JP3924236B2 - Manufacturing method of optical film - Google Patents

Manufacturing method of optical film Download PDF

Info

Publication number
JP3924236B2
JP3924236B2 JP2002308807A JP2002308807A JP3924236B2 JP 3924236 B2 JP3924236 B2 JP 3924236B2 JP 2002308807 A JP2002308807 A JP 2002308807A JP 2002308807 A JP2002308807 A JP 2002308807A JP 3924236 B2 JP3924236 B2 JP 3924236B2
Authority
JP
Japan
Prior art keywords
film
optical
thermoplastic resin
amorphous thermoplastic
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308807A
Other languages
Japanese (ja)
Other versions
JP2004144941A (en
Inventor
健太郎 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002308807A priority Critical patent/JP3924236B2/en
Publication of JP2004144941A publication Critical patent/JP2004144941A/en
Application granted granted Critical
Publication of JP3924236B2 publication Critical patent/JP3924236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学用途やディスプレー分野等で使用される光学フィルムの製造方法に関し、より詳細には、光学歪み(複屈折)が少なく、光軸ズレの少ない光学フィルムの製造方法に関する。
【0002】
【従来の技術】
近年、光学用途やディスプレー分野においては、透明性が優れ、残留位相差が小さく、光軸ズレのない光学フィルムが求められているが、溶融押出成形で製造された光学フィルムは、成形時の変形により光学歪みが残留するという問題があった。
【0003】
この光学歪みは位相差として残留するので、例えば、この光学フィルムを、偏光子を保護する偏光板保護フィルムとして使用する場合は、上記光学歪みが原因となって偏光性能が低下するという欠点があった。
【0004】
又、押出成形の際の成形方向の不均一により光軸がばらつく欠点があり、光軸がばらつくと、たとえ位相差が低くても位相差が高い場合と同様の問題点が発生した。
【0005】
一般に、残留位相差が1nm以上ある場合に光軸のバラツキが問題となり、残留位相差が3nm以下の場合には光軸のバラツキは±10度以下が望まれている。
【0006】
厚さ0.1〜2mm及び残留位相差10nm以下の光学フィルムの製造方法としては、光学フィルムを構成する熱可塑性樹脂のガラス転移温度をTgとすると、押出成形用ベルト及びロールの温度をTg〜Tg+50℃として押出成形する製造方法(例えば、特許文
献1参照)が開示されている。
【0007】
【特許文献1】
特開2000−280268号公報
【0008】
しかしながら、上記製造方法では100μm未満の薄い光学フィルムを得ることはできなかった。又、ベルトから光学フィルムを剥離する際に、光学フィルムが伸び、光学歪みが大きくなる恐れがあった。加えて、光学用途やディスプレー分野に用いられる光学フィルムでは、残留位相差だけでなく、光学歪みの方向である光軸がばらつかないことが求められるが、上記製造方法では、光軸がばらつきがちであった。
【0009】
【発明が解決しようとする課題】
本発明は、上記従来技術の課題に鑑みてなされたものであり、幅方向に広い範囲で残留位相差が小さく、光軸ズレのバラツキが小さく且つ広幅の光学フィルムの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の光学フィルムの製造方法は、ダイスの設置された押出機から、シート状に溶融押出された非晶質熱可塑性樹脂フィルムを、冷却ロールに押圧し、密着して冷却する光学フィルムの製造方法であって、非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前の非晶質熱可塑性樹脂フィルムの温度が、非晶質熱可塑性樹脂のガラス転移温度+80℃以上であり、非晶質熱可塑性樹脂フィルムが冷却ロールに接する地点で、非晶質熱可塑性樹脂フィルムの全幅の85〜95%を冷却ロールに対し押圧して密着させることを特徴とする。
【0011】
上記非晶質熱可塑性樹脂は、透明性の優れた非晶質熱可塑性樹脂であれば、特に限定されず、例えば熱可塑性飽和ノルボルネン系樹脂、ポリカーボネート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリメタクリル酸メチル系樹脂、ポリアリレート樹脂、ポリ塩化ビニル系樹脂等が挙げられ、特に、透明性、耐熱性、液晶とのマッチング性に優れ、固有複屈折率が低く、光弾性係数が小さい熱可塑性飽和ノルボルネン系樹脂が好適に用いられる。
【0012】
上記熱可塑性飽和ノルボルネン系樹脂は、従来より光学用途フィルムに使用されている樹脂であって、例えば、(イ)ノルボルネン系モノマーの開環重合体若しくは開環共重合体を、必要に応じてマレイン酸付加、シクロペンタジエン付加等の変性を行った後に、水素添加した樹脂、(ロ)ノルボルネン系モノマーを付加重合させた樹脂、(ハ)ノルボルネン系モノマーとエチレンやα−オレフィン等のオレフィン系モノマーとを付加重合させた樹脂、(ニ)ノルボルネン系モノマーとシクロペンテン、シクロオクテン、5,6−ジヒドロジシクロペンタジエン等の環状オレフィン系モノマーとを付加重合させた樹脂及びこれらの樹脂の変性物等が挙げられる。
【0013】
上記熱可塑性飽和ノルボルネン系樹脂を構成するノルボルネン系モノマーとしては、例えば、ノルボルネン、5−メチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−エチリデン−2−ノルボルネン、5−メトキシカルボニル−2−ノルボルネン、5,5−ジメチル−2−ノルボルネン、5−シアノ−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネン、5−フェニル−2−ノルボルネン、5−フェニル−5−メチル−2−ノルボルネン、6−メチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−エチル−1,4:5,8−エチリデン−1,4,4a,5,6,
7,8,8a−オクタヒドロナフタレン、6−クロロ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−シアノ−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−ピリジル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、6−メトキシカルボニル−1,4:5,8−ジメタノ−1,4,4a,5,6,7,8,8a−オクタヒドロナフタレン、1,4−ジメタノ−1,4,4a,4b,5,8,8a,9a−オクタヒドロフルオレン、5,8−メタノ−1,2,3,4,4a,5,8,8a−オクタヒドロ−2,3−シクロペンタジエノナフタレン、4,9:5,8−ジメタノ−3a,4,4a,5,8,8a,9,9a−オクタヒドロ−1H−ベンゾインデン、4,11:5,10:6,9−トリメタノ−3a,4,4a,5,5a,6,9,9a,10,10a,11,11a−ドデカヒドロ−1H−シクロペンタアントラセン、ジシクロペンタジエン、2,3−ジヒドロキシシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノヒドロオクタフルオレン等が挙げられる。
【0014】
上記熱可塑性飽和ノルボルネン系樹脂の数平均分子量は、小さくなると機械的強度が低下し、大きくなるとフィルム成形性が低下するので、テトラヒドロフラン溶媒又はシクロヘキサン溶媒によるゲル・パーミエーション・クロマトグラフィで測定して、5000〜40000が好ましく、より好ましくは7000〜35000であり、更に好ましくは8000〜30000である。
【0015】
上記熱可塑性飽和ノルボルネン系樹脂は、極性基を有さないものとしては日本ゼオン社より商品名「ゼオノア」、極性基を有するものとしてはジェイエスアール社より商品名「アートン」として上市されている。
【0016】
上記熱可塑性飽和ノルボルネン系樹脂には、光学フィルムの耐熱性、耐紫外線性、平滑性等を向上させるために、フェノール系、リン系などの老化防止剤、フェノール系などの熱劣化防止剤、アミン系などの帯電防止剤、脂肪族アルコールのエステル、多価アルコールの部分エステルなどの滑剤、ベンゾフェノン系、ベンゾトリアゾール系などの紫外線吸収剤等が添加されても良い。
【0017】
本発明の光学フィルムの製造方法により製造される光学フィルムは、非晶質熱可塑性樹脂が押出成形された光学フィルムであって、フィルム全面の80%以上において、残留位相差が3nm以下であり、光軸のズレ角度が±10度以下である。
【0018】
残留位相差が3nm以下の光学フィルムは、光ディスクや液晶ディスプレー等の光学用途に好適である。特に、液晶ディスプレーでは、例えば、位相差板の原反フィルムや偏光板の保護フィルムでは、低位相差であることが求められている。従って、上記光学フィルムは、残留位相差が非常に小さいので、このような用途に効果的に用いられる。
【0019】
又、光学フィルムの光軸のズレ角度が±10度以下である場合には、位相差の向きが揃っているため、この光学フィルムを光学用途に使用すると良品率が向上する。
【0020】
尚、光軸とは、遅相軸の方向を意味し、光学フィルムの押出方向(MD方向)を0度とする。従って、光軸のズレとは、遅相軸の方向のズレであり、光学フィルムの押出方向(MD方向)に対するズレを意味する。
【0021】
但し、光学フィルムの製造方法によっては、遅相軸が横方向を向いている場合があり、その場合には、光学フィルムの押出方向(MD方向)±90度に対するズレを意味する。
【0022】
又、光学フィルム全面の80%以上において、残留位相差が3nm以下であり、光軸の
ズレ角度が±10度以下であるので、広幅の光学用途に使用でき、製造効率がよい。
【0023】
本発明の光学フィルムの製造方法においては、先ず最初に、ダイスの設置された押出機で非晶質熱可塑性樹脂を溶融し、ダイスからシート状に溶融押出して非晶質熱可塑性樹脂フィルムを形成する。
【0024】
上記溶融押出の際の非晶質熱可塑性樹脂の温度は、非晶質熱可塑性樹脂のガラス転移温度(Tg)以上であって、非晶質熱可塑性樹脂が分解しない範囲で、非晶質熱可塑性樹脂の流動性を確保できる温度範囲が好ましい。
【0025】
押出成形された非晶質熱可塑性樹脂フィルムは冷却ロールで冷却されるが、非晶質熱可塑性樹脂フィルムは冷却ロールに接する直前の温度が、非晶質熱可塑性樹脂のガラス転移温度+80℃以上に設定される。
【0026】
非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前の温度を、非晶質熱可塑性樹脂のガラス転移温度+80℃以上に設定することにより、この状態で非晶質熱可塑性樹脂フィルムが変形されたとしても、非晶質熱可塑性樹脂の応力は著しく小さく、残留位相差が3nm以下の光学フィルムが得られる。
【0027】
これは、非晶質熱可塑性樹脂は、非晶質熱可塑性樹脂の温度が高温になればなるほど、変形時に応力を発生しないためである。従って、フィルム形成時に樹脂を押圧し変形する際に、適切な温度制御を行うことにより、発生する非晶質熱可塑性樹脂の応力歪みを小さくすることができ、残留位相差の発生を抑えることができるのである。
【0028】
尚、非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前の温度が、非晶質熱可塑性樹脂のガラス転移温度+80℃以上であっても、温度にバラツキがあると、非晶質熱可塑性樹脂の変形に対する応力にバラツキが生じ、得られた光学フィルムの残留位相差がばらついたり、一部分への応力の集中による光軸のズレが発生したりするようになるので、冷却ロールに接する直前の非晶質熱可塑性樹脂フィルムの温度の幅方向のバラツキは、±10℃未満が好ましい。
【0029】
非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前の温度をTg+80℃以上とする具体的な方法は、公知の任意の方法が採用されればよいが、例えば、ダイスの温度を制御する方法が考えられる。
【0030】
この場合、ダイス温度を上げ過ぎると、非晶質熱可塑性樹脂によっては熱劣化するが、熱劣化しない程度の温度条件を採用することにより、上記残留位相差を満足できる光学フィルムを確実に得ることができる。
【0031】
又、冷却ロールに接する直前の非晶質熱可塑性樹脂フィルムの温度をTg+80℃以上とするために、エアギャップを狭める方法を用いることができる。この場合には、ダイライン及び非晶質熱可塑性樹脂フィルムの厚み精度を十分に考慮してエアギャップの大きさを設定すればよい
【0032】
一方、非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前のフィルムの幅方向の温度バラツキを10℃以内とする方法も、特に限定されるものではないが、例えば、ダイス温度の精度を上げたり、エアギャップにおいて、幅方向に出力可変のヒーターを用いて幅方向の非晶質熱可塑性樹脂温度を均一に保つ方法や、保温ボックス等で囲って外乱を防ぐ方法等が挙げられる。
【0033】
又、上記光学フィルムの製造方法においては、非晶質熱可塑性樹脂フィルムが冷却ロールに接する地点で、非晶質熱可塑性樹脂フィルムの全幅の85〜95%を冷却ロールに対し押圧して密着させる。
【0034】
上記押圧方法は、特に限定されるものではないが、例えば、エアーチャンバー、エアーナイフ、静電ピニング、タッチロール等幅方向に均一に押圧しうる装置が挙げられる。
【0035】
押圧する非晶質熱可塑性樹脂フィルムの幅は、85%未満になると非晶質熱可塑性樹脂フィルム全面の80%以上において、残留位相差が3nm以下であり、光軸のズレ角度が±10度以下である光学フィルムが得られず、95%を超えると非晶質熱可塑性樹脂フィルム端部の肉厚の影響を受け、非晶質熱可塑性樹脂フィルム全幅での均一な押圧ができなくなり、非晶質熱可塑性樹脂フィルム全面の80%以上において、残留位相差が3nm以下であり、光軸のズレ角度が±10度以下である光学フィルムが得られなくなるので、85〜95%に限定される。
【0036】
非晶質熱可塑性樹脂フィルムへの押圧力に関しては、採用する押出方法によって適宜決定されればよく、冷却ロールとフィルムが密着するのに充分な大きさであればよい。
【0037】
上記冷却ロールは、従来公知の任意の冷却ロールが使用できるが、表面が鏡面のものが好ましく、又、その温度は、非晶質熱可塑性樹脂のTg〜Tg−100℃の範囲が好ましい。
【0038】
【発明の実施の形態】
以下、本発明の実施例について説明するが、下記の例に限定されるものではない。
【0039】
(実施例1)
熱可塑性飽和ノルボルネン系樹脂(日本ゼオン社製、商品名「ゼオノア#1600」、Tg168℃)を、リップクリアランス800μm、幅1800mmのコートハンガータイプのTダイの設置された単軸押出機に供給し、Tダイの温度310℃で、幅1630mm、厚み40μmの熱可塑性飽和ノルボルネン系樹脂フィルムを溶融押出した。
【0040】
溶融押出された熱可塑性飽和ノルボルネン系樹脂フィルムを、幅1480mmのタッチロールが設置された、冷却ロールに供給し、タッチロールで熱可塑性飽和ノルボルネン系樹脂フィルムを冷却ロールに接した地点の近傍で押圧し、冷却して、光学フィルムを得た。
【0041】
熱可塑性飽和ノルボルネン系樹脂フィルムが冷却ロールに接する直前のフィルム温度は250℃であった。
【0042】
得られた光学フィルムの残留位相差及び光軸の角度を測定し、結果を図1及び図2に示した。
【0043】
尚、残留位相差及び光軸の角度は、複屈折計(王子計測機器社製、商品名「KOBRA−21ADH」)を用いて、波長590nmで測定した。測定地点は光学フィルムの幅方向に25mm間隔であり、長さ方向に対しては1m間隔で2点測定した。
【0044】
得られた光学フィルムの残留位相差が3nm以下であり、且つ、光軸ズレ角度が±10度以下の地点は、光学フィルムの全幅に対して80%以上あった。
【0045】
(比較例1)
タッチロールの幅を1300mmにした以外は、実施例1で行ったと同様にして光学フィルムを得、実施例1で行ったと同様にして残留位相差及び光軸の角度を測定し、結果を図3及び図4に示した。
【0046】
得られた光学フィルムの残留位相差が3nm以下であり、且つ、光軸ズレ角度が±10度以下の地点は、光学フィルムの全幅に対して70%以下であった。
【0047】
(比較例2)
タッチロールの幅を1630mmにした以外は、実施例1で行ったと同様にして光学フィルムを得、実施例1で行ったと同様にして残留位相差及び光軸の角度を測定し、結果を図5及び図6に示した。
【0048】
得られた光学フィルムの残留位相差が3nm以下であり、光軸ズレ角度が±10度以下の地点は、光学フィルムの全幅に対して60%以下であった。
【0049】
(比較例3)
市販の光学用押出フィルム(日本ゼオン社製、商品名「ノルボルネンフィルムZF−14−60(LOT26009T))の残留位相差及び光軸の角度を実施例1で行ったと同様にして測定し、結果を図7及び図8に示した。
【0050】
このフィルムは光軸が横方向を向いているので光軸のバラツキの有効範囲を80〜90度及び−90〜−80度として測定したところ有効範囲は60%以下であった。
【0051】
【発明の効果】
本発明の光学フィルムの製造方法の構成は上述の通りであるから、幅方向に広い範囲で残留位相差が小さく、光軸ズレのバラツキが小さく、広幅の光学フィルムを容易に製造することができる。従って、得られた光学フィルムは、大型画面の光学用途や液晶ディスプレー分野等で好適に使用できる。
【図面の簡単な説明】
【図1】 実施例1で得られた光学フィルムの幅方向の位相差と光軸の角度を示すグラフである。
【図2】 実施例1で得られた光学フィルムの異なる位置の幅方向の位相差と光軸の角度を示すグラフである。
【図3】 比較例1で得られた光学フィルムの幅方向の位相差と光軸の角度を示すグラフである。
【図4】 比較例1で得られた光学フィルムの異なる位置の幅方向の位相差と光軸の角度を示すグラフである。
【図5】 比較例2で得られた光学フィルムの幅方向の位相差と光軸の角度を示すグラフである。
【図6】 比較例2で得られた光学フィルムの異なる位置の幅方向の位相差と光軸の角度を示すグラフである。
【図7】 比較例3の光学フィルムの幅方向の位相差と光軸の角度を示すグラフである。
【図8】 比較例3の光学フィルムの異なる位置の幅方向の位相差と光軸の角度を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an optical fill beam used in such optical applications and display field, and more particularly, less light Gakuyugami (birefringence) The method for producing a small number of optical fill beam of optical axis misalignment.
[0002]
[Prior art]
In recent years, optical films with excellent transparency, small residual retardation, and no optical axis misalignment have been demanded in optical applications and display fields, but optical films manufactured by melt extrusion molding are not deformed during molding. Therefore, there is a problem that optical distortion remains.
[0003]
Since this optical distortion remains as a phase difference, for example, when this optical film is used as a polarizing plate protective film for protecting a polarizer, there is a disadvantage that the polarizing performance is deteriorated due to the optical distortion. It was.
[0004]
Further, there is a defect that the optical axis varies due to non-uniformity in the molding direction during extrusion molding. When the optical axis varies, the same problem occurs as when the phase difference is high even if the phase difference is low.
[0005]
In general, when the residual phase difference is 1 nm or more, the variation of the optical axis becomes a problem. When the residual phase difference is 3 nm or less, the variation of the optical axis is desired to be ± 10 degrees or less.
[0006]
As a method for producing an optical film having a thickness of 0.1 to 2 mm and a residual retardation of 10 nm or less, assuming that the glass transition temperature of the thermoplastic resin constituting the optical film is Tg, the temperature of the belt and roll for extrusion molding is Tg to The manufacturing method (for example, refer patent document 1) of extrusion-molding as Tg + 50 degreeC is disclosed.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-280268
However, a thin optical film having a thickness of less than 100 μm could not be obtained by the above production method. Further, when the optical film is peeled from the belt, the optical film may be stretched and the optical distortion may be increased. In addition, optical films used in optical applications and display fields are required not to vary not only the residual phase difference but also the optical axis that is the direction of optical distortion. However, in the above manufacturing method, the optical axis tends to vary. Met.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems of the prior art, the residual retardation in a wide range in the width direction is small, the variation of the optical axis deviation to provide a method for manufacturing a small and wide optical film arm With the goal.
[0010]
[Means for Solving the Problems]
The method for producing an optical film of the present invention is a method for producing an optical film in which an amorphous thermoplastic resin film melt-extruded into a sheet is pressed against a cooling roll from an extruder provided with a die, and is closely adhered and cooled. The temperature of the amorphous thermoplastic resin film immediately before the amorphous thermoplastic resin film comes into contact with the cooling roll is equal to or higher than the glass transition temperature of the amorphous thermoplastic resin + 80 ° C. It is characterized in that 85 to 95% of the entire width of the amorphous thermoplastic resin film is pressed against the cooling roll at the point where the plastic resin film is in contact with the cooling roll.
[0011]
The amorphous thermoplastic resin is not particularly limited as long as it is an amorphous thermoplastic resin excellent in transparency. For example, thermoplastic saturated norbornene resin, polycarbonate resin, polysulfone resin, polyethersulfone resin Resin, polymethyl methacrylate resin, polyarylate resin, polyvinyl chloride resin, etc., especially transparency, heat resistance, excellent matching with liquid crystal, low intrinsic birefringence, low photoelastic coefficient A small thermoplastic saturated norbornene resin is preferably used.
[0012]
The thermoplastic saturated norbornene-based resin is a resin that has been conventionally used for films for optical applications. For example, (i) a ring-opening polymer or a ring-opening copolymer of a norbornene-based monomer may be used as needed. After the modification such as acid addition, cyclopentadiene addition, etc., hydrogenated resin, (b) resin obtained by addition polymerization of norbornene monomer, (c) norbornene monomer and olefin monomer such as ethylene and α-olefin And (ii) resins obtained by addition polymerization of norbornene monomers and cyclic olefin monomers such as cyclopentene, cyclooctene, and 5,6-dihydrodicyclopentadiene, and modified products of these resins. It is done.
[0013]
Examples of norbornene monomers constituting the thermoplastic saturated norbornene resin include, for example, norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2- Norbornene, 5-methoxycarbonyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-phenyl-2-norbornene, 5-phenyl-5-methyl-2-norbornene, 6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl- 1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-ethyl 1,4: 5,8-ethylidene -1,4,4a, 5,6,
7,8,8a-octahydronaphthalene, 6-chloro-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-cyano-1, 4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 6-pyridyl-1,4: 5,8-dimethano-1,4,4a, 5 6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 1,4 Dimethano-1,4,4a, 4b, 5,8,8a, 9a-octahydrofluorene, 5,8-methano-1,2,3,4,4a, 5,8,8a-octahydro-2,3 -Cyclopentadienonaphthalene, 4,9: 5,8-dimethano-3a, 4 a, 5,8,8a, 9,9a-octahydro-1H-benzoindene, 4,11: 5,10: 6,9-trimethano-3a, 4,4a, 5,5a, 6,9,9a, 10 , 10a, 11, 11a-dodecahydro-1H-cyclopentanthanthene, dicyclopentadiene, 2,3-dihydroxycyclopentadiene, methanooctahydrofluorene, dimethanohydrooctafluorene, and the like.
[0014]
When the number average molecular weight of the thermoplastic saturated norbornene resin decreases, the mechanical strength decreases. When the number average molecular weight increases, the film moldability decreases. Therefore, the number average molecular weight is 5000 as measured by gel permeation chromatography using a tetrahydrofuran solvent or a cyclohexane solvent. -40000 is preferable, more preferably 7000-35000, and still more preferably 8000-30000.
[0015]
The thermoplastic saturated norbornene-based resin is marketed under the trade name “Zeonor” by Nippon Zeon Co., Ltd. as having no polar group, and the product name “Arton” by JSR Co. as having a polar group.
[0016]
In order to improve the heat resistance, ultraviolet resistance, smoothness, etc. of the optical film, the above-mentioned thermoplastic saturated norbornene-based resin includes phenol-based, phosphorus-based anti-aging agents, phenol-based heat deterioration inhibitors, amines, etc. Antistatic agents such as fatty acids, lubricants such as esters of aliphatic alcohols and partial esters of polyhydric alcohols, ultraviolet absorbers such as benzophenone and benzotriazole may be added.
[0017]
The optical film produced by the method for producing an optical film of the present invention is an optical film obtained by extrusion molding of an amorphous thermoplastic resin, and the residual retardation is 3 nm or less in 80% or more of the entire film surface, The deviation angle of the optical axis is ± 10 degrees or less.
[0018]
An optical film having a residual retardation of 3 nm or less is suitable for optical applications such as an optical disk and a liquid crystal display. In particular, in a liquid crystal display, for example, a raw film of a retardation plate and a protective film of a polarizing plate are required to have a low retardation. Therefore, the optical film has a very small residual retardation, and thus can be effectively used for such applications.
[0019]
In addition, when the optical film has an optical axis misalignment angle of ± 10 degrees or less, the direction of the phase difference is uniform. Therefore, when this optical film is used for optical applications, the yield rate is improved.
[0020]
In addition, an optical axis means the direction of a slow axis, and makes the extrusion direction (MD direction) of an optical film 0 degree. Therefore, the deviation of the optical axis is a deviation in the direction of the slow axis, and means a deviation with respect to the extrusion direction (MD direction) of the optical film.
[0021]
However, depending on the method of manufacturing the optical film, the slow axis may be in the horizontal direction, and in this case, it means a deviation from the optical film extrusion direction (MD direction) ± 90 degrees.
[0022]
Further, since the residual phase difference is 3 nm or less and the optical axis deviation angle is ± 10 degrees or less in 80% or more of the entire surface of the optical film, it can be used for a wide range of optical applications and the production efficiency is good.
[0023]
In the method for producing an optical film of the present invention , first, an amorphous thermoplastic resin is melted by an extruder provided with a die, and then melt-extruded from the die into a sheet to form an amorphous thermoplastic resin film. To do.
[0024]
The temperature of the amorphous thermoplastic resin during the melt extrusion is equal to or higher than the glass transition temperature (Tg) of the amorphous thermoplastic resin, and is within a range where the amorphous thermoplastic resin is not decomposed. A temperature range in which the fluidity of the plastic resin can be secured is preferable.
[0025]
The extruded amorphous thermoplastic resin film is cooled by a cooling roll, but the temperature immediately before the amorphous thermoplastic resin film is in contact with the cooling roll is equal to or higher than the glass transition temperature of the amorphous thermoplastic resin + 80 ° C. Set to
[0026]
The amorphous thermoplastic resin film was deformed in this state by setting the temperature immediately before the amorphous thermoplastic resin film was in contact with the cooling roll to a glass transition temperature of the amorphous thermoplastic resin + 80 ° C. or higher. However, the stress of the amorphous thermoplastic resin is remarkably small, and an optical film having a residual retardation of 3 nm or less can be obtained.
[0027]
This is because the amorphous thermoplastic resin does not generate stress during deformation as the temperature of the amorphous thermoplastic resin becomes higher. Therefore, when the resin is pressed and deformed during film formation, the stress distortion of the generated amorphous thermoplastic resin can be reduced by performing appropriate temperature control, and the occurrence of residual phase difference can be suppressed. It can be done.
[0028]
Even if the temperature immediately before the amorphous thermoplastic resin film is in contact with the cooling roll is equal to or higher than the glass transition temperature of the amorphous thermoplastic resin + 80 ° C., if the temperature varies, the amorphous thermoplastic resin Variations in the stress due to deformation of the optical film result in variations in the residual phase difference of the obtained optical film, and deviations in the optical axis due to stress concentration on a part of the optical film. The variation in the temperature width direction of the crystalline thermoplastic resin film is preferably less than ± 10 ° C.
[0029]
As a specific method for setting the temperature immediately before the amorphous thermoplastic resin film is in contact with the cooling roll to Tg + 80 ° C. or higher, any known method may be adopted. For example, a method for controlling the temperature of the die may be used. Conceivable.
[0030]
In this case, if the die temperature is increased too much, the amorphous film may be thermally deteriorated depending on the amorphous thermoplastic resin, but by adopting a temperature condition that does not cause the heat deterioration, an optical film that can satisfy the above residual retardation can be reliably obtained. Can do.
[0031]
Moreover, in order to make the temperature of the amorphous thermoplastic resin film just before contacting a cooling roll into Tg + 80 degreeC or more, the method of narrowing an air gap can be used. In this case, the size of the air gap may be set taking into account the thickness accuracy of the die line and the amorphous thermoplastic resin film.
On the other hand, the method of setting the temperature variation in the width direction of the amorphous thermoplastic resin film immediately before coming into contact with the cooling roll within 10 ° C. is not particularly limited. For example, the accuracy of the die temperature can be increased. In the air gap, there are a method of keeping the temperature of the amorphous thermoplastic resin in the width direction uniform using a heater whose output is variable in the width direction, a method of preventing disturbance by surrounding with a heat retaining box or the like.
[0033]
Moreover, in the said manufacturing method of an optical film, 85-95% of the full width of an amorphous thermoplastic resin film is pressed and made to contact | adhere to a cooling roll in the point which an amorphous thermoplastic resin film contacts a cooling roll. .
[0034]
Although the said pressing method is not specifically limited, For example, the apparatus which can press uniformly in the width direction, such as an air chamber, an air knife, electrostatic pinning, a touch roll, is mentioned.
[0035]
When the width of the amorphous thermoplastic resin film to be pressed is less than 85%, the residual phase difference is 3 nm or less in 80% or more of the entire surface of the amorphous thermoplastic resin film, and the deviation angle of the optical axis is ± 10 degrees. If the optical film below is not obtained and exceeds 95%, it is affected by the thickness of the end portion of the amorphous thermoplastic resin film, and uniform pressing over the entire width of the amorphous thermoplastic resin film becomes impossible. In 80% or more of the entire surface of the crystalline thermoplastic resin film, an optical film having a residual retardation of 3 nm or less and an optical axis misalignment angle of ± 10 degrees or less cannot be obtained, so it is limited to 85 to 95%. .
[0036]
The pressing force on the amorphous thermoplastic resin film may be appropriately determined depending on the extrusion method employed, and may be a size sufficient for the cooling roll and the film to adhere to each other.
[0037]
Although any conventionally known cooling roll can be used as the cooling roll, the surface is preferably a mirror surface, and the temperature is preferably in the range of Tg to Tg-100 ° C. of the amorphous thermoplastic resin.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[0039]
Example 1
A thermoplastic saturated norbornene-based resin (manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor # 1600”, Tg 168 ° C.) is supplied to a single-screw extruder in which a coat hanger type T die having a lip clearance of 800 μm and a width of 1800 mm is installed. A thermoplastic saturated norbornene resin film having a width of 1630 mm and a thickness of 40 μm was melt-extruded at a temperature of 310 ° C. of a T die.
[0040]
The melt-extruded thermoplastic saturated norbornene resin film is supplied to a cooling roll on which a touch roll having a width of 1480 mm is installed, and the thermoplastic saturated norbornene resin film is pressed by the touch roll in the vicinity of the point in contact with the cooling roll. And cooled to obtain an optical film.
[0041]
The film temperature immediately before the thermoplastic saturated norbornene resin film contacted the cooling roll was 250 ° C.
[0042]
The residual retardation and optical axis angle of the obtained optical film were measured, and the results are shown in FIG. 1 and FIG.
[0043]
The residual phase difference and the optical axis angle were measured at a wavelength of 590 nm using a birefringence meter (trade name “KOBRA-21ADH” manufactured by Oji Scientific Instruments). The measurement points were 25 mm intervals in the width direction of the optical film, and two points were measured at 1 m intervals in the length direction.
[0044]
The point where the residual retardation of the obtained optical film was 3 nm or less and the optical axis deviation angle was ± 10 degrees or less was 80% or more with respect to the entire width of the optical film.
[0045]
(Comparative Example 1)
An optical film was obtained in the same manner as in Example 1 except that the width of the touch roll was changed to 1300 mm, the residual phase difference and the angle of the optical axis were measured in the same manner as in Example 1, and the results are shown in FIG. And shown in FIG.
[0046]
The points where the residual retardation of the obtained optical film was 3 nm or less and the optical axis deviation angle was ± 10 degrees or less were 70% or less with respect to the entire width of the optical film.
[0047]
(Comparative Example 2)
An optical film was obtained in the same manner as in Example 1 except that the width of the touch roll was changed to 1630 mm, the residual phase difference and the angle of the optical axis were measured in the same manner as in Example 1, and the results are shown in FIG. And shown in FIG.
[0048]
The point where the residual retardation of the obtained optical film was 3 nm or less and the optical axis deviation angle was ± 10 degrees or less was 60% or less with respect to the entire width of the optical film.
[0049]
(Comparative Example 3)
The residual retardation of a commercially available optical extrusion film (trade name “Norbornene Film ZF-14-60 (LOT26209T)” manufactured by Nippon Zeon Co., Ltd.) and the angle of the optical axis were measured in the same manner as in Example 1, and the results were obtained. This is shown in FIGS.
[0050]
Since the optical axis of the film is directed in the horizontal direction, the effective range was 60% or less when the effective range of variations in the optical axis was measured as 80 to 90 degrees and −90 to −80 degrees.
[0051]
【The invention's effect】
Since the configuration of the method for producing an optical film of the present invention is as described above, a wide optical film can be easily produced with a small residual phase difference in a wide range in the width direction and a small variation in optical axis deviation. . Therefore, the obtained optical film can be suitably used in optical applications for large screens, liquid crystal display fields, and the like.
[Brief description of the drawings]
1 is a graph showing the retardation in the width direction and the angle of the optical axis of the optical film obtained in Example 1. FIG.
2 is a graph showing the phase difference in the width direction and the angle of the optical axis at different positions of the optical film obtained in Example 1. FIG.
3 is a graph showing the phase difference in the width direction of the optical film obtained in Comparative Example 1 and the angle of the optical axis. FIG.
4 is a graph showing the phase difference in the width direction and the angle of the optical axis at different positions of the optical film obtained in Comparative Example 1. FIG.
5 is a graph showing the retardation in the width direction and the angle of the optical axis of the optical film obtained in Comparative Example 2. FIG.
6 is a graph showing the phase difference in the width direction and the angle of the optical axis at different positions of the optical film obtained in Comparative Example 2. FIG.
7 is a graph showing the phase difference in the width direction of the optical film of Comparative Example 3 and the angle of the optical axis. FIG.
8 is a graph showing the phase difference in the width direction and the angle of the optical axis at different positions of the optical film of Comparative Example 3. FIG.

Claims (1)

ダイスの設置された押出機から、シート状に溶融押出された非晶質熱可塑性樹脂フィルムを、冷却ロールに押圧し、密着して冷却する光学フィルムの製造方法であって、非晶質熱可塑性樹脂フィルムが冷却ロールに接する直前の非晶質熱可塑性樹脂フィルムの温度が、非晶質熱可塑性樹脂のガラス転移温度+80℃以上であり、非晶質熱可塑性樹脂フィルムが冷却ロールに接する地点で、非晶質熱可塑性樹脂フィルムの全幅の85〜95%を冷却ロールに対し押圧して密着させることを特徴とする光学フィルムの製造方法 A method for producing an optical film in which an amorphous thermoplastic resin film melt-extruded into a sheet form from an extruder in which a die is installed is pressed against a cooling roll and cooled in close contact with the amorphous thermoplastic film. At the point where the temperature of the amorphous thermoplastic resin film immediately before the resin film contacts the cooling roll is equal to or higher than the glass transition temperature of the amorphous thermoplastic resin + 80 ° C., and the amorphous thermoplastic resin film contacts the cooling roll. A method for producing an optical film, wherein 85 to 95% of the entire width of the amorphous thermoplastic resin film is pressed against and adhered to a cooling roll .
JP2002308807A 2002-10-23 2002-10-23 Manufacturing method of optical film Expired - Fee Related JP3924236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308807A JP3924236B2 (en) 2002-10-23 2002-10-23 Manufacturing method of optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308807A JP3924236B2 (en) 2002-10-23 2002-10-23 Manufacturing method of optical film

Publications (2)

Publication Number Publication Date
JP2004144941A JP2004144941A (en) 2004-05-20
JP3924236B2 true JP3924236B2 (en) 2007-06-06

Family

ID=32454847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308807A Expired - Fee Related JP3924236B2 (en) 2002-10-23 2002-10-23 Manufacturing method of optical film

Country Status (1)

Country Link
JP (1) JP3924236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058613A (en) * 2004-08-20 2006-03-02 Konica Minolta Opto Inc Antireflection film, its manufacturing method, polarizing plate using the same, and liquid crystal display device
KR20060120714A (en) * 2005-01-20 2006-11-27 닛토덴코 가부시키가이샤 Process for producing polarizing plate, polarizing plate, optical film, and image display using same
WO2014027660A1 (en) * 2012-08-14 2014-02-20 出光興産株式会社 Device and method for producing thermoplastic resin sheet, and thermoplastic resin sheet obtained thereby

Also Published As

Publication number Publication date
JP2004144941A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP3273046B2 (en) Phase plate
KR100858207B1 (en) Optical film, method of manufacture thereof and sheet polarizer
JP3220478B2 (en) Phase plate for liquid crystal display
WO1993002381A1 (en) Polarizing film for liquid crystal display
JP2006309033A (en) Method for manufacturing film for optics
JP2007301986A (en) Transparent thermoplastic film and its manufacturing method
JP2010105188A (en) Device and method for manufacturing thermoplastic resin sheet, and thermoplastic resin sheet obtained thereby
JP2003131006A (en) Optical film and manufacturing method therefor
JP2003131036A (en) Optical film, manufacturing method thereof, and polarizing plate
JP3924236B2 (en) Manufacturing method of optical film
JP2008039808A (en) Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate
JP4088135B2 (en) Manufacturing method of optical film
JP3284558B2 (en) Thermoplastic saturated norbornene-based resin sheet and method for producing the same
JP3407714B2 (en) Phase plate
JP4231269B2 (en) Method for producing retardation compensation film
JP2004133209A (en) Retardation film and method for manufacturing same
JP4052846B2 (en) Manufacturing method of optical film
JP2004126026A (en) Optical film and phase differential film
JP2003306557A (en) Saturated norbornene resin film; polarizer, phase difference plate, and image display using the same; and production method for the same
JP2003232925A (en) Optical film and polarizing plate
JP2005280218A (en) Optical film manufacturing method
JP4841804B2 (en) Manufacturing method of optical film
JP2004149640A (en) Optical film and method for producing the same
JP4543915B2 (en) Resin film
JP2006308917A (en) Manufacturing method of retardation film, retardation film, composite polarizing plate, liquid crystal display device and polarizing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R151 Written notification of patent or utility model registration

Ref document number: 3924236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees