JP3925750B2 - Process for producing organophosphorus diester compounds - Google Patents

Process for producing organophosphorus diester compounds Download PDF

Info

Publication number
JP3925750B2
JP3925750B2 JP14002897A JP14002897A JP3925750B2 JP 3925750 B2 JP3925750 B2 JP 3925750B2 JP 14002897 A JP14002897 A JP 14002897A JP 14002897 A JP14002897 A JP 14002897A JP 3925750 B2 JP3925750 B2 JP 3925750B2
Authority
JP
Japan
Prior art keywords
general formula
organophosphorus
same
reaction
itaconic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14002897A
Other languages
Japanese (ja)
Other versions
JPH10130287A (en
Inventor
卓美 平山
寅之助 斎藤
教一 弥永
浩 住友
Original Assignee
株式会社三光開発科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三光開発科学研究所 filed Critical 株式会社三光開発科学研究所
Priority to JP14002897A priority Critical patent/JP3925750B2/en
Publication of JPH10130287A publication Critical patent/JPH10130287A/en
Application granted granted Critical
Publication of JP3925750B2 publication Critical patent/JP3925750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Fireproofing Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般式(1)
【0002】
【化10】

Figure 0003925750
Figure 0003925750
で示される有機りん系ジエステル化合物の製造方法に関し、さらには高純度、高品質の目的物を製造する方法に関する。
【0003】
【従来の技術】
本出願人は先に、一般式(1)で示される有機りん系ジエステル化合物で、R1 =R2 =R3 =H、A=−CH2 CH2 −である化合物及びその製造方法について開発し、特許を確立した(特公昭59−22717号公報)。本発明の有機りん系ジエステル化合物は、いわゆる反応型難燃剤と称されるもので、特にそれ自体長期保存安定性が良好で、かつこれをモノマーとして難燃ポリエステルを製造する条件下で、極めて安定で、工業的に重合反応が容易で、得られる成型品の諸物性を損なうことなく、かつ優れた難燃性を付与することができる。
【0004】
【発明が解決しようとする課題】
近年本有機りん系ジエステル化合物に対して、さらにその品質向上の要望が高まり、特に本化合物を線状ポリエステル用モノマーとして使用した場合に得られるポリマー成型品の品質に影響を与える色相及びエチレングリコール2量体[ビス(2−ヒドロキシエチル)オキサイド(以下DEGと称する)]を主体とするエチレングリコール多量体の含有量の低減が望まれている。
【0005】
【課題を解決するための手段】
そこで本発明者らは、一般式(1)で示される有機りん系ジエステル化合物の着色及び副生物特にアルキレングリコールからの副生物の発生を極力抑圧した製造方法を検討し、本発明に到達した。
【0006】
すなわち本発明は、一般式(2)
【0007】
【化11】
Figure 0003925750
[一般式(2)で、R1 、R2 及びR3 は、一般式(1)における定義に同じ。]
で示される有機りん化合物と、イタコン酸と、一般式(3)
Figure 0003925750
で示されるアルキレングリコールとを反応せしめるに際し、エステル化反応を減圧下に反応生成水を逐次系外に除去しながら行なうことを特徴とする、一般式(1)で示される有機りん系ジエステル化合物の製造方法である。
【0008】
本発明の製造方法により、着色度及び副生物含有量の極めて少ない目的物が得られ、このものの長期保存安定性もさらに良好なものとなり、またこれをモノマーとして使用して重合して得られた難燃性ポリエステルの品質も一層改良されたものが得られるようになった。
【0009】
【発明の実施の形態】
次に本発明の製造方法の具体的な実施態様を、一般式(2)で示される有機りん化合物で(R1 =R2 =R3 =H)(以下HCAと称する)と、一般式(3)で示されるアルキレングリコールがエチレングリコール(以下EGと称する)との場合について説明する。
【0010】
HCAとイタコン酸とEGとから、構造式(1−A)
【0011】
【化12】
Figure 0003925750
で示される有機りん系ジエステル化合物(以下MEGエステルと称する)を製造する場合に、次の3種の方法がある。
【0012】
1)必要に応じて不活性ガス(窒素ガス)雰囲気中で、反応機にHCA、イタコン酸及びEGを同時に仕込み、減圧下に加熱してEGを還流せしめ、反応生成水を系外に流出せしめながら、付加反応とジエステル化反応を一段で行なう。
【0013】
2)必要に応じて窒素ガス雰囲気中で、反応機にまずHCAとイタコン酸とを仕込み、加熱して付加反応を行なわせしめ、ついで減圧下にEGを添加してEG還流、水分離を行ないながらジエステル化反応を行なう。
【0014】
3)必要に応じて窒素雰囲気中で、反応機にまずイタコン酸とEGを仕込み、減圧下にEG還流、水分離を行ないながらジエステル化反応を行ない、ついでHCAを添加して付加反応を行なう。
【0015】
上記3製造方法で、工業的に最も有利なものは1)で述べた一段法であるので、この方法の場合についてさらに詳述する。
【0016】
HCAとイタコン酸とのモル比は1:1が好ましいが、イタコン酸を僅か過剰に使用した方が反応速度的に好ましい。しかし過剰量が大きくなると、反応生成物の着色が大きくなるので好ましくなく、1:1.01〜1.03程度が適当である。HCAの過剰使用はEGの多量体[DEG、1,2−ビス(2−ヒドロキシエトキシ)エタン等]の副生を促進する傾向があり、さらにエステル重合反応時に重合触媒例えば酸化アンチモン等を還元して金属化し、ポリマー品質に悪影響を与え、好ましくない。
【0017】
EGはイタコン酸の2倍モル以上、特に4倍モル以上の使用が好ましい。EGのモル比が小さいと、EGの2つのOH基にイタコン酸のカルボキシル基がエステル化した2量体、3量体等が生成する危険性が大きくなり、また反応生成物の粘度が大きく、取り扱いにくくなる。EGのモル比が大きすぎると、反応生成物中の有効成分であるMEGエステルの濃度が低く、ポリエステル重合反応に先立ち濃縮等の処理が必要となる。通常の目的のためには20倍モル以下、特に6〜10倍モル比程度が適当である。
【0018】
本反応においては、通常付加反応やエステル化反応に使用される触媒の添加は不要である。また反応に不活性な有機溶剤を使用することも可能であるが、MEGエステルの単離取得を目的とする場合は別として、ポリエステルモノマーとしての使用目的の場合は、過剰のEGを溶剤兼用とするものが有利である。EGの代わりにエチレンオキサイドを使用してジエステル化を行なうことも可能であるが、この場合エチレンオキサイドのカルボキシル基への当量付加反応の厳しい制御条件が要求される。
