発電翼
6 主桁型
61 2分割成形用主桁型
62 筒状主桁型
63 主桁枠
64 (主桁)フレーム
7 外皮型
71 外皮枠
72 (外皮)フレーム
81 真空フィルム
82 真空シールテープ
83 管
91 加熱保温室
92 ダクト
101 翼根部
102 接着部
103 ボルト
104 前縁
105 後縁
111 ヒータ
112 断熱材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind turbine blade and a wind turbine blade of a wind turbine for wind turbines manufactured by using a glass fiber woven fabric impregnated with an epoxy resin in advance and formed into a sheet shape (hereinafter referred to as a preformed sheet). The present invention relates to a manufacturing method, and more particularly, to a method for manufacturing a main girder and a skin that are main components of a wind turbine blade.
[0002]
[Prior art]
A structure of a wind turbine blade (hereinafter simply referred to as a blade) used in a conventional wind turbine for wind power generation and a manufacturing method thereof will be described with reference to FIG.
In the figure, 01 is a main girder, and the central part of the wing 07 is extended in the wing width direction and constitutes a main part of the wing 07.
The main girder 01 is manufactured as follows.
First, a mold for molding a main girder in which the inner surface shape of the main girder 01 is formed on the outer surface, that is, the surface of the main girder mold is washed with acetone, and then a release agent is applied.
[0003]
Next, a glass mat made of glass fibers and a roving cloth are laminated on the surface of the main girder type while being impregnated with a polyester resin alternately.
At this time, resin is added to the portion where the resin to be impregnated is insufficient, and after the glass mat and roving cloth are sufficiently impregnated and laminated, the outer surface of the laminate is pressed with a roller to degrease excess resin impregnated, Defoaming in the laminated part is performed and cured.
Thereafter, the main girder 01 is manufactured by extracting the laminated and hardened main girder 01 from the main girder type using a hydraulic jack or the like.
[0004]
In the figure, 02 is an outer skin that forms the outer surface of the wing 07 and constitutes the main parts of the wing 07 in the same manner as the main girder 01 and is manufactured in the following manner.
First, a mold for outer skin molding in which the outer surface shape of the outer skin 02 is recessed on the outer surface, that is, the outer surface of the outer skin mold is washed with acetone in the same manner as in the manufacture of the main girder 01, and then a release agent is used. Paint.
Next, after spraying the surface of the release agent with a spray gun, a glass mat and a roving cloth are alternately laminated on the coating film while impregnating the polyester resin in the same manner as in manufacturing the main girder 01. I will do it.
[0005]
At this time, the resin is added to the resin-deficient portion, and after the resin is sufficiently impregnated and laminated, the outer surface of the laminate is pressed with a roller, degreased, defoamed, and cured. Do the same.
In addition, two sheets of the outer skin 02, ie, an outer skin that forms the dorsal side and an outer skin that forms the ventral side of the wing 07, are manufactured.
Further, in the manufacture of the outer skin 02, the outer skin 02 is not removed from the outer skin mold at the time of degreasing, defoaming, and curing, and it remains as one body.
[0006]
Next, an adhesive portion of the outer skin 02 provided on the ventral side of the wing 07 integrated with the main girder 01 and the outer skin mold is made by impregnating a polyester resin into a glass mat as an adhesive 03, and the outer skin 02 for the gap. Laminate on the inner surface side.
Next, the main girder 01 cut out from the main girder frame as described above is placed on the adhesive 03 laminated on the abdominal skin 02.
Next, in the same manner as the adhesive 03 laminated on the inner peripheral surface of the abdominal skin 02 on the back side of the main girder 01, the thickness corresponding to the gap generated during assembly of the main girder 01 and the back skin 02 is set. After laminating the adhesive 03, the outer skin 02 provided on the back side of the wing 07 is placed on the upper side of the adhesive 03 laminated on the main girder 01 together with the outer skin mold, and is cured.
[0007]
Next, the urethane foam 04 is placed in the space formed between the ventral outer skin 02 and the dorsal outer skin 02 except for the portion where the main girder 01 where the adhesive 03 is laminated and bonded is provided. The urethane foam 04 is sufficiently cured and cured, and then the outer skin 02 on the ventral side and the back side are removed from the outer skin mold.
[0008]
The blade 07 thus formed is finally finished in the following manner.
First, the leading edge 05, the trailing edge 06, and the blade root of the blade 07 are polished to completely remove fine powders and the like generated during the polishing with acetone, and the outer skin 02 on the ventral side of the blade root, the blade leading edge, and the blade trailing edge. The glass mat and roving cloth are alternately impregnated with polyester resin to form a blade root and join the ventral and dorsal outer skin 02 at the joint between the outer skin 02 and the dorsal outer skin 02. Do.
In this way, the wing 07 formed by joining the main girder 01 and the outer skin 02 is molded and polished on the entire outer surface, and then paint is applied, and the end face processing of the blade root portion that connects to the wind power generator is performed. To complete the manufacture of the wing 07.
[0009]
[Problems to be solved by the invention]
(1) In the conventional wind power generation blade described above, there is a limit on the material strength of the conventional materials used for the increase in blade size, and the wall thickness is increased to compensate for this. Must be done, which increases the weight of the wing.
[0010]
(2) In addition, the above-mentioned material, that is, a material composed of a glass mat made of glass fiber and a roving cloth, needs to be sufficiently impregnated with a polyester resin when laminating. It contains a harmful organic solvent, styrene, and the work efficiency is reduced due to work restrictions such as the need for protective masks for workers.
[0011]
(3) When bonding the outer skins arranged on the back side and the abdomen side of the wind power generation blade, it is necessary to polish the edge part. However, in this work, a large amount of dust is generated. The manufacturing work.
[0012]
(4) Since the conventional material lamination in which glass fiber is impregnated with a polyester resin is laminated by wet lamination, degreasing and defoaming operations using a roller are very important.
In addition, this degreasing and defoaming work has a large effect on the strength and dimensions of the main girder and outer shell, which are molded products. Variation may occur.
[0013]
(5) Urethane foam filled between the outer shells other than the main girder placement part has no problem with the material itself, is lightweight, has an appropriate strength, and is an ideal material. The chlorofluorocarbon gas used in the plant has been decided to be banned in 2020 due to the cause of ozone layer depletion. There is currently a debate over the ban on use.
For this reason, in the case of a wind turbine blade having a structure in which a material replacing the foamed urethane foam that has been filled between the outer skins is used, it is necessary to develop a material that replaces the urethane foam.
[0014]
(6) Curing of the outer shell and the main girder formed by laminating the glass mat and the roving cloth while alternately impregnating the polyester resin is not necessarily performed by heating, but in this case, it takes time to cure, Unreacted parts may remain in the curing of the polyester resin, and the outer shell and main girder may not be evenly cured, which may cause problems with the strength of the material, particularly the strength distribution of the entire wind turbine blade. .
[0015]
(7) Also, in the production of wind power blades, heating is performed in order to shorten the setting time and shorten the working time, to produce a wind power blade having a uniform strength distribution and high strength. In such a case, it is necessary to prepare a heating and heat insulation device longer than the length of the wind turbine blade.
In particular, when wind turbine blades that have been enlarged like recent wind turbine blades are inserted into the main girder type and outer shell type, and heated and cured, the large capacity of these can be accommodated. A heating and heat insulation device is required, and a large volume of energy (heat source) is required for heating as the volume of the heating and heat insulation device increases.
[0016]
[Means for Solving the Problems]
  The present invention provides the above-described conventional wind power generation.WingedManufacturingMethodIn order to solve the problemsFigure with the following meansThe
[0021]
  (1The present invention,WindMain girders and hulls that are the main components of a power generator bladeOf wind turbine blades consisting ofAs a way,
Glass fiber reinforced plastic pre-formed sheet main girderOn the moldLaminated toBy preformed sheetmainDigitEnclose the outer surface of the prepreg material formed in a shape with a vacuum film,On the moldAfter forming a sealed space in the outer periphery of the prepreg material, the space is vacuum sucked to improve the adhesion of the laminated preformed sheets forming the prepreg material.DigitFormationAnd
A preformed sheet of glass fiber reinforced plastic is laminated on the outer skin mold, and the solid foam is placed before and after the chord direction where the main girder is placed, and the upper part of the solid foam and the solid foam are laminated. After a preformed sheet is further laminated above the preformed sheet, the outer surface of the prepreg material formed in the shape of the outer shell by the preformed sheet and the solid foam is encapsulated with a vacuum film, and the prepreg on the outer mold After forming a sealed space around the outer periphery of the material, vacuum suction is applied to the space to increase the adhesion between the laminated pre-formed sheets and solid foam that form the prepreg material to form a skinAfter
There is provided a method for manufacturing a wind power generation blade, characterized in that a wind power generation blade is manufactured by joining a formed main girder and a skin.
(a) Thereby, the manufacture of the wind turbine blade of the present inventionMethodAccording to the above (1) Is easy to form, and can be made to have excellent adhesion between the layers of the preformed sheets that are laminated to form the prepreg material, and the preformed sheets are evenly and strongly adhered. Since the main girder and outer skin can be manufactured using the prepreg material, a lightweight and high-strength wind power generation blade can be manufactured.
[0022]
  (2) Also, the above (1) In addition to the adoption of the above means, a space part in which the outer periphery of the prepreg material is hermetically sealed, that is, a preformed sheet is laminated to form a main girder or skin shape in a heated holding room where hot air of 80 ° C. or higher is introduced. A prepreg material is formed and is provided with a main girder type or an outer skin type covered with a vacuum film so as to enclose the prepreg material, and is sealed in this space portion by hot air introduced into a heated storage room A method for manufacturing a wind power generator blade characterized by accelerating curing of a prepreg material formed in a shape of a main girder, outer skin, etc. with a laminated preformed sheet by vacuum suctioning the space while heating provide.
(b) According to the method for manufacturing a wind turbine blade of the present invention,2)a), The curing of the prepreg material formed by the laminated preformed sheets is promoted, and the production period of the wind turbine blade can be shortened. Furthermore, the reaction of the curing agent in the epoxy resin is accelerated by heating, there is no residual unreacted part of the curing, and there are fewer air bubbles remaining. Can be made into a wind turbine blade that is lighter in weight, more excellent in heat resistance and pressure resistance, and has excellent strength against compression, bending, and tensile buckling.
[0023]
  (3) Also, the above (1), The main spar frame or the outer frame in which the prepreg material is formed by laminating the pre-formed sheets and the space is formed so that the prepreg material to be vacuum-sucked can be sealed; After forming a main girder type or outer hull type with a frame that can hold the girder frame or hull frame in a predetermined position and a heater that heats the space installed on the bottom surface of each main girder frame or hull frame, A method for manufacturing a wind power generator blade, characterized by promoting the hardening of a prepreg material by vacuum suction of a space portion while heating the prepreg material formed with a main girder frame or outer frame with a heater to 80 ° C or higher. provide.
(c) According to the method for manufacturing a wind turbine blade of the present invention,3)a) Plus the above (b) And the same actions and effects can be obtained. Further, in the present invention, the space is heated by a heater installed on the bottom surface of the main girder frame or the outer frame, so that a large wind turbine blade integrally formed with the main girder frame and the outer frame can be accommodated. A heating and warming device such as a heating and warming room is not required, and energy required for heat curing can be reduced.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a wind turbine generator blade and a wind turbine generator blade of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a wind turbine blade when a main girder showing a first embodiment of a wind turbine blade according to the present invention is integrally formed.
[0025]
In the figure, 1 is a main girder, the upper side of the figure shows the back side of the wind power generation blade 5, and the lower side shows the abdomen side.
Reference numeral 2 denotes an outer skin, which consists of two pieces, a back side skin 21 and a ventral side skin 22, which are combined with the main girder 1 sandwiched from above and below, and the back side skin 21 and the ventral side skin 22 are a front edge 104 and a rear edge 105. It is joined.
3 is an adhesive, which is laminated at the joint between the main girder 1 and the outer skin 2 to bond the main girder 1 and the outer skin 2, and the main part 1 and the outer skin 2 are strongly joined to form an integral molding. The wind power generator blade 5 is formed.
4 is a solid foam interposed on the inner peripheral surface of the outer shell 2 around the chord direction of the main girder 1 disposed in the outer shell 2, and is a PVC foam (for example, a product name manufactured by Kaneka Chemical Co., Ltd.). Cregecel) or the like can be used.
[0026]
FIG. 2 is a cross-sectional view of a wind power generation blade when a main girder showing a second embodiment of the wind power generation blade of the present invention is divided into a front edge side main girder and a rear edge side main girder.
[0027]
As shown in the figure, in the wind turbine blade 5 of the present embodiment, the main girder 1 is divided and formed into a leading edge side main girder 11 and a trailing edge side main girder 12, and both the main girders 11 and 12 are arranged on the back side. The outer skin 21 and the ventral outer skin 22 are arranged to be spaced apart in the chord direction.
In the same manner as in the first embodiment, the main girder 1 and the outer skin 2 are bonded with the adhesive 3 and are integrally molded to form the wind power generation blade 5.
[0028]
Next, a first embodiment of the method for manufacturing a wind turbine blade according to the present invention will be described with reference to FIGS.
3 and 4 show a case where the main girder 1 is divided into two parts, and the main girder mold 1 for two-part molding is impregnated with a woven fabric made of glass fiber reinforced plastic in advance to form a sheet. A so-called prepreg material, a so-called prepreg material, which is an intermediate base material of a glass fiber reinforced plastic material, which is formed by forming 10 to 30 layers of preformed sheets and forming one of the main beams 1 divided into two. To manufacture.
[0029]
As will be apparent from the description below, the prepreg material produced by the half-molding main beam die 61 does not necessarily have the leading edge side main beam 11 or the trailing edge side main beam 12 as shown in FIG. The main girder 1 integrally formed as shown in FIG. 1 can also be formed by joining the dividing surfaces.
FIG. 5 is a diagram showing a case where the main girder 1 is integrally molded. The main girder 1 is integrally molded by winding and laminating a preformed sheet pre-impregnated with epoxy resin around the outer periphery of the cylindrical main girder mold 62. The prepreg material is molded.
[0030]
  6 and 7VentralOuter skin 22It is a figure which shows the case where the shaping | molding is performed with the outer skin type | mold 7. FIG.
First,VentralOuter skin 22A preformed sheet on the top surface of the outer skin mold 7 made ofS14 to 6 layers are laminated.
Next, the solid foam 4 made of a vinyl chloride foam is disposed on the front and rear edges of the wind power generation blade 5, that is, on the front and rear sides in the chord direction of the position where the main girder 1 is disposed. It laminates | stacks on the inner peripheral surface side of two places in the respectively molded state.
On top of this, a preformed sheet on which the solid foam 4 is not laminated and the solid foam 4 is not laminated.S1A preformed sheet above the laminate ofS24 to 6 layersVentralOuter skin 22A prepreg material having a shape of is molded.
[0031]
  And, Ventral skin 2 of wind turbine blade 52Prepreg material and dorsal skin 21Two prepreg materials are formed together with the prepreg material to be manufactured.
