JP3926105B2 - Membrane biological deodorization tower - Google Patents

Membrane biological deodorization tower Download PDF

Info

Publication number
JP3926105B2
JP3926105B2 JP2001013901A JP2001013901A JP3926105B2 JP 3926105 B2 JP3926105 B2 JP 3926105B2 JP 2001013901 A JP2001013901 A JP 2001013901A JP 2001013901 A JP2001013901 A JP 2001013901A JP 3926105 B2 JP3926105 B2 JP 3926105B2
Authority
JP
Japan
Prior art keywords
suspension
reservoir
supply system
tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001013901A
Other languages
Japanese (ja)
Other versions
JP2002210325A (en
Inventor
哲也 山本
正史 師
敏行 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001013901A priority Critical patent/JP3926105B2/en
Publication of JP2002210325A publication Critical patent/JP2002210325A/en
Application granted granted Critical
Publication of JP3926105B2 publication Critical patent/JP3926105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treating Waste Gases (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、膜型生物脱臭塔および運転方法に関し、し尿処理、汚泥再生処理センター、下水処理などにおける脱臭技術に係るものである。
【0002】
【従来の技術】
従来、微生物を利用して脱臭を行う技術には液相法や固相法がある。液相法は、脱臭塔の上部にノズルを設け、塔下部に滞留する活性汚泥などの液をポンプでノズルに供給して塔内に噴霧し、噴霧水と処理対象ガスを接触させてガス中の臭気成分を処理するものである。
【0003】
固相法は、脱臭塔内に微生物を担持する充填材を充填し、塔内に供給する処理対象ガスを充填材を通して通気し、微生物の代謝を利用してガス中の臭気成分を処理するものである。充填材としては、土壌、コンポスト、ピート、木炭、活性炭、ネットリング、セラミックなどがあり、充填材表面の乾燥を防ぐために適当な水を噴霧する。
【0004】
【発明が解決しようとする課題】
上記した構成において、液相法は微生物を含んだ液とガスの接触時間が短く、液中に溶けやすい臭気成分を処理することしか出来ない。さらに、活性汚泥などをそのまま噴霧しても、活性汚泥中には種々雑多な菌が含まれており、特定の臭気成分を分解してくれる菌が少ない場合が多い。一方、固相法では充填材の表面に担持する微生物が臭気成分を分解するので、充填材とガスとの接触時間を出来るだけ長くする必要があった。しかも、充填材表面に微生物を高濃度に担持させるためには単位体積当たりの表面積が大きい充填材を用いる必要があった。このような充填材は圧力損失が大きく、使用中に閉塞するなどのトラブルが起きやすかった。
【0005】
本発明は上記した課題を解決するものであり、対象ガスと微生物との接触時間を十分に確保し、特定微生物の濃度を高く維持し、充填材の閉塞のトラブルを防止できる膜型生物脱臭塔および運転方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る本発明の膜型生物脱臭塔は、塔上部に配置し、微生物懸濁液を噴霧するノズルと、塔下部に設ける微生物懸濁液の貯留部と、貯留部の上方に配置し、ノズルから噴霧する高濃度の微生物懸濁液が表面に沿って流下する充填材と、充填材の下方から上方に向けて原ガスを上向流で供給するガス供給系と、貯留部の微生物懸濁液をノズルに循環供給する懸濁液供給系と、貯留部の懸濁液をろ過して懸濁液中の微生物濃度を高める膜装置と、貯留部の余剰汚泥を引抜く余剰汚泥引抜系と、貯留部に連通して補給水を供給するブロー水供給系と、塔上部に連通して処理したガスを排出するガス排出系と、原ガス中の硫化水素濃度を測定するセンサー手段と、懸濁液中にチオ硫酸ナトリウムを供給する薬剤供給系と、前記センサー手段の出力値に基づいて薬剤供給系におけるチオ硫酸ナトリウムの供給量を調整する制御手段とを備えたものである。
【0007】
上記した構成により、貯留部の微生物懸濁液を懸濁液供給系によってノズルに循環供給し、ノズルから微生物懸濁液を充填材に向けて噴霧する。懸濁液は原ガスとの接触効率を高めるために霧状に噴霧して単位体積当たりの表面積を増加させることが好ましい。その際に、充填材は補助的なもので十分となる。
【0008】
噴霧した微生物懸濁液が充填材の表面に付着して後に表面に沿って漸次に流下する。一方でガス供給系から供給する原ガスは充填材の下方から上方に向けて上向流で供給し、充填材の表面に付着して流下する微生物懸濁液と原ガスが向流接触し、原ガス中の臭気成分が微生物懸濁液に溶解して後に微生物の代謝によって分解される。
【0009】
このように、高濃度の微生物懸濁液が充填材の表面を漸次に流下し、原ガスと向流接触し、微生物懸濁液が高濃度化されていることにより原ガスと微生物懸濁液との接触時間が短くて済む。また、後述する膜装置の作用によって微生物懸濁液の濃度が高いので、臭気成分の負荷量が高い運転が可能となり、空隙率の大きい充填材においても十分な脱臭効果を得ることに必要な微生物を担持することができる。この充填材にはプラスチックのネットリング、セラミックなどの他に、濡れ棚やチェーンを垂らすなど空隙率ができるだけ大きい充填材を使用する。このような空隙率の大きい充填材を使用することで、原ガスの通気抵抗を低減して圧力損失を小さくすることができるとともに、空隙率が大きいことで閉塞などが起こり難くなる。
【0010】
臭気成分を除去した処理ガスは塔上部に連通するガス排出系を通して系外へ排出する。塔下部の貯留部に流下した微生物懸濁液は、貯留部に配置した膜装置でろ過して膜透過液を系外へ取り出すことで、懸濁液中の活性汚泥が系外へ流出することを防止してその濃度を高く維持することができるとともに、汚泥滞留時間を長くすることができる。
【0011】
この汚泥滞留時間を長くすることで、増殖速度が遅い硫黄酸化細菌を多く増殖することができ、硫黄成分の除去性能が高まる。微生物懸濁液の濃度(汚泥滞留時間)は余剰汚泥引抜系から引抜く余剰汚泥量と膜透過液量とを適宜に制御することで任意の値に調整できる。また、微生物懸濁液の濃度調整は貯留部の槽内液をオーバーブローすることでも可能である。
【0012】