【0019】
上記の各多量体の製品中への存在は、ポリエステル重合反応により得られるポリエステル成型品の融点を低下せしめる等物性を劣化させ、好ましくないので、極力その副生を抑制することが必要である。
【0020】
一般式(2)で示される有機りん化合物としては、該式のR1 、R2 及びR3 で示せば、(R1 =R2 =R3 =H)、(R1 =C1、R2 =R3 =H)、(R1 =Br、R2 =R3 =H)、(R1 =R2 =C1、R3 =H)、(R1 =R2 =Br、R3 =H)、(R1 =R2 =R3 =C1)、(R1 =R2 =R3 =Br)、(R1 =CH3 、R2 =R3 =H)、(R1 =R2 =CH3 、R3 =H)、(R1 =R2 =R3 =CH3 )、(R1 =オクチル、R2 =R3 =H)、(R1 =シクロヘキシル、R2 =R3 =H)、(R1 =R3 =H、R2 =フェニル)、(R1 =ベンジル、R2 =R3 =H)、(R1 =R3 =H、R2 =α,α−ジメチルベンジル)等が例示される。
【0021】
一般式(3)で示されるアルキレングリコールとしては、EG及びプロピレングリコール(以下PGと称する)が挙げられる。
【0022】
なおHCAはo−フェニルフェノールと三塩化りんとを、塩化亜鉛等のフリーデル・クラフト触媒の存在下に、加熱反応せしめて得られる構造式(5)
【0023】
【化13】
Figure 0003925750
で示されるりん化合物を加水分解して得られる構造式(4)
【0024】
【化14】
Figure 0003925750
で示されるビフェニル系りん化合物を、脱水環化反応せしめて得られる。(特公昭49−45397号、特公昭50−17979号参照)
【0025】
【実施例】
次に本発明の実施例について説明する。
【0026】
(実施例1)
撹拌機、温度計、窒素ガス導入管、薬品装入口及び精留塔付水分離器(EG還流、水流出用)を付設した反応機に、窒素雰囲気中でHCA324g、イタコン酸195g及びEG580gを仕込み、20〜30mmHgに減圧下で、徐々に昇温し、精留塔によりEGを機内に還流、反応生成水を流出せしめた。反応温度を100℃から190℃へ、圧力を30mmHgから500mmHgへ調節しながら、約10時間反応せしめて、もはや水分の流出が認められなくなったので、加熱を止め、反応混合物を室温に冷却して窒素ガス雰囲気を開放し、やや粘重なMEGエステルとEG混合液1045gが得られた。このものの着色度(APHA)は10であった。この反応混合液を液体クロマトグラフ、ガスクロマトグラフ及び元素分析により分析し、MEGエステル66.1%、EG33.6%、DEG0.3%、その他の副生物痕跡、HCA不検出、P含有率4.63%、であった。
【0027】
(比較例1)
反応を窒素ガス雰囲気中で常圧で行なった以外は、実施例1と同様に操作した。反応温度100℃〜195℃で14時間反応させ、水流出がもはや認められなくなったので、加熱を止め室温に冷却して窒素ガス雰囲気を開放し、やや粘重なMEGエステルとEG混合液1045gが得られた。このものの着色度(APHA)50であった。この反応混合液を分析し、MEGエステル66.0%、EG32.7%、DEG1.2%、その他の副生物0.1%、HCA不検出、であった。
【0028】
(実施例2)
実施例1と同様の反応機に、窒素ガス雰囲気中でHCA324g、イタコン酸195gを仕込み、約120℃に昇温して2時間反応せしめ、ついで約170℃で4時間反応せしめた。これにEG580gを添加して20〜30mmHgに減圧下で、徐々に温度を上げ、精留塔によりEGを還流、水分を流出せしめた。反応温度を100℃から190℃へ、圧力を30mmHgから500mmHgとなるように調節しながら、約10時間反応せしめて、水の流出がもはや認められなくなったので、加熱を止め、反応混合液を室温に冷却して窒素ガス雰囲気を開放し、やや粘重なMEGエステルとEG混合液1045gを得られた。このものの着色度は10であった。この反応混合液を分析し、MEGエステル66.1%、EG33.7%、DEG0.25%、その他の副生物痕跡、HCA不検出、であった。
【0029】
(実施例3)
実施例1と同様の反応機に、窒素ガス雰囲気中で、イタコン酸195gとEG580gを仕込み、20〜30mmHgに減圧下で、徐々に昇温し精留塔によりEGを還流、水分を流出せしめながら、反応温度を100℃から190℃へ、圧力を30mmHgから500mmHgとなるように調節しながら、約10時間反応せしめて、もはや水分の流出が認められなくなったので、加熱を中止し、窒素ガス雰囲気中で圧力を常圧にもどして、160℃〜170℃に冷却し、HCA328gを1時間で添加し、さらに190℃付近で5時間反応せしめた後、室温に冷却し、やや粘重なMEGエステルとEG混合液1045gが得られた。このものの着色度は15であった。この反応混合液を分析し、MEGエステル66.0%、EG33.5%、DEG0.50%、その他の副生物痕跡、HCA不検出、であった。
【0030】
(実施例4)
実施例1におけるEG580gの代わりにPG710gを使用した以外は、実施例1と同様に操作し、減圧を20mmHgから500mmHgとし、反応温度を100℃から190℃として約12時間反応せしめた。もはや水分の流出が認められなくなったので、室温に冷却して窒素ガス雰囲気中を開放し、やや粘重な反応混合液が得られた。このものは構造式(1−B)
【0031】
【化15】
Figure 0003925750
で示される有機りん系ジエステル化合物(以下MPGエステルと称する)とPGとの混合液で、1175gが得られた。このものの着色度は10であった。この反応混合液を分析し、MPGエステル58.8%、PG41.0%、副生物(PG2量体)0.2%、その他副生物痕跡、HCA不検出、P含有率3.90%、であった。
【0032】
(実施例5)
o−フェニルフェノールと三塩化りんとを反応せしめて得られた構造式(5)
【0033】
【化16】
Figure 0003925750
で示されるりん化合物を、加水分解して得られた構造式(4)
【0034】
【化17】
Figure 0003925750
で示されるビフェニル系りん化合物351g(乾燥純度換算)を、実施例1におけると同様の反応機に仕込み、窒素ガス雰囲気中で400〜500mmHgに減圧下に、撹拌しながら100℃から120℃に徐々に昇温して付着水を除去した後、125〜130℃で脱水閉環反応を行なって、HCAを生成せしめた。反応機内にはHAC324gが得られた。これに実施例1と同様に、イタコン酸195g及びEG580gを追加仕込み、実施例1と同様に操作して、やや粘重なMEGエステルとEG混合液1045gが得られた。このものの着色度は10であった。またこの反応混合液を同様に分析して、MEGエステル66.2%、EG33.6%、DEG0.2%、その他の副生物痕跡、HCA不検出、P含有率4.63%、であった。
【0035】
【発明の効果】
本発明の製造方法に従って、減圧下に、一般式(2)で示される有機りん化合物とイタコン酸と一般式(3)で示されるアルキレングリコールとの付加反応及びエステル化反応を、反応生成水を逐次反応系外に除去しながら行なわせしめて、一般式(1)で示される有機りん系ジエステル化合物を製造することにより、高純度、高品質で目的物を得ることができ、これを原料として得られる難燃性ポリエステルの成型品に良好な効果を与える。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a general formula (1)
[0002]
[Chemical Formula 10]
Figure 0003925750
Figure 0003925750
In addition, the present invention relates to a method for producing a high-purity and high-quality target product.
[0003]
[Prior art]