That is, the ventral skin 22And dorsal skin 21The solid foam 4 is laminated on most of the inner peripheral surface other than the portion where the main beam 1 is disposed.
[0032]
  Next, as shown in FIG.VentralOuter skin 22The upper part of the prepreg material formed in the shape of is covered with a vacuum film 81.
For this purpose,VentralOuter skin 22A vacuum seal tape 82 for preventing vacuum breakage is provided on the entire circumference between the portion where the film is not formed and the vacuum film 81, and is formed on the outer mold 7.VentralOuter skin 22A space portion enclosing the prepreg material is formed around the outer periphery of the prepreg material.
Further, the vacuum film 81 is provided with a vacuum suction tube 83 for making the space portion into a vacuum state, and the space portion is evacuated by the tube 83 so that the laminated preformed sheet and A so-called vacuum pack process is performed in which the prepreg material formed of the solid foam 4 and formed into a skin shape is brought into close contact with the skin mold 61 and the laminated preformed sheets are brought into strong contact with each other.(Dorsal skin 21 is the same).
[0033]
Next, as shown in FIG. 9, the prepreg material in the form of a vacuum packed outer shell is transferred to the heating chamber 91 together with the outer shell mold 7 on which the prepreg material is molded, and hot air is introduced from the duct 92. Then, the prepreg material is cured by heating, and the outer skin 2 is manufactured.
The heating temperature by the warm air may be 80 ° C. and the heating time may be about 2 hours. However, the heating time can be further shortened by further increasing the heating temperature.
During the heating with the warm air, the space 83 is further evacuated by the tube 83, whereby the vacuum film 8 is brought into close contact with the prepreg material being cured, and the air bubbles that can be formed into the preformed sheet and the solid foam. Is removed, the confidentiality between the preformed sheet and the solid foam 4 is increased, and further, the bonding strength of the laminated surfaces of the laminated preformed sheets is increased, and the outer skin 2 can be made stronger.
[0034]
Moreover, the reaction of the epoxy resin is also accelerated by this heating, the entire outer skin 2 is uniformly cured, and the strength of the outer skin 2 is increased in combination with the removal of the bubbles described above. Can do.
The above-described vacuum pack and heating performed on the prepreg material formed in the shape of the outer skin 2 are performed in the same manner on the prepreg material formed in the shape of the main beam 1 described above.
[0035]
Next, the main girder is assembled as follows.
First, the prepreg material formed in the main girder shape is vacuum-backed and heated, and the main girder 1 shown in FIG.
[0036]
10 to 11 show the case of assembling the main girder 2 that has been formed into two parts by the two-part forming main girder 61 shown in FIGS. 3 and 4, and the main girder blade root portion 101 as shown in FIG. The main girder 2 that is divided into two parts is bonded and bonded together by the bonding portion 102.
A plurality of blade support bolts 103 as shown in FIG. 12 are arranged at equal intervals on the outer periphery of the blade root portion 101 to which the two-split main girder 2 is joined. The outer periphery is sequentially laminated to finish the blade root 10 into a cylindrical shape.
[0037]
  Next, the main girder 1 and the outer skin 2 are assembled.
In this assembly, first the ventral skin 22And main girder 1 are bonded with an adhesive, and then the ventral skin 22The main girder 1 on the side opposite to the side to which the glue is attached and the dorsal skin 21Cover main girder 1 and dorsal skin 2 with adhesive1, And the abdominal skin 22 and the back skin 21 are simultaneously bonded with an adhesive.
Finally, finishing is performed in the same manner as the above-described finishing method that has been conventionally performed, thereby completing the production of a light-weight and high-strength wind turbine blade.
[0038]
Next, a second embodiment of the method for manufacturing a wind turbine blade according to the present invention will be described with reference to FIGS.
In the present embodiment, in the manufacture of the wind power generation blade 5 in the first embodiment described above, it is necessary to prepare a heated storage room 91 longer than the length of the wind power generation blade 5 when the prepreg material is cured, In order to increase the size of the wind power generation blade 5 in recent years, a large-capacity heated warming chamber 91 that can be inserted together with the main girder type 6 and the outer shell type 7 is required, and a vacuum is drawn in the large-volume heated warming chamber 91. However, there is a problem that a large volume of energy (heat source) is required to heat the prepreg material on which the main girder 1 and the outer skin 2 are molded, and this is to be solved.
[0039]
FIGS. 13 and 14 are views showing the main girder type 6 and the outer skin type 7 used in the method for manufacturing the wind turbine blade 5 of the present embodiment.
That is, as shown in FIG. 13, the main girder type 6 is configured by attaching a main girder frame 63 having an outer surface shape of the main girder 1 formed on the upper surface to a frame 64.
Similarly, as shown in FIG. 14, the skin mold 7 is configured by attaching a skin frame 71 in which the outer surface shape of the skin 2 of the skin 2 is formed on the upper surface of a (skin) frame 72.
[0040]
The main girder frame 63 and the outer frame 71 are made of a steel plate or glass fiber reinforced plastic and are lightweight.
Further, as shown in FIGS. 15 and 16, a heater 111 is attached to the bottom surfaces of the main girder frame 63 and the outer frame 71.
[0041]
Since the main girder frame 6 and the outer frame 7 used in the method for manufacturing a wind turbine blade according to the present embodiment are configured as described above, the main girder frame 63 and the outer frame 72 are made of glass fiber reinforced plastic. A so-called preformed sheet, which is formed by impregnating a woven fabric with an epoxy resin in advance and formed into a sheet shape, is laminated to form a prepreg material in the shape of the main beam 1 and the outer skin 2.
[0042]
Next, as shown in FIG. 15, a prepreg material for manufacturing the outer skin 2 formed on the outer skin frame 71 is covered with a vacuum film 81.
When the prepreg material is covered with the vacuum film 81, a vacuum sealing tape 82 for preventing vacuum breakage is provided between the outer frame 71 and the vacuum film 81 on the entire periphery, and the outer periphery of the prepreg material can be kept in a vacuum state. The space is formed in the same manner as in the first embodiment of the manufacturing method described above.
Further, the vacuum film 81 is provided with a vacuum suction tube 83 therethrough, and the space portion is vacuumed from the tube 83 so that the prepreg material formed into a skin shape is brought into close contact with the skin frame 71. A so-called vacuum bag is performed.
[0043]
With this vacuum backed, the vacuum is further drawn from the tube 83 to bring the vacuum film 81 into close contact with each other to remove bubbles formed in the preformed sheet and the solid foam 4, thereby improving the confidentiality between the preformed sheet and the solid foam 4. The bonding force can be increased.
In this state, in order to cure the prepreg material that is formed by laminating the preformed sheets and formed into the outer skin 2, the prepreg material is heated and held at 80 ° C. or more for 2 hours to produce the outer skin 2 in which the prepreg material is cured. can do.
This is the same when the prepreg material of the main girder 1 is cured, and is the same as in the first embodiment.
[0044]
However, as shown in FIG. 9, since the main frame mold 6 and the outer skin mold 7 must be put into the heating chamber 91, in the case of the first embodiment, a large volume heating chamber 91 is required, In addition to the large volume, the main girder type 6 and the outer skin type 7 having a large heat capacity are also heated, so that a large amount of energy (heat source) is required.
[0045]
On the other hand, in the main frame 6 and the outer frame 7 used in the present embodiment, a heater 111 made of an electric heater or the like is attached below the outer frame 71 as shown in FIGS. Then, by directly heating the outer frame 71 with the heater 111, the pre-preg material that is cured and becomes the outer layer 2 is laminated and the prepreg material formed on the outer layer 2 is directly heated. The heat insulating material 112 is placed on the vacuum film 81 so as not to waste the amount of heat released from the waste heat.
[0046]
In this way, the large-capacity heated storage room 91 is not necessary, and the main girder type 6 and the outer skin type 7 are composed of the main girder frame 63, the frame 64, the outer skin frame 71 and the frame 72 having a small heat capacity. Since there is no need to heat the heat-retaining chamber 91, in order to cure and mold the prepreg material formed in the shape of the main girder 1 and the outer skin 2 by laminating preformed sheets impregnated with epoxy resin in advance, Even when it is necessary to heat to 80 ° C. or higher, the main girder 1 and the outer skin 2 can be cured by heating with the electric heater 111 and keeping with the heat insulating material 112, and then curing with the main girder 1. Then, the main girder 1 and the outer skin 2 are bonded in the same manner as in the first embodiment, whereby the manufacture of the wind power generator blade 5 is completed.
[0047]
【The invention's effect】
  As described above, the present inventionManufactured by the method of manufacturing wind turbine bladesA wind turbine blade is composed mainly of a main girder and outer skin formed by laminating preformed sheets.The
[0048]
As a result, even when the wind turbine blades are increased in size, the preformed sheets made of glass fiber reinforced plastic are laminated and formed, so that the material strength can be increased and the thickness can be reduced and the weight can be reduced. It can be a lightweight and high-strength wind turbine blade.
In addition, since it is not necessary to fill the urethane foam between the outer skins, it is not necessary to develop a foaming material in place of an alternative chlorofluorocarbon or a foaming material in place of the urethane foam necessary for foaming the urethane foam.
[0049]
  In addition, the present inventionManufactured by the method of manufacturing wind turbine bladesThe wind turbine blade is made by impregnating a woven fabric of fiber made of glass fiber reinforced plastic with an epoxy resin in a preformed sheet that forms the main girder and outer skin that make up the wind turbine bladeBecome.
[0050]
This makes it possible to use epoxy resin instead of polyester resin containing organic solvent styrene, which is harmful to the human body, for molding of prepreg material, greatly improving the work environment, such as eliminating the need for wearing a protective mask during lamination work. be able to.
In addition, the pre-formed sheet is laminated by a dry lamination method, the lamination work is simple, and no degreasing or defoaming work is required, and the influence on the strength and dimensions of the wind turbine blades can be reduced. Variations in weight, dimensions, and material strength caused by force can be reduced.
Furthermore, since the epoxy resin to be impregnated is constant and vacuum degassing is performed, polishing of the edge portion can be reduced when bonding the outer skin disposed on the back side and the ventral side of the wind power generation blade, respectively. It is possible to prevent the working environment that can reduce the generation of dust from being deteriorated.