膜装置には浸漬型平膜、回転平膜、チューブラー膜などを使用することができる。浸漬型平膜の場合には膜表面を洗浄する曝気用の気体として原ガスを原ガス供給系からバイパスして使用しても良く、膜装置の曝気は間欠曝気でよい。また、膜装置を充填材の下方の液中に設置し、塔内へ供給する原ガスを膜表面を洗浄する曝気用の気体を兼ねて吹き込むことも可能である。
【0013】
膜透過液、余剰汚泥は水処理装置へ導入して処理し、余剰汚泥の引抜きおよび膜透過液の取り出しによって減少する槽内液量を補うためにブロー水供給系からブロー水を供給する。このブロー水には水道水、水処理装置で処理した二次処理水、メタン醗酵汚泥を膜でろ過した膜透過液などを使用できる。
【0015】
また、微生物懸濁液中の微生物は代謝によって原ガス中の臭気成分を分解して馴養するが、原ガス中の臭気成分はその量が安定しておらず、微生物を増殖して一定濃度に維持するためには臭気成分量の安定化が望ましい。特に硫化水素を分解する硫黄酸化細菌はその増殖速度が遅く、負荷変動に追従することが困難である。
【0016】
このため、センサ手段で測定した原ガス中の硫化水素濃度が少ない場合には、薬剤供給系からチオ硫酸ナトリウムを懸濁液中に供給して硫黄酸化細菌の馴養に必要な栄養分を補給することで、懸濁液中の硫黄酸化細菌の微生物量を一定に維持し、硫黄成分の除去性能を高める。
【0018】
また、懸濁液中の微生物は活性汚泥などを種汚泥として馴養するが、運転初期時には懸濁液中に十分な微生物がない。特に硫黄酸化細菌は増殖速度が遅く、硫黄成分の除去性能の安定化に時間が係る。
【0019】
このため、生物脱臭塔の運転初期時にチオ硫酸ナトリウムを懸濁液中に添加することで、硫黄酸化細菌の増殖を促進して硫黄成分の除去性能を早期に安定化することができる。
【0021】
請求項2に係る本発明の膜型生物脱臭塔は、塔上部に配置し、微生物懸濁液を噴霧するノズルと、塔下部に設ける微生物懸濁液の貯留部と、貯留部の上方に配置し、ノズルから噴霧する高濃度の微生物懸濁液が表面に沿って流下する充填材と、充填材の下方から上方に向けて原ガスを上向流で供給するガス供給系と、貯留部の微生物懸濁液をノズルに循環供給する懸濁液供給系と、貯留部の懸濁液をろ過して懸濁液中の微生物濃度を高める膜装置と、貯留部の余剰汚泥を引抜く余剰汚泥引抜系と、貯留部に連通して補給水を供給するブロー水供給系と、塔上部に連通して処理したガスを排出するガス排出系と、懸濁液のpHを測定するセンサー手段と、懸濁液中にチオ硫酸ナトリウムを供給する薬剤供給系と、前記センサー手段の出力値に基づいて薬剤供給系におけるチオ硫酸ナトリウムの供給量を調整する制御手段とを備えたものである。
上記した構成により、原ガス中の硫化水素濃度が低下すると、硫黄酸化菌が代謝物として生成する硫酸イオンの濃度が低下し、結果として懸濁液のpHが上昇するので、pHを指標として原ガス中の硫化水素濃度を推量する。
【0022】
センサ手段で測定した原ガス中の硫化水素濃度が少ない場合には、薬剤供給系からチオ硫酸ナトリウムを懸濁液中に供給して硫黄酸化細菌の馴養に必要な栄養分を補給することで、懸濁液中の硫黄酸化細菌の微生物量を一定に維持し、硫黄成分の除去性能を高める。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。膜型生物脱臭塔1の塔上部には微生物懸濁液を噴霧するノズル2を配置しており、塔下部には微生物懸濁液を貯留する貯留部3を設けている。貯留部3の上方には充填材4を配置しており、充填材4はノズル2から噴霧する高濃度の微生物懸濁液が表面に付着して流下するもので、プラスチックのネットリング、セラミックなどの他に、濡れ棚やチェーンを垂らすなど空隙率ができるだけ大きい充填材を使用する。
【0024】
充填材4の下部には臭気成分を含む原ガスを供給するガス供給系5が接続しており、ガス供給系5のファン5aにより供給する原ガスを充填材4の下方から上方に向けて上向流で通気する。貯留部3とノズル2との間には懸濁液供給系6を設けており、懸濁液供給系6は循環ポンプ7によって貯留部3の微生物懸濁液をノズル2に循環供給する。塔上部には処理したガスを排出するガス排出系8を接続している。
【0025】
貯留部3は側方に張り出した膜浸漬部9を有し、膜浸漬部9に膜装置10を浸漬している。膜装置10は吸引系10aの吸引ポンプ10bにより加える吸引圧を駆動圧として、あるいは槽内の水圧を駆動圧力として(図示省略)貯留部3の微生物懸濁液をろ過して懸濁液中の微生物濃度を高めるものであり、浸漬型平膜、回転平膜、チューブラー膜などを使用することができるが、本実施の形態では浸漬型平膜を使用する。
【0026】
この膜装置10の下方には散気装置11を配置しており、散気装置11に接続して散気ファン111aを設けている。この散気ファン11aにより供給し、散気装置11から散気する気体は膜表面を洗浄する曝気用のものであり、曝気気体が生起する固気液混相の上向流を膜面に掃流として作用させて膜面を洗浄する。膜装置10に対する曝気は間欠曝気でよい。
【0027】
この散気装置11に供給する気体としては空気に変えて原ガスを利用することもでき、この場合にはガス供給系5からバイパスして散気装置11に供給する。また、膜装置10および散気装置11を充填材4の下方に設置し、ガス供給系5を散気装置11に接続し、塔内へ供給する原ガスを膜表面を洗浄する曝気用の気体を兼ねて吹き込むことも可能である。
【0028】
膜浸漬部9の下部には余剰汚泥引抜系12を接続しており、余剰汚泥引抜系12の汚泥ポンプ13によって槽内の余剰汚泥を引抜く。また、膜浸漬部9には補給水を供給するブロー水供給系14を接続している。
【0029】
ガス供給系5には原ガス中の硫化水素濃度を測定するセンサー手段15を配置し、懸濁液供給系6には懸濁液中にチオ硫酸ナトリウムを供給する薬剤供給系16を接続しており、制御手段17がセンサー手段15の出力値に基づいて薬剤供給系16の薬液ポンプ18の駆動を制御してチオ硫酸ナトリウムの供給量を調整する。
【0030】
また、薬剤供給系16は、図1中に二点鎖線で示すように、貯留部3に直接に接続しても良い。さらに、原ガス中の硫化水素濃度が低下すると、硫黄酸化菌が代謝物として生成する硫酸イオンの濃度が低下し、結果として懸濁液のpHが上昇するので、pHを指標として原ガス中の硫化水素濃度を推量することもできる。このため、貯留部3に懸濁液のpHを測定するpHセンサー手段19を設け、制御手段17がpHセンサー手段19の出力値に基づいて薬剤供給系16の薬液ポンプ18の駆動を制御してチオ硫酸ナトリウムの供給量を調整する構成とすることも可能である。
【0031】
以下、上記した構成における作用を説明する。運転時には貯留部3の微生物懸濁液を循環ポンプ7により懸濁液供給系6を通してノズル2に循環供給し、ノズル2から微生物懸濁液を充填材4に向けて噴霧する。
【0032】
噴霧した微生物懸濁液は充填材4の表面に付着し、その後に表面に沿って漸次に流下する。一方でファン5aによりガス供給系5から供給する原ガスは充填材4を下方から上方に向けて上向流で通気し、充填材4の表面に付着して流下する微生物懸濁液と向流接触する。この接触により原ガス中の臭気成分が微生物懸濁液に溶解して後に微生物の代謝によって分解される。
【0033】
このように、微生物懸濁液が充填材4の表面を漸次に流下し、原ガスと向流接触することで、原ガスと微生物懸濁液との接触時間を十分に確保することができる。また、後述する膜装置10の作用によって微生物懸濁液の濃度が高いので、臭気成分の負荷量が高い運転が可能となる。また、プラスチックのネットリング、セラミック、濡れ棚、チェーン等の空隙率の大きい充填材においても、十分な脱臭効果を得ることに必要な微生物を担持することができる。この空隙率の大きい充填材4を使用することで、原ガスの通気抵抗を低減して圧力損失を小さくすることができるとともに、空隙率が大きいことで閉塞などが起こり難くなる。
【0034】
臭気成分を除去した処理ガスは塔上部のガス排出系8を通して系外へ排出する。塔下部の貯留部3に流下した微生物懸濁液は膜浸漬部9に配置した膜装置10でろ過して膜透過液を系外へ取り出す。このことで、懸濁液中の活性汚泥が系外へ流出することを防止してその濃度を高く維持することができるとともに、汚泥滞留時間を長くすることができる。
【0035】
この汚泥滞留時間を長くすることで、増殖速度が遅い硫黄酸化細菌を多く増殖することができ、硫黄成分の除去性能が高まる。微生物懸濁液の濃度(汚泥滞留時間)は余剰汚泥引抜系12から引抜く余剰汚泥量と膜装置10の吸引系10aから取り出す膜透過液量とを適宜に制御することで任意の値に調整できる。
【0036】
膜透過液、余剰汚泥は水処理装置(図示省略)へ導入して処理し、余剰汚泥の引抜きおよび膜透過液の取り出しによって減少する槽内液量はブロー水供給系14から供給するブロー水によって補う。このブロー水には水道水、水処理装置で処理した二次処理水、メタン醗酵汚泥を膜でろ過した膜透過液などを使用する。
【0037】
ところで、微生物懸濁液中の微生物は代謝によって原ガス中の臭気成分を分解して馴養するが、原ガス中の臭気成分はその量が安定しておらず、微生物を増殖して一定濃度に維持するためには臭気成分量の安定化が望ましい。特に硫化水素を分解する硫黄酸化細菌はその増殖速度が遅く、負荷変動に追従することが困難である。
【0038】
このため、薬剤供給系16からチオ硫酸ナトリウムを懸濁液中に供給する。この供給は制御手段17で薬液ポンプ18の駆動量を制御して行うもので、センサ手段15で原ガス中の硫化水素濃度を測定し、あるいはpHセンサー手段19で懸濁液のpHを測定し、測定値に応じてチオ硫酸ナトリウムの供給量を加減し、硫化水素濃度が少ない場合には増加し、多い場合には低減し、あるいはpH値が高い場合には増加して、硫黄酸化細菌の馴養に必要な栄養分を補給することで、懸濁液中の硫黄酸化細菌の微生物量を一定に維持し、硫黄成分の除去性能を高める。
【0039】
また、懸濁液中の微生物は活性汚泥などを種汚泥として馴養するが、運転初期時には懸濁液中に十分な微生物がない。特に硫黄酸化細菌は増殖速度が遅く、硫黄成分の除去性能の安定化に時間が係る。
【0040】
このため、膜型生物脱臭塔1の運転初期時にはチオ硫酸ナトリウムを懸濁液中に添加することで、硫黄酸化細菌の増殖を促進して硫黄成分の除去性能を早期に安定化させる。
【0041】
【発明の効果】
以上のように本発明によれば、微生物を液相の微生物懸濁液として充填材に担持し、充填材の表面に付着して後に表面に沿って漸次に流下する濃度の高い微生物懸濁液と、充填材の下方から上方に向けて上向流で通気する原ガスとが向流接触して臭気成分を微生物の代謝によって分解するので、原ガスと微生物懸濁液との接触時間を従来より短くすることができる。充填材に付着する微生物懸濁液の濃度が高いので、臭気成分の負荷量が高い運転が可能で、空隙率の大きい充填材においても十分な脱臭効果を得ることに必要な微生物を担持でき、空隙率の大きい充填材を使用することで原ガスの通気抵抗を低減して圧力損失を小さくすることができ、閉塞などが起こり難くなる。微生物懸濁液は膜装置でろ過することでその濃度を高く維持することができるとともに、汚泥滞留時間を長くして増殖速度が遅い硫黄酸化細菌を多く増殖することで硫黄成分の除去性能を高めることができる。原ガス中の硫化水素濃度の増減に応じて、もしくは懸濁液のpHに応じて懸濁液中にチオ硫酸ナトリウムを供給することで、硫化水素を分解する硫黄酸化細菌の濃度を安定化でき、硫黄成分の除去性能が高まる。生物脱臭塔の運転初期時にチオ硫酸ナトリウムを懸濁液中に添加することで、硫黄酸化細菌の増殖を促進して硫黄成分の除去性能を早期に安定化することができる。
【図面の簡単な説明】
【図1】本発明の膜型生物脱臭塔を示す模式図である。
【符号の説明】
1 膜型生物脱臭塔
2 ノズル
3 貯留部
4 充填材
5 ガス供給系
5a ファン
6 懸濁液供給系
7 循環ポンプ
8 ガス排出系
9 膜浸漬部
10 膜装置
10a 吸引系
10b 吸引ポンプ
11 散気装置
11a 散気ファン
12 余剰汚泥引抜系
13 汚泥ポンプ
14 ブロー水供給系
15 センサー手段
16 薬剤供給系
17 制御手段
18 薬液ポンプ
19 pHセンサー手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane-type biological deodorization tower and an operation method, and relates to a deodorization technique in human waste treatment, sludge regeneration treatment center, sewage treatment and the like.
[0002]
[Prior art]
Conventionally, there are a liquid phase method and a solid phase method as a technique for deodorizing using microorganisms. In the liquid phase method, a nozzle is provided in the upper part of the deodorizing tower, and liquid such as activated sludge staying in the lower part of the tower is supplied to the nozzle by a pump and sprayed into the tower. It treats odor components.
[0003]
In the solid-phase method, a deodorizing tower is filled with a packing material supporting microorganisms, a gas to be treated supplied to the tower is vented through the packing material, and the odor components in the gas are processed using the metabolism of the microorganism. It is. Examples of the filler include soil, compost, peat, charcoal, activated carbon, net ring, and ceramic, and spray appropriate water to prevent the surface of the filler from drying.
[0004]
[Problems to be solved by the invention]
In the above-described configuration, the liquid phase method has a short contact time between the liquid containing the microorganisms and the gas, and can only treat odor components that are easily dissolved in the liquid. Furthermore, even if activated sludge is sprayed as it is, various kinds of bacteria are contained in the activated sludge, and there are many cases where there are few bacteria that decompose specific odor components. On the other hand, in the solid phase method, since the microorganisms supported on the surface of the filler decompose odor components, it is necessary to make the contact time between the filler and the gas as long as possible. In addition, it is necessary to use a filler having a large surface area per unit volume in order to support microorganisms at a high concentration on the surface of the filler. Such a filler has a large pressure loss, and troubles such as clogging during use tend to occur.
[0005]
The present invention solves the above-described problems, and is a membrane-type biological deodorization tower that can sufficiently ensure the contact time between the target gas and the microorganism, maintain a high concentration of the specific microorganism, and prevent troubles of clogging of the filler. And to provide a driving method.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the membrane-type biological deodorization tower of the present invention according to claim 1 is arranged in the upper part of the tower, a nozzle for spraying the microbial suspension, and a microbial suspension reservoir provided in the lower part of the tower. And a filler that is disposed above the reservoir and the high-concentration microbial suspension sprayed from the nozzle flows down along the surface, and the raw gas is supplied upward from below the filler. A gas supply system, a suspension supply system that circulates and supplies the microbial suspension in the reservoir to the nozzle, a membrane device that filters the suspension in the reservoir to increase the concentration of microorganisms in the suspension, and the reservoir A surplus sludge extraction system that extracts excess sludge, a blow water supply system that communicates with the reservoir and supplies makeup water, a gas exhaust system that communicates with the upper part of the tower and discharges the treated gas, Sensor means for measuring the concentration of hydrogen sulfide and chemicals that supply sodium thiosulfate into the suspension System and, in which a control means for adjusting the supply amount of sodium thiosulfate in drug delivery system based on an output value of said sensor means.
[0007]
With the configuration described above, the microorganism suspension in the reservoir is circulated and supplied to the nozzle by the suspension supply system, and the microorganism suspension is sprayed from the nozzle toward the filler. In order to increase the contact efficiency with the raw gas, the suspension is preferably sprayed in the form of a mist to increase the surface area per unit volume. In that case, auxiliary fillers are sufficient.
[0008]
The sprayed microbial suspension adheres to the surface of the filler and then gradually flows down along the surface. On the other hand, the raw gas supplied from the gas supply system is supplied in an upward flow from the lower side to the upper side of the filler, and the microbial suspension adhering to the surface of the filler and the raw gas are in countercurrent contact. Odor components in the raw gas are dissolved in the microbial suspension and later decomposed by microbial metabolism.
[0009]
In this way, the high concentration microbial suspension gradually flows down the surface of the filler, contacts the raw gas counter-currently, and the microbial suspension is highly concentrated so that the raw gas and the microbial suspension are concentrated. The contact time with is short. In addition, since the concentration of the microorganism suspension is high due to the action of the membrane device described later, it is possible to operate with a high load of odor components, and microorganisms necessary for obtaining a sufficient deodorizing effect even in a filler having a large porosity. Can be supported. In addition to plastic net rings, ceramics, and the like, fillers having as high a porosity as possible such as hanging shelves and chains are used. By using such a filler with a high porosity, the gas gas resistance can be reduced and the pressure loss can be reduced, and the high porosity makes it difficult for clogging and the like to occur.
[0010]
The processing gas from which the odor component is removed is discharged out of the system through a gas discharge system communicating with the upper part of the tower. The microorganism suspension that has flowed down to the storage section at the bottom of the tower is filtered through a membrane device placed in the storage section, and the membrane permeate is taken out of the system, so that the activated sludge in the suspension flows out of the system. Can be maintained at a high concentration, and the sludge residence time can be increased.
[0011]
By lengthening this sludge residence time, many sulfur oxidation bacteria with a slow growth rate can be propagated, and the removal performance of a sulfur component increases. The concentration of the microorganism suspension (sludge retention time) can be adjusted to an arbitrary value by appropriately controlling the amount of excess sludge drawn from the excess sludge drawing system and the amount of membrane permeate. Further, the concentration of the microorganism suspension can be adjusted by overblowing the liquid in the tank of the reservoir.
[0012]
An immersion flat membrane, a rotating flat membrane, a tubular membrane, or the like can be used for the membrane device. In the case of an immersion type flat membrane, the raw gas may be bypassed from the raw gas supply system as an aeration gas for cleaning the membrane surface, and the aeration of the membrane device may be intermittent aeration. It is also possible to install the membrane device in the liquid below the packing material and blow the raw gas supplied into the tower together with the aeration gas for cleaning the membrane surface.
[0013]
Membrane permeate and surplus sludge are introduced into the water treatment device for treatment, and blow water is supplied from the blow water supply system in order to compensate for the amount of liquid in the tank that is reduced by drawing out the surplus sludge and taking out the membrane permeate. As this blow water, tap water, secondary treated water treated with a water treatment device, a membrane permeate obtained by filtering methane fermentation sludge with a membrane, or the like can be used.
[0015]
Although microorganisms microbial suspension acclimating by decomposing the odorous components in the crude gas by metabolism, the odor components of the original gas is not that amount has stabilized, the constant concentration by growing the microorganism In order to maintain it, it is desirable to stabilize the amount of odor components. In particular, sulfur-oxidizing bacteria that decompose hydrogen sulfide have a slow growth rate and are difficult to follow load fluctuations.
[0016]
For this reason, when the concentration of hydrogen sulfide in the raw gas measured by the sensor means is low, supply sodium thiosulfate from the drug supply system into the suspension to replenish nutrients necessary for acclimatization of sulfur-oxidizing bacteria. Thus, the amount of sulfur-oxidizing bacteria in the suspension is kept constant, and the sulfur component removal performance is enhanced.
[0018]
In addition, microorganisms in the suspension acclimatize activated sludge as seed sludge, but there are not enough microorganisms in the suspension at the initial stage of operation. In particular, sulfur-oxidizing bacteria have a slow growth rate and take time to stabilize the removal performance of sulfur components.
[0019]
For this reason, by adding sodium thiosulfate to the suspension at the initial stage of operation of the biological deodorization tower, the growth of sulfur-oxidizing bacteria can be promoted and the sulfur component removal performance can be stabilized at an early stage.
[0021]
The membrane-type biological deodorization tower of the present invention according to claim 2 is arranged in the upper part of the tower, a nozzle for spraying the microbial suspension, a microbial suspension storage part provided in the lower part of the tower, and an upper part of the storage part A high-concentration microbial suspension sprayed from the nozzle flows along the surface, a gas supply system that supplies the raw gas in an upward flow from the bottom to the top of the filler, and a reservoir Suspension supply system that circulates the microorganism suspension to the nozzle, a membrane device that filters the suspension suspension to increase the concentration of microorganisms in the suspension, and excess sludge that extracts excess sludge from the reservoir A drawing system, a blow water supply system for supplying make-up water in communication with the reservoir, a gas discharge system for discharging processed gas in communication with the upper part of the tower, and a sensor means for measuring the pH of the suspension; A drug supply system for supplying sodium thiosulfate into the suspension, and an output value of the sensor means. In which a control means for adjusting the supply amount of sodium thiosulfate in drug supply system are.
With the above configuration, when the concentration of hydrogen sulfide in the raw gas decreases, the concentration of sulfate ions produced by the sulfur-oxidizing bacteria as metabolites decreases, resulting in an increase in the pH of the suspension. Estimate the hydrogen sulfide concentration in the gas.
[0022]
When the concentration of hydrogen sulfide in the raw gas measured by the sensor means is small, supply sodium thiosulfate from the drug supply system into the suspension to replenish the nutrients necessary for acclimatization of the sulfur-oxidizing bacteria. Maintains the amount of sulfur-oxidizing bacteria in the suspension at a constant level and improves the sulfur component removal performance.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. A nozzle 2 for spraying a microbial suspension is disposed in the upper part of the membrane-type biological deodorization tower 1, and a storage part 3 for storing the microbial suspension is provided in the lower part of the tower. A filler 4 is disposed above the reservoir 3, and the filler 4 is a high-concentration microbial suspension sprayed from the nozzle 2 that adheres to the surface and flows down, such as a plastic net ring or ceramic. In addition, use a filler with as high a porosity as possible, such as hanging wet shelves or chains.
[0024]
A gas supply system 5 for supplying a raw gas containing an odor component is connected to the lower portion of the filler 4, and the raw gas supplied by a fan 5 a of the gas supply system 5 is moved upward from below the filler 4. Ventilate countercurrent. A suspension supply system 6 is provided between the storage unit 3 and the nozzle 2, and the suspension supply system 6 circulates and supplies the microorganism suspension in the storage unit 3 to the nozzle 2 by a circulation pump 7. A gas discharge system 8 for discharging the processed gas is connected to the upper part of the tower.
[0025]
The storage unit 3 includes a membrane immersion unit 9 that protrudes laterally, and the membrane device 10 is immersed in the membrane immersion unit 9. The membrane device 10 uses the suction pressure applied by the suction pump 10b of the suction system 10a as the driving pressure or the water pressure in the tank as the driving pressure (not shown) to filter the microorganism suspension in the reservoir 3 and The microbe concentration is increased, and an immersion flat membrane, a rotating flat membrane, a tubular membrane, or the like can be used. In this embodiment, an immersion flat membrane is used.
[0026]
An air diffuser 11 is arranged below the membrane device 10, and an air diffuser 111 a is connected to the air diffuser 11. The gas supplied by the air diffuser 11a and diffused from the air diffuser 11 is for aeration for cleaning the film surface, and the upward flow of the solid-gas / liquid mixed phase generated by the aerated gas is swept to the film surface. The film surface is cleaned by acting as Aeration of the membrane device 10 may be intermittent aeration.
[0027]
The gas supplied to the air diffuser 11 can be changed to air and the raw gas can be used. In this case, the gas is bypassed from the gas supply system 5 and supplied to the air diffuser 11. Further, the membrane device 10 and the aeration device 11 are installed below the filler 4, the gas supply system 5 is connected to the aeration device 11, and the raw gas supplied into the tower is aerated gas for cleaning the membrane surface. It is also possible to blow as well.
[0028]
A surplus sludge extraction system 12 is connected to the lower part of the membrane immersion section 9, and surplus sludge in the tank is extracted by a sludge pump 13 of the excess sludge extraction system 12. Further, a blow water supply system 14 for supplying make-up water is connected to the film immersion unit 9.
[0029]
The gas supply system 5 is provided with sensor means 15 for measuring the concentration of hydrogen sulfide in the raw gas, and the suspension supply system 6 is connected with a chemical supply system 16 for supplying sodium thiosulfate into the suspension. The control means 17 adjusts the supply amount of sodium thiosulfate by controlling the driving of the chemical pump 18 of the chemical supply system 16 based on the output value of the sensor means 15.
[0030]
Further, the medicine supply system 16 may be directly connected to the storage unit 3 as indicated by a two-dot chain line in FIG. Furthermore, when the hydrogen sulfide concentration in the raw gas decreases, the concentration of sulfate ions produced by the sulfur-oxidizing bacteria as metabolites decreases, resulting in an increase in the pH of the suspension. The hydrogen sulfide concentration can also be estimated. For this purpose, the storage unit 3 is provided with pH sensor means 19 for measuring the pH of the suspension, and the control means 17 controls the driving of the chemical pump 18 of the drug supply system 16 based on the output value of the pH sensor means 19. It is also possible to adjust the supply amount of sodium thiosulfate.
[0031]
Hereinafter, the operation of the above-described configuration will be described. During operation, the microbial suspension in the reservoir 3 is circulated and supplied to the nozzle 2 through the suspension supply system 6 by the circulation pump 7, and the microbial suspension is sprayed from the nozzle 2 toward the filler 4.
[0032]
The sprayed microorganism suspension adheres to the surface of the filler 4 and then gradually flows down along the surface. On the other hand, the raw gas supplied from the gas supply system 5 by the fan 5a aerates the filler 4 upward from below, and adheres to the surface of the filler 4 and flows down against the microorganism suspension. Contact. By this contact, the odorous component in the raw gas is dissolved in the microbial suspension and later decomposed by the metabolism of the microorganism.
[0033]
In this way, the microbial suspension gradually flows down the surface of the filler 4 and makes countercurrent contact with the raw gas, so that a sufficient contact time between the raw gas and the microbial suspension can be ensured. In addition, since the concentration of the microorganism suspension is high due to the action of the membrane device 10 described later, an operation with a high load of odor components becomes possible. Also, a filler having a high porosity such as a plastic net ring, ceramic, wet shelf, chain, etc., can carry microorganisms necessary for obtaining a sufficient deodorizing effect. By using the filler 4 having a large porosity, it is possible to reduce the pressure resistance by reducing the ventilation resistance of the raw gas, and it is difficult to cause clogging due to the large porosity.
[0034]
The processing gas from which the odor component has been removed is discharged out of the system through the gas discharge system 8 at the top of the tower. The microbial suspension that has flowed down to the storage section 3 at the bottom of the tower is filtered by a membrane apparatus 10 disposed in the membrane immersion section 9 to take out the membrane permeate from the system. As a result, the activated sludge in the suspension can be prevented from flowing out of the system and the concentration thereof can be maintained high, and the sludge residence time can be lengthened.
[0035]
By lengthening this sludge residence time, many sulfur oxidation bacteria with a slow growth rate can be propagated, and the removal performance of a sulfur component increases. The concentration of the microorganism suspension (sludge retention time) is adjusted to an arbitrary value by appropriately controlling the amount of excess sludge drawn from the excess sludge drawing system 12 and the amount of membrane permeate taken out from the suction system 10a of the membrane device 10. it can.
[0036]
Membrane permeate and surplus sludge are introduced into a water treatment device (not shown) for treatment, and the amount of liquid in the tank that is reduced by drawing out the surplus sludge and taking out the membrane permeate is determined by the blow water supplied from the blow water supply system 14. compensate. As this blow water, tap water, secondary treated water treated with a water treatment device, membrane permeate obtained by filtering methane fermentation sludge with a membrane, and the like are used.
[0037]
By the way, the microorganisms in the microorganism suspension decompose and acclimatize the odor component in the raw gas by metabolism, but the amount of the odor component in the raw gas is not stable, and the microorganism grows to a constant concentration. In order to maintain it, it is desirable to stabilize the amount of odor components. In particular, sulfur-oxidizing bacteria that decompose hydrogen sulfide have a slow growth rate and are difficult to follow load fluctuations.
[0038]
For this purpose, sodium thiosulfate is supplied from the drug supply system 16 into the suspension. This supply is performed by controlling the driving amount of the chemical pump 18 by the control means 17. The sensor means 15 measures the hydrogen sulfide concentration in the raw gas, or the pH sensor means 19 measures the pH of the suspension. Depending on the measured value, the supply amount of sodium thiosulfate is increased, decreased when the hydrogen sulfide concentration is low, decreased when the hydrogen sulfide concentration is high, or increased when the pH value is high. By replenishing nutrients necessary for acclimatization, the amount of sulfur-oxidizing bacteria in the suspension is kept constant and the sulfur component removal performance is enhanced.
[0039]
In addition, microorganisms in the suspension acclimatize activated sludge as seed sludge, but there are not enough microorganisms in the suspension at the initial stage of operation. In particular, sulfur-oxidizing bacteria have a slow growth rate and take time to stabilize the removal performance of sulfur components.
[0040]
For this reason, by adding sodium thiosulfate to the suspension at the initial stage of the operation of the membrane-type biological deodorization tower 1, the growth of sulfur-oxidizing bacteria is promoted, and the sulfur component removal performance is stabilized at an early stage.
[0041]
【The invention's effect】
As described above, according to the present invention, a microorganism suspension is carried on a filler as a liquid-phase microorganism suspension, adheres to the surface of the filler, and then gradually flows down along the surface. Since the odorous components are decomposed by the metabolism of microorganisms due to countercurrent contact with the raw gas aerated in the upward flow from the bottom to the top of the filler, the contact time between the raw gas and the microbial suspension is conventionally reduced. It can be made shorter. Since the concentration of the microbial suspension adhering to the filler is high, operation with a high load of odorous components is possible, and the microorganisms necessary for obtaining a sufficient deodorizing effect can be carried even with a filler having a large porosity, By using a filler having a large porosity, the resistance to gas flow can be reduced and the pressure loss can be reduced, so that blockage or the like hardly occurs. The microbial suspension can be maintained at a high concentration by filtering with a membrane device, and the sulfur component removal performance is enhanced by increasing the sludge residence time and growing many sulfur-oxidizing bacteria with a slow growth rate. be able to. The concentration of sulfur-oxidizing bacteria that decompose hydrogen sulfide can be stabilized by supplying sodium thiosulfate to the suspension according to the increase or decrease in the concentration of hydrogen sulfide in the raw gas or the pH of the suspension. , Sulfur component removal performance is enhanced. By adding sodium thiosulfate to the suspension at the initial stage of operation of the biological deodorization tower, the growth of sulfur-oxidizing bacteria can be promoted and the removal performance of sulfur components can be stabilized at an early stage.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a membrane-type biological deodorization tower of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Membrane type biological deodorization tower 2 Nozzle 3 Storage part 4 Filler 5 Gas supply system 5a Fan 6 Suspension supply system 7 Circulation pump 8 Gas exhaust system 9 Membrane immersion part 10 Membrane apparatus 10a Suction system 10b Suction pump 11 Air diffuser 11a Aeration fan 12 Excess sludge extraction system 13 Sludge pump 14 Blow water supply system 15 Sensor means 16 Drug supply system 17 Control means 18 Chemical liquid pump 19 pH sensor means

Claims (2)

塔上部に配置し、微生物懸濁液を噴霧するノズルと、塔下部に設ける微生物懸濁液の貯留部と、貯留部の上方に配置し、ノズルから噴霧する高濃度の微生物懸濁液が表面に沿って流下する充填材と、充填材の下方から上方に向けて原ガスを上向流で供給するガス供給系と、貯留部の微生物懸濁液をノズルに循環供給する懸濁液供給系と、貯留部の懸濁液をろ過して懸濁液中の微生物濃度を高める膜装置と、貯留部の余剰汚泥を引抜く余剰汚泥引抜系と、貯留部に連通して補給水を供給するブロー水供給系と、塔上部に連通して処理したガスを排出するガス排出系と、原ガス中の硫化水素濃度を測定するセンサー手段と、懸濁液中にチオ硫酸ナトリウムを供給する薬剤供給系と、前記センサー手段の出力値に基づいて薬剤供給系におけるチオ硫酸ナトリウムの供給量を調整する制御手段とを備えたことを特徴とする膜型生物脱臭塔。A nozzle for spraying the microbial suspension placed at the top of the tower, a reservoir for the microbial suspension provided at the bottom of the tower, and a high-concentration microbial suspension sprayed from the nozzle placed above the reservoir , A gas supply system that supplies the raw gas in an upward flow from the bottom to the top of the filler, and a suspension supply system that circulates and supplies the microbial suspension in the reservoir to the nozzle. And a membrane device that filters the suspension in the reservoir to increase the concentration of microorganisms in the suspension, an excess sludge extraction system that extracts excess sludge in the reservoir, and supplies makeup water in communication with the reservoir Blow water supply system, gas discharge system that discharges processed gas communicating with the upper part of the tower, sensor means for measuring the hydrogen sulfide concentration in the raw gas, and chemical supply that supplies sodium thiosulfate into the suspension System and thiosulfate in the drug supply system based on the output value of the sensor means Film-type organism deodorization tower, characterized in that a control means for adjusting the supply amount of sodium. 塔上部に配置し、微生物懸濁液を噴霧するノズルと、塔下部に設ける微生物懸濁液の貯留部と、貯留部の上方に配置し、ノズルから噴霧する高濃度の微生物懸濁液が表面に沿って流下する充填材と、充填材の下方から上方に向けて原ガスを上向流で供給するガス供給系と、貯留部の微生物懸濁液をノズルに循環供給する懸濁液供給系と、貯留部の懸濁液をろ過して懸濁液中の微生物濃度を高める膜装置と、貯留部の余剰汚泥を引抜く余剰汚泥引抜系と、貯留部に連通して補給水を供給するブロー水供給系と、塔上部に連通して処理したガスを排出するガス排出系と、懸濁液のpHを測定するセンサー手段と、懸濁液中にチオ硫酸ナトリウムを供給する薬剤供給系と、前記センサー手段の出力値に基づいて薬剤供給系におけるチオ硫酸ナトリウムの供給量を調整する制御手段とを備えたことを特徴とする膜型生物脱臭塔。A nozzle for spraying the microbial suspension placed at the top of the tower, a reservoir for the microbial suspension provided at the bottom of the tower, and a high-concentration microbial suspension sprayed from the nozzle placed above the reservoir , A gas supply system that supplies the raw gas in an upward flow from the bottom to the top of the filler, and a suspension supply system that circulates and supplies the microbial suspension in the reservoir to the nozzle. And a membrane device that filters the suspension in the reservoir to increase the concentration of microorganisms in the suspension, an excess sludge extraction system that extracts excess sludge in the reservoir, and supplies makeup water in communication with the reservoir A blow water supply system, a gas discharge system for discharging the treated gas communicating with the upper part of the tower, a sensor means for measuring the pH of the suspension, and a drug supply system for supplying sodium thiosulfate into the suspension , Sodium thiosulfate in the drug supply system based on the output value of the sensor means Film-type organism deodorization tower, characterized in that a control means for adjusting the supply amount.
JP2001013901A 2001-01-23 2001-01-23 Membrane biological deodorization tower Expired - Lifetime JP3926105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013901A JP3926105B2 (en) 2001-01-23 2001-01-23 Membrane biological deodorization tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013901A JP3926105B2 (en) 2001-01-23 2001-01-23 Membrane biological deodorization tower

Publications (2)

Publication Number Publication Date
JP2002210325A JP2002210325A (en) 2002-07-30
JP3926105B2 true JP3926105B2 (en) 2007-06-06

Family

ID=18880666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013901A Expired - Lifetime JP3926105B2 (en) 2001-01-23 2001-01-23 Membrane biological deodorization tower

Country Status (1)

Country Link
JP (1) JP3926105B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749726B1 (en) 2006-03-24 2007-08-16 (주)세종이엔지 Deodorizer
JP5901147B2 (en) * 2011-05-30 2016-04-06 三菱重工環境・化学エンジニアリング株式会社 Biological deodorization system
CN111957199A (en) * 2020-06-02 2020-11-20 深圳市柏志兴环保科技有限公司 Biological deodorization device
CN112794560A (en) * 2020-12-25 2021-05-14 北京北华中清环境工程技术有限公司 In-situ ecological purification module and system for polluted water treatment
CN114044608A (en) * 2021-11-10 2022-02-15 泰州九润环保科技有限公司 MABR-bio-trickling filter coupled wastewater treatment device and process

Also Published As

Publication number Publication date
JP2002210325A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
KR101860480B1 (en) Pigsty management system
US5858768A (en) Method for purifying and biodeodorizing gas effluents
JP3926105B2 (en) Membrane biological deodorization tower
JP2009106805A (en) Voc gas treatment method
JP3698356B2 (en) Biological deodorization method and apparatus
JP4015285B2 (en) Biological treatment method and apparatus for exhaust gas
CN214552527U (en) Odor biological treatment reactor
JP3714496B2 (en) Method and apparatus for treating exhaust gas containing volatile organic substances
JP6597815B2 (en) Operating method of aerobic biological treatment equipment
JP2006035028A (en) Bio-deodorization method, bio-deodorization system
WO2019163428A1 (en) Aerobic organism treatment device and method for operating same
JP4026256B2 (en) How to acclimatize biological deodorization equipment
JP3868168B2 (en) Odor gas deodorization method and apparatus
JP2007301516A (en) Biological deodorization apparatus
WO2023048066A1 (en) Organic waste water treatment system
JPS60212292A (en) Apparatus for high degree treatment of sewage
JP3890804B2 (en) Biological deodorization method and apparatus
JP2589040B2 (en) Biological deodorization method
JP3271552B2 (en) Biological deodorization method
JP6558455B1 (en) Aerobic biological treatment equipment
JP2008114169A (en) Treatment method of voc gas
JP2001000990A (en) Wastewater treatment apparatus
JP2002119826A (en) Method of deodorizing malodorous gas and device for the same
JP2002248487A (en) Sewage treatment apparatus
JP4815573B2 (en) Biological deodorization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3926105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

EXPY Cancellation because of completion of term