The present applicant has previously developed a compound in which R 1 = R 2 = R 3 = H and A = -CH 2 CH 2-, which is an organophosphorus diester compound represented by the general formula (1), and a method for producing the same. The patent was established (Japanese Patent Publication No. 59-22717). The organophosphorus diester compound of the present invention is a so-called reactive flame retardant, and particularly has excellent long-term storage stability and is extremely stable under the conditions for producing a flame-retardant polyester using this as a monomer. Thus, the polymerization reaction is industrially easy, and excellent flame retardancy can be imparted without impairing the physical properties of the obtained molded product.
[0004]
[Problems to be solved by the invention]
In recent years, there has been a demand for further improvement in the quality of this organophosphorus diester compound, and in particular, hue and ethylene glycol 2 that affect the quality of polymer molded products obtained when this compound is used as a monomer for linear polyesters. Reduction of the content of ethylene glycol multimers mainly composed of a monomer [bis (2-hydroxyethyl) oxide (hereinafter referred to as DEG)] is desired.
[0005]
[Means for Solving the Problems]
Accordingly, the present inventors have studied a production method in which coloring of the organophosphorus diester compound represented by the general formula (1) and generation of by-products, particularly by-products from alkylene glycol, are suppressed as much as possible, and have reached the present invention.
[0006]
That is, the present invention relates to the general formula (2)
[0007]
Embedded image
Figure 0003925750
[In General Formula (2), R 1 , R 2 and R 3 are the same as defined in General Formula (1). ]
An organophosphorus compound represented by the formula, itaconic acid, and general formula (3)
Figure 0003925750
The organophosphorus diester compound represented by the general formula (1) is characterized in that the esterification reaction is carried out while removing the reaction product water successively from the system under reduced pressure. It is a manufacturing method.
[0008]
By the production method of the present invention, an object with very little coloration and by-product content was obtained, and the long-term storage stability of the product was further improved, and it was obtained by polymerization using this as a monomer. A flame retardant polyester with improved quality can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific embodiment of the production method of the present invention is an organophosphorus compound represented by the general formula (2) (R 1 = R 2 = R 3 = H) (hereinafter referred to as HCA). The case where the alkylene glycol represented by 3) is ethylene glycol (hereinafter referred to as EG) will be described.
[0010]
From HCA, itaconic acid and EG, structural formula (1-A)
[0011]
Embedded image
Figure 0003925750
There are the following three methods for producing the organophosphorus diester compound (hereinafter referred to as MEG ester).
[0012]
1) If necessary, in an inert gas (nitrogen gas) atmosphere, simultaneously charge HCA, itaconic acid and EG in the reactor, heat under reduced pressure to reflux the EG, and allow reaction product water to flow out of the system. However, the addition reaction and the diesterification reaction are carried out in one step.
[0013]
2) If necessary, in a nitrogen gas atmosphere, the reactor is first charged with HCA and itaconic acid and heated to cause the addition reaction, and then EG is added under reduced pressure to perform EG reflux and water separation. A diesterification reaction is performed.
[0014]
3) If necessary, in a nitrogen atmosphere, first, itaconic acid and EG are charged into the reactor, and the diesterification reaction is performed while EG reflux and water separation are performed under reduced pressure, and then the addition reaction is performed by adding HCA.
[0015]
Among the above three production methods, the industrially most advantageous one is the one-step method described in 1), and the case of this method will be described in more detail.
[0016]
The molar ratio of HCA to itaconic acid is preferably 1: 1, but it is preferable in terms of reaction rate to use itaconic acid in a slight excess. However, when the excess amount is large, coloring of the reaction product is unfavorable, and it is not preferable. The excessive use of HCA tends to promote the by-production of EG multimers [DEG, 1,2-bis (2-hydroxyethoxy) ethane, etc.], and further reduces the polymerization catalyst such as antimony oxide during the ester polymerization reaction. Metalization, which adversely affects the polymer quality and is not preferred.
[0017]
EG is preferably used in an amount of 2 times mol or more, particularly 4 times mol or more of itaconic acid. When the molar ratio of EG is small, there is a large risk of formation of a dimer, trimer, etc. in which the carboxyl group of itaconic acid is esterified with two OH groups of EG, and the viscosity of the reaction product is large. It becomes difficult to handle. If the molar ratio of EG is too large, the concentration of MEG ester, which is an active ingredient in the reaction product, is low, and treatment such as concentration is required prior to the polyester polymerization reaction. For ordinary purposes, a molar ratio of 20 times or less, particularly about 6 to 10 times, is appropriate.
[0018]
In this reaction, it is not necessary to add a catalyst usually used for an addition reaction or an esterification reaction. It is also possible to use an organic solvent inert to the reaction. Except for the purpose of isolation and acquisition of MEG ester, in the case of use as a polyester monomer, excess EG is used as a solvent. Is advantageous. Although diesterification can be carried out using ethylene oxide instead of EG, severe control conditions for the equivalent addition reaction to the carboxyl group of ethylene oxide are required in this case.
[0019]
The presence of each of the above-mentioned multimers in the product deteriorates the physical properties such as lowering the melting point of the polyester molded product obtained by the polyester polymerization reaction, and is undesirable, so it is necessary to suppress by-product as much as possible.
[0020]
The organophosphorus compound represented by the general formula (2) can be represented by (R 1 = R 2 = R 3 = H), (R 1 = C 1, R 2 ) if represented by R 1 , R 2 and R 3 in the formula. = R 3 = H), (R 1 = Br, R 2 = R 3 = H), (R 1 = R 2 = C1, R 3 = H), (R 1 = R 2 = Br, R 3 = H) ), (R 1 = R 2 = R 3 = C1), (R 1 = R 2 = R 3 = Br), (R 1 = CH 3 , R 2 = R 3 = H), (R 1 = R 2 = CH 3 , R 3 = H), (R 1 = R 2 = R 3 = CH 3 ), (R 1 = octyl, R 2 = R 3 = H), (R 1 = cyclohexyl, R 2 = R 3 = H), (R 1 = R 3 = H, R 2 = phenyl), (R 1 = benzyl, R 2 = R 3 = H ), (R 1 = R 3 = H, R 2 = α, α- (Dimethylbenzyl) and the like.
[0021]
Examples of the alkylene glycol represented by the general formula (3) include EG and propylene glycol (hereinafter referred to as PG).
[0022]
HCA is a structural formula (5) obtained by heating and reacting o-phenylphenol and phosphorus trichloride in the presence of a Friedel-Craft catalyst such as zinc chloride.
[0023]
Embedded image
Figure 0003925750
Structural formula (4) obtained by hydrolysis of a phosphorus compound represented by formula (4)
[0024]
Embedded image
Figure 0003925750
It can be obtained by subjecting the biphenyl-based phosphorus compound represented by the following dehydration cyclization reaction. (See Japanese Patent Publication Nos. 49-45397 and 50-17179)
[0025]
【Example】
Next, examples of the present invention will be described.
[0026]
Example 1
A reactor equipped with a stirrer, thermometer, nitrogen gas inlet tube, chemical inlet and water separator with rectifying tower (EG reflux, for water outflow) was charged with 324 g of HCA, 195 g of itaconic acid and 580 g of EG in a nitrogen atmosphere. The temperature was gradually raised to 20 to 30 mmHg under reduced pressure, and EG was refluxed into the apparatus by a rectification tower, and reaction product water was allowed to flow out. While the reaction temperature was adjusted from 100 ° C. to 190 ° C. and the pressure was adjusted from 30 mmHg to 500 mmHg, the reaction was carried out for about 10 hours, and no longer any water flow was observed, so heating was stopped and the reaction mixture was cooled to room temperature. The nitrogen gas atmosphere was released, and 1045 g of a slightly viscous MEG ester and EG mixed solution was obtained. The coloring degree (APHA) of this product was 10. This reaction mixture was analyzed by liquid chromatography, gas chromatography and elemental analysis, MEG ester 66.1%, EG 33.6%, DEG 0.3%, other by-product traces, HCA not detected, P content 4. 63%.
[0027]
(Comparative Example 1)
The same operation as in Example 1 was carried out except that the reaction was carried out at normal pressure in a nitrogen gas atmosphere. The reaction was carried out at a reaction temperature of 100 ° C. to 195 ° C. for 14 hours, and water outflow was no longer observed. Therefore, heating was stopped and the mixture was cooled to room temperature to release a nitrogen gas atmosphere, and 1045 g of a slightly viscous MEG ester and EG mixture was obtained. Obtained. This product had a coloring degree (APHA) of 50. The reaction mixture was analyzed and found to be 66.0% MEG ester, 32.7% EG, 1.2% DEG, 0.1% other by-products, and no HCA detected.
[0028]
(Example 2)
In the same reactor as in Example 1, 324 g of HCA and 195 g of itaconic acid were charged in a nitrogen gas atmosphere, heated to about 120 ° C. and reacted for 2 hours, and then reacted at about 170 ° C. for 4 hours. To this, 580 g of EG was added, and the temperature was gradually raised to 20-30 mmHg under reduced pressure. The EG was refluxed by a rectification column, and water was discharged. While the reaction temperature was adjusted from 100 ° C. to 190 ° C. and the pressure was adjusted from 30 mmHg to 500 mmHg, the reaction was continued for about 10 hours. The nitrogen gas atmosphere was released by cooling to 1045 g of a slightly viscous MEG ester and EG mixed solution. The coloration degree of this product was 10. The reaction mixture was analyzed and found to be 66.1% MEG ester, 33.7% EG, 0.25% DEG, other by-product traces, and no HCA detected.
[0029]
(Example 3)
In a nitrogen gas atmosphere, 195 g of itaconic acid and 580 g of EG were charged in the same reactor as in Example 1, gradually heated to 20-30 mmHg under reduced pressure, EG was refluxed by a rectifying column, and water was discharged. While the reaction temperature was adjusted from 100 ° C. to 190 ° C. and the pressure was adjusted from 30 mmHg to 500 mmHg, the reaction was carried out for about 10 hours. Return the pressure to normal pressure, cool to 160 ° C to 170 ° C, add 328 g of HCA in 1 hour, react further at around 190 ° C for 5 hours, cool to room temperature, and slightly thick MEG ester And 1045 g of EG mixed solution was obtained. The degree of coloring of this product was 15. This reaction mixture was analyzed and found to be MEG ester 66.0%, EG 33.5%, DEG 0.50%, other by-product traces, and no HCA detected.
[0030]
Example 4
The reaction was conducted in the same manner as in Example 1 except that PG 710 g was used instead of EG 580 g in Example 1, the pressure was reduced from 20 mmHg to 500 mmHg, and the reaction temperature was changed from 100 ° C. to 190 ° C. for about 12 hours. Since the outflow of water was no longer recognized, the reaction mixture was cooled to room temperature and opened in a nitrogen gas atmosphere to obtain a slightly viscous reaction mixture. This is the structural formula (1-B)
[0031]
Embedded image
Figure 0003925750
1175 g was obtained from the mixed solution of the organophosphorus diester compound (hereinafter referred to as MPG ester) represented by PG and PG. The coloration degree of this product was 10. This reaction mixture was analyzed, MPG ester 58.8%, PG 41.0%, by-product (PG dimer) 0.2%, other by-product traces, HCA not detected, P content 3.90%. there were.
[0032]
(Example 5)
Structural formula (5) obtained by reacting o-phenylphenol with phosphorus trichloride
[0033]
Embedded image
Figure 0003925750
Structural formula (4) obtained by hydrolysis of a phosphorus compound represented by
[0034]
Embedded image
Figure 0003925750
In a nitrogen gas atmosphere, 351 g of a biphenyl phosphorus compound (in terms of dry purity) is charged into a reactor similar to that in Example 1, and gradually reduced from 100 ° C. to 120 ° C. with stirring under a reduced pressure of 400 to 500 mmHg. After removing the adhering water by raising the temperature to 125 ° C., dehydration ring closure reaction was performed at 125 to 130 ° C. to produce HCA. 324 g of HAC was obtained in the reactor. In the same manner as in Example 1, 195 g of itaconic acid and 580 g of EG were additionally added and operated in the same manner as in Example 1 to obtain 1045 g of a slightly viscous MEG ester and EG mixed solution. The coloration degree of this product was 10. Further, this reaction mixture was analyzed in the same manner, and MEG ester was 66.2%, EG 33.6%, DEG 0.2%, other by-product traces, HCA was not detected, and P content was 4.63%. .
[0035]
【The invention's effect】
According to the production method of the present invention, an addition reaction and an esterification reaction of an organophosphorus compound represented by the general formula (2), itaconic acid and an alkylene glycol represented by the general formula (3) are performed under reduced pressure. By producing the organophosphorus diester compound represented by the general formula (1) by removing it from the sequential reaction system, the target product can be obtained with high purity and quality, and obtained as a raw material. Good effect on molded products of flame retardant polyester.

Claims (4)

一般式(2)
Figure 0003925750
[一般式(2)で、R1 、R2 及びR3 は同一又は異なってもよく水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。]
で示される有機りん化合物と、イタコン酸と、一般式(3)
Figure 0003925750
で示されるアルキレングリコールとを、減圧下に脱水しながら反応せしめることを特徴とする、一般式(1)
Figure 0003925750
[一般式(1)で、R1 、R2 及びR3 は一般式(2)における、Aは一般式(3)における、各定義に同じ。]
で示される有機りん系ジエステル化合物の製造方法。
General formula (2)
Figure 0003925750
[In General Formula (2), R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. ]
An organophosphorus compound represented by the formula, itaconic acid, and general formula (3)
Figure 0003925750
And the alkylene glycol represented by the general formula (1), which is reacted while dehydrating under reduced pressure.
Figure 0003925750
[In the general formula (1), R 1 , R 2 and R 3 are the same in each definition in the general formula (2) and A in the general formula (3). ]
The manufacturing method of the organophosphorus diester compound shown by these.
一般式(2)
Figure 0003925750
[一般式(2)で、R1 、R2 及びR3 は同一又は異なってもよく水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。]
で示される有機りん化合物とイタコン酸とを、反応せしめた後、減圧下に脱水しながら、一般式(3)
Figure 0003925750
で示されるアルキレングリコールと反応せしめることを特徴とする、一般式(1)
Figure 0003925750
[一般式(1)で、R1 、R2 及びR3 は一般式(2)における、Aは一般式(3)における、各定義に同じ。]
で示される有機りん系ジエステル化合物の製造方法。
General formula (2)
Figure 0003925750
[In General Formula (2), R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. ]
After reacting the organophosphorus compound represented by the formula with itaconic acid, dehydration under reduced pressure is carried out under the general formula (3)
Figure 0003925750
It is made to react with the alkylene glycol shown by general formula (1)
Figure 0003925750
[In the general formula (1), R 1 , R 2 and R 3 are the same in each definition in the general formula (2) and A in the general formula (3). ]
The manufacturing method of the organophosphorus diester compound shown by these.
イタコン酸と、一般式(3)
Figure 0003925750
で示されるアルキレングリコールとを、減圧下に脱水しながら反応せしめた後、一般式(2)
Figure 0003925750
[一般式(2)で、R1 、R2 及びR3 は同一又は異なってもよく水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。]
で示される有機りん化合物と反応せしめることを特徴とする、一般式(1)
Figure 0003925750
[一般式(1)で、R1 、R2 及びR3 は一般式(2)における、Aは一般式(3)における、各定義に同じ。]
で示される有機りん系ジエステル化合物の製造方法。
Itaconic acid and general formula (3)
Figure 0003925750
Is reacted with an alkylene glycol represented by general formula (2) while dehydrating under reduced pressure.
Figure 0003925750
[In General Formula (2), R 1 , R 2 and R 3 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. ]
It is made to react with the organophosphorus compound shown by general formula (1)
Figure 0003925750
[In the general formula (1), R 1 , R 2 and R 3 are the same in each definition in the general formula (2) and A in the general formula (3). ]
The manufacturing method of the organophosphorus diester compound shown by these.
一般式(4)
Figure 0003925750
[一般式(4)で、R1 、R2 及びR3 は同一又は異なってもよく水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基又はアラルキル基を表す。]
で示されるビフェニル系りん化合物を脱水閉環せしめて、一般式(2)
Figure 0003925750
[一般式(2)で、R1 、R2 及びR3 は一般式(4)における定義に同じ。]で示される有機りん化合物となし、ついで該有機りん化合物と、イタコン酸と、一般式(3)
Figure 0003925750
で示されるアルキレングリコールとを、減圧下に脱水しながら反応せしめることを特徴とする、一般式(1)
Figure 0003925750
[一般式(1)で、R1 、R2 及びR3 は一般式(4)における、Aは一般式(3)における、各定義に同じ。]
で示される有機りん系ジエステル化合物の製造方法。
General formula (4)
Figure 0003925750
[In the general formula (4), R 1, R 2 and R 3 may hydrogen atom be the same or different, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. ]
The biphenyl phosphorus compound represented by the formula (2)
Figure 0003925750
[In General Formula (2), R 1 , R 2 and R 3 are the same as defined in General Formula (4). ], Then the organophosphorus compound, itaconic acid, and the general formula (3)
Figure 0003925750
And the alkylene glycol represented by the general formula (1), which is reacted while dehydrating under reduced pressure.
Figure 0003925750
[In the general formula (1), R 1 , R 2 and R 3 are the same as in the general formula (4), and A is the same as in the general formula (3). ]
The manufacturing method of the organophosphorus diester compound shown by these.
JP14002897A 1996-09-06 1997-05-29 Process for producing organophosphorus diester compounds Expired - Lifetime JP3925750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14002897A JP3925750B2 (en) 1996-09-06 1997-05-29 Process for producing organophosphorus diester compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23609496 1996-09-06
JP8-236094 1996-09-06
JP14002897A JP3925750B2 (en) 1996-09-06 1997-05-29 Process for producing organophosphorus diester compounds

Publications (2)

Publication Number Publication Date
JPH10130287A JPH10130287A (en) 1998-05-19
JP3925750B2 true JP3925750B2 (en) 2007-06-06

Family

ID=26472674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14002897A Expired - Lifetime JP3925750B2 (en) 1996-09-06 1997-05-29 Process for producing organophosphorus diester compounds

Country Status (1)

Country Link
JP (1) JP3925750B2 (en)

Also Published As

Publication number Publication date
JPH10130287A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP0334951B1 (en) High yield method for preparation of dialkyl esters of polyhaloaromatic acids
JPS61172852A (en) Production of diphenyl carbonate
JPS604151A (en) Production of terephthalic acid diester
JPH04221347A (en) Process for producing organic carbonate
JPS6146465B2 (en)
JPH01316346A (en) Production of ester
JPS6111248B2 (en)
JPS60233035A (en) Synthesis of vinyl ester
JPS6125738B2 (en)
JP3925750B2 (en) Process for producing organophosphorus diester compounds
JP3228156B2 (en) Method for producing 1,1-bis (chloromethyl) -1-hydroxymethylpropane and 1-mono (chloromethyl) -1,1-bis (hydroxymethyl) propane
JP2554965B2 (en) Method for purifying dialkyl carbonate
US4382898A (en) Process for the production of aromatic carboxylic acid chlorides
EP0684946B1 (en) Process for the preparation of bis(2-benzoxazolyl)stilbenes
JPH08295646A (en) Production of bis(hydroxyethoxyphenyl) compound
EP0273147B1 (en) Process for the production of substantially monoester-free diaryl esters of aromatic dicarboxylic acids
JP3775953B2 (en) Method for producing aromatic dicarboxylic acid diaryl ester
KR0122003B1 (en) Method for manufacturing polyester
JPS6236392A (en) Organic phosphorus compound
KR100249269B1 (en) Method of producing for 2-hydrocyethylmetacrylate
JP2952032B2 (en) Method for producing diaryl carbonate
JPH07126213A (en) Production of aromatic dicarboxylic acid diaryl ester
JPS62241920A (en) Production of polycarbonate diol
JP3214923B2 (en) Method for producing tertiary hydroperoxide
JPH02164848A (en) Ester interchange

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term