[0051]
  Furthermore, the present inventionManufactured by the method of manufacturing wind turbine bladesWind power generator blades have solid foam on the inner surface of the outer skin.Has been.
[0052]
This makes it possible to appropriately reinforce the wind power generator blades, especially the parts with a large load applied to the outer skin, and has excellent heat resistance, pressure resistance, and excellent strength against compression, bending, and tensile buckling. It can be a power generation blade.
[0053]
  Furthermore, the present inventionManufactured by the method of manufacturing wind turbine bladesThe wind power generator blades have a main girder that is integrally molded or divided into multiple parts.can do.
[0054]
As a result, the main girder can be easily formed according to the size of the main girder, and it can be used for compression, bending, and tensile buckling by properly using one of integral molding and split molding depending on the size of the wind turbine blade. On the other hand, it is possible to make a wind turbine blade having excellent strength.
[0055]
  That isThe wind power generator blade of the present inventionofThe manufacturing method is to form a preformed sheet on the main girder or outer mold as a method for forming the main girder and outer skin, which are the main parts,Furthermore, in the case of the outer skin, arrange the solid foam before and after the chord direction where the main girder is located,Main girderTypeOr hullTo moldFormationIsA wind power generator blade is manufactured by encapsulating the outer surface of the prepreg material with a vacuum film to form a sealed space, and vacuuming the space to increase the adhesion of the laminated preformed sheets. It was supposed to be.
[0056]
This makes it possible to produce a wind power blade that is easy to form and has excellent adhesion between the preformed sheets that are laminated to form a prepreg material, and that is lightweight and has high strength.
[0057]
In addition, the method for producing a wind power generator blade according to the present invention provides a sealed space in a heat-retaining greenhouse to which hot air of 80 ° C. or higher is introduced, and the prepreg in the space is provided by the hot air introduced into the heat-retaining greenhouse. While heating the material, the inside of the space was vacuum-sucked to promote curing of the prepreg material formed of the laminated preformed sheets.
[0058]
This accelerates the curing of the prepreg material formed with the laminated preformed sheets, shortens the production period of the wind power generation blade, and further, the curing agent promotes the reaction by heating, and remains as an unreacted component. The wind power generator blades made of the main girder and outer skin are lighter, more heat-resistant and pressure-resistant, and have excellent strength against compression, bending and tensile buckling. can do.
[0059]
The method for manufacturing a wind turbine blade according to the present invention includes a main girder frame or outer frame in which a space is formed, a frame that holds the main girder frame or outer frame in a predetermined position, and a bottom surface of the main girder frame or outer frame. After forming the main girder type or outer skin type with the heater installed in the heater and forming the prepreg material by laminating the pre-formed sheets, the prepreg material is vacuum sucked while heating the prepreg material with the heater. It was supposed to promote curing.
[0060]
As a result, a large-capacity heated storage room that can accommodate a large wind power generation blade integrally formed together with the main girder frame and the outer frame by heating the space with a heater installed on the bottom surface of the main girder frame or the outer frame. Is not necessary, and a large amount of energy required for heating is not required.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a wind turbine blade according to an embodiment of the present invention, in which a main girder is integrally formed.
FIG. 2 is a transverse sectional view showing a wind turbine blade according to an embodiment of the present invention, and shows a case where a main girder is formed into two parts.
FIG. 3 is a perspective view showing a stacking process on a main girder mold in the first embodiment of the manufacturing method of the present invention in which the main girder is divided into two parts.
4 is an enlarged view of a part A in FIG. 3;
FIG. 5 is a perspective view showing a stacking process on a main girder mold in the first embodiment of the manufacturing method of the present invention for integrally molding the main girder.
FIG. 6 is a perspective view showing a step of laminating on the skin mold in the first embodiment of the manufacturing method of the present invention for forming the skin.
7 is an enlarged view of part B in FIG. 6;
FIG. 8 is an explanatory view in which a skin-type vacuum back process shown in FIG. 6 is performed.
FIG. 9 is an explanatory view showing a heating process of the outer skin type shown in FIG. 6;
FIG. 10 is a perspective view showing an assembly process of the main beam.
FIG. 11 is a front view of a blade root part.
FIG. 12 is a perspective view showing the shape of a bolt.
FIG. 13 is a perspective view showing a stacking process on the main girder mold in the second embodiment of the manufacturing method for forming the main girder into two parts.
FIG. 14 is a perspective view showing a step of laminating on a skin mold in the second embodiment of the manufacturing method of the present invention for forming the skin.
FIG. 15 is an explanatory view of performing the outer skin type vacuum back process shown in FIG. 14;
FIG. 16 is an explanatory view in which the outer shell type heating step shown in FIG. 14 is performed.
FIG. 17 is a cross-sectional view showing the structure of a conventional wind turbine blade.
[Explanation of symbols]
1 Main digit
11 Leader side main girder
12 trailing edge main girder
2 outer skin
21 Dorsal skin
22 Ventral skin
3 Adhesive
4 Solid foam
5 Wind power blades
6 Main girder type
61 Main girder mold for 2-part molding
62 Tubular main girder type
63 Main girder frame
64 (main digit) frame
7 Skin type
71 outer frame
72 (Outer skin) frame
81 vacuum film
82 Vacuum seal tape
83 tubes
91 Heated greenhouse
92 Duct
101 Wing root
102 Bonding part
103 volts
104 Leading edge
105 trailing edge
111 heater
112 Thermal insulation

Claims (3)

ラス繊維強化プラスチックの予備成形シートを主桁型上に積層し、前記予備成形シートにより桁の形状に形成されたプリプレグ材の外面側を真空フィルムで被包して、密閉された空間部を形成したのち、前記空間部を真空吸引することにより、前記プリプレグ材を形成する積層された前記予備成形シート相互の密着性を高めて前記主桁を形成すると共に
ガラス繊維強化プラスチックの予備成形シートを外皮型上に積層し、固体発泡体を前記主桁が配置される位置の翼弦方向の前後に配置し、前記固体発泡体の上方および前記固体発泡体が積層されてない前記予備成形シートの上方にさらに予備成形シートを積層したのち、前記予備成形シート及び前記固体発泡体により前記外皮の形状に形成されたプリプレグ材の外面側を真空フィルムで被包して、密閉された空間部を形成したのち、前記空間部を真空吸引することにより、前記プリプレグ材を形成する積層された前記予備成形シートおよび前記固体発泡体相互の密着性を高めて前記外皮を形成した後、
前記主桁と前記外皮とを接合して風力発電翼を製造することを特徴とする風力発電翼の製造方法。
The preformed sheet of glass fiber reinforced plastic laminated on the main girder type, wherein by encapsulating in vacuo film outer surface side of the prepreg material formed on the main girder shape by preformed sheet, sealed space portion After forming the, by vacuum suction the space portion, and forming the main beam to enhance the adhesion of stacked said preformed sheet together to form the prepreg material,
A preformed sheet of glass fiber reinforced plastic is laminated on the outer skin mold, and a solid foam is arranged in front and back of the chord direction at the position where the main girder is arranged, and above the solid foam and the solid foam After a preformed sheet is further laminated above the preformed sheet that is not laminated, the outer surface side of the prepreg material formed in the shape of the outer skin by the preformed sheet and the solid foam is encapsulated with a vacuum film. Then, after forming the sealed space portion, the space portion is vacuum-sucked to improve the adhesion between the laminated preformed sheet forming the prepreg material and the solid foam and After forming
A method for manufacturing a wind power generation blade, comprising manufacturing the wind power generation blade by joining the main girder and the outer skin.
80℃以上の温風が導入される加熱保温室内に前記空間部を設け、前記加熱保温室内に導入される温風により密閉された前記空間部内の前記プリプレグ材を加熱しながら、前記空間部を真空吸引することにより、前記プリプレグ材の硬化を促進させることを特徴とする請求項に記載の風力発電翼の製造方法。The space portion is provided in a heated storage room where warm air of 80 ° C. or higher is introduced, and the space portion is heated while heating the prepreg material in the space portion sealed by the warm air introduced into the heated storage room. by vacuum suction method wind blade according to claim 1, characterized in that to accelerate the curing of the prepreg material. 前記空間部が形成される主桁枠または外皮枠と、前記主桁枠または外皮枠を所定位置に保持するフレームと、前記主桁枠または外皮枠の底面に設置されたヒータとからなる前記主桁型または外皮型を形成し、前記主桁枠または外皮枠に、前記予備成形シートを積層して前記プリプレグ材を成形したのち、前記ヒータにより前記プリプレグ材を加熱しながら、前記空間部を真空吸引することにより前記プリプレグ材の硬化を促進させることを特徴とする請求項に記載の風力発電翼の製造方法。The main girder frame or skin frame in which the space portion is formed, the frame for holding the main girder frame or skin frame in a predetermined position, and the heater installed on the bottom surface of the main girder frame or skin frame. After forming the spar or outer skin mold and forming the prepreg material by laminating the preformed sheet on the main girder frame or the outer skin frame, the space is vacuumed while heating the prepreg material by the heater. The method for manufacturing a wind turbine blade according to claim 1 , wherein the prepreg material is accelerated by being sucked.
JP16412199A 1998-10-06 1999-06-10 Method for manufacturing wind turbine blades Expired - Fee Related JP3930200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16412199A JP3930200B2 (en) 1998-10-06 1999-06-10 Method for manufacturing wind turbine blades

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28446998 1998-10-06
JP10-284469 1998-10-06
JP16412199A JP3930200B2 (en) 1998-10-06 1999-06-10 Method for manufacturing wind turbine blades

Publications (2)

Publication Number Publication Date
JP2000179448A JP2000179448A (en) 2000-06-27
JP3930200B2 true JP3930200B2 (en) 2007-06-13

Family

ID=26489341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16412199A Expired - Fee Related JP3930200B2 (en) 1998-10-06 1999-06-10 Method for manufacturing wind turbine blades

Country Status (1)

Country Link
JP (1) JP3930200B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077881A1 (en) * 2009-12-22 2011-06-30 三菱重工業株式会社 Wind wheel blade and wind-driven electricity generation device using same
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641366B2 (en) * 2001-07-27 2011-03-02 富士重工業株式会社 Method for manufacturing component parts of wind power generation apparatus
DK175718B1 (en) * 2002-04-15 2005-02-07 Ssp Technology As Möllevinge
ATE364494T1 (en) * 2005-02-24 2007-07-15 Vestas Wind Sys As METHOD FOR PRODUCING A WIND TURBINE BLADE, A PRODUCTION SYSTEM OF WIND TURBINE BLADES AND USE THEREOF
US8012299B2 (en) 2008-03-05 2011-09-06 Vestas Wind Systems A/S Assembly tool and a method of manufacturing a blade
KR101621275B1 (en) * 2008-05-16 2016-05-16 엑스이엠시 다르윈드 비.브이. A method of manufacturing a turbine blade half, a turbine blade half, a method of manufacturing a turbine blade, and a turbine blade
EP2444660A4 (en) 2009-07-09 2013-05-22 Mitsubishi Heavy Ind Ltd Wind turbine blade and method of manufacturing same
DE102009058101A1 (en) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Use of layer structures in wind turbines
KR101187302B1 (en) * 2010-04-19 2012-10-04 이은주 Lightweight blade with wingbox for wind power generating device, wingbox manufacturing tool and method
CN101865091B (en) * 2010-06-10 2012-03-21 内蒙古航天亿久科技发展有限责任公司 Wind generator blade and forming method thereof
JP5439412B2 (en) * 2011-02-18 2014-03-12 三菱重工業株式会社 Blade root forming piece for wind turbine blade, blade root structure of wind turbine blade using the same, wind turbine blade, wind turbine, and manufacturing method of wind turbine blade
JP5427807B2 (en) * 2011-02-25 2014-02-26 三菱重工業株式会社 Reinforced plastic structure, method for producing reinforced plastic structure, structure, windmill blade and windmill
US9599094B2 (en) 2012-12-18 2017-03-21 Lm Wp Patent Holding A/S Method of manufacturing an aerodynamic shell part for a wind turbine blade
KR101581229B1 (en) * 2014-08-22 2015-12-30 삼성중공업 주식회사 Fabricating method of blade for wind turbine
CN106481504A (en) * 2015-09-01 2017-03-08 中材科技风电叶片股份有限公司 Wind electricity blade attachment means
CN106481516A (en) * 2015-09-01 2017-03-08 中材科技风电叶片股份有限公司 Wind electricity blade method of attachment
CN106976179B (en) * 2017-04-06 2019-02-15 哈尔滨飞机工业集团有限责任公司 A kind of dipping method of the glass fibre one-way tape for the main blade crossbeam of paving

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077881A1 (en) * 2009-12-22 2011-06-30 三菱重工業株式会社 Wind wheel blade and wind-driven electricity generation device using same
JP2011132824A (en) * 2009-12-22 2011-07-07 Mitsubishi Heavy Ind Ltd Wind turbine blade and wind turbine generator using the same
US8172542B2 (en) 2009-12-22 2012-05-08 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and wind turbine generator using the same
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness

Also Published As

Publication number Publication date
JP2000179448A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP3930200B2 (en) Method for manufacturing wind turbine blades
KR101264947B1 (en) Low temperature, vacuum cure fabrication process for large, honeycomb core stiffened composite structures
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
US6007894A (en) Quasi-isotropic composite isogrid structure and method of making same
JP4342620B2 (en) Method for forming honeycomb sandwich structure composite panel
JP3403201B2 (en) Manufacturing method of honeycomb core composite product
CN105922703B (en) A kind of thin-walled foam interlayer structure compound material antenna house preparation method
US7097731B2 (en) Method of manufacturing a hollow section, grid stiffened panel
US20140186588A1 (en) Processes to fabricate composite tubular-reinforced panels integrating skin and stringers and the panels thereby fabricated
US20060008611A1 (en) Sealing of honeycomb core and the honeycomb core assembly made with the same
JPH07187085A (en) Fiber reinforced composite panel structure and manufacture thereof
JP2003312590A (en) Reinforcement body for aircraft skin panel and manufacturing method for skin panel provided with reinforcement body
JP2003011231A (en) Method for producing composite material panel
JP2009220577A (en) Method of resin transfer molding
CN110116510A (en) A kind of integrated molding method of composite material cabin
US7374715B2 (en) Co-cured resin transfer molding manufacturing method
JP2005047180A (en) Method for producing honeycomb sandwich panel
US20140360665A1 (en) Reflector manufactured using multiple use precision extractable tooling
CN110299598A (en) A kind of aramid fiber covering-paper honeycomb interlayer barrel shell structure and its preparation method and application
JP2003042056A (en) Method of manufacturing component for wind power generation device
EP2399298A1 (en) Photovoltaic modules and process for their production
JP2017128012A (en) Autoclave molding method, autoclave molding device and manufacturing method of molding block used therefor
JPH11192991A (en) Structure of frp monocock frame for bicycle and its manufacture
JPH10278185A (en) Manufacture of sandwich structure
JP2004058608A (en) Method for manufacturing hollow molded article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees