JP3924119B2 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP3924119B2
JP3924119B2 JP2000346370A JP2000346370A JP3924119B2 JP 3924119 B2 JP3924119 B2 JP 3924119B2 JP 2000346370 A JP2000346370 A JP 2000346370A JP 2000346370 A JP2000346370 A JP 2000346370A JP 3924119 B2 JP3924119 B2 JP 3924119B2
Authority
JP
Japan
Prior art keywords
diaphragm
receiving plate
rod
expansion valve
pressure refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000346370A
Other languages
Japanese (ja)
Other versions
JP2002147899A (en
Inventor
功 仙道
康太郎 鈴木
智 川上
道雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2000346370A priority Critical patent/JP3924119B2/en
Publication of JP2002147899A publication Critical patent/JP2002147899A/en
Application granted granted Critical
Publication of JP3924119B2 publication Critical patent/JP3924119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Fluid-Driven Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍サイクルにおいて蒸発器に送り込まれる冷媒の流量制御を行いつつ冷媒を断熱膨張させるための膨張弁に関する。
【0002】
【従来の技術】
膨張弁には各種のタイプがあるが、蒸発器に送り込まれる高圧冷媒が通る高圧冷媒流路の途中を細く絞って形成された弁座孔に対して上流側から対向するように弁体を配置し、蒸発器から送り出される低圧冷媒の温度と圧力に対応して弁体を開閉動作させるようにした膨張弁が広く用いられている。
【0003】
そのような膨張弁においては、蒸発器から送り出される低圧冷媒の温度と圧力に対応して動作するダイアフラムによって、軸線方向に進退自在なロッドを介して弁体を開閉動作させるようにしている。
【0004】
そのような膨張弁の動作が敏感になりすぎないようにするために、本件の出願人は、ダイアフラムに当接するダイアフラム受け盤からロッドに対して偶力が加わるように構成した膨張弁を発明して特許出願してある(特願平11−273559号)。
【0005】
その膨張弁では、ロッドが軸線方向にスライドする際に偶力の作用により摩擦抵抗が発生するので、高圧冷媒に圧力変動があっても弁体の動作がそれに対して敏感に反応せず、高圧冷媒の圧力変動に対して動作の安定した膨張弁を得ることができる。
【0006】
上述のような膨張弁においては、ダイアフラム受け盤からロッドに対して加わる偶力の反力が、ダイアフラム受け盤を側方(盤面に沿う方向)に押すようにロッドからダイアフラム受け盤に作用するので、図4に示されるように、周囲の固定壁に摺接する足片90aをダイアフラム受け盤90に突出形成してある。
【0007】
【発明が解決しようとする課題】
図5に示されるように、足片90aは周囲の固定壁91に対して稜線部分で摺接する。したがって、ダイアフラム受け盤90のふらつき等によって、摺接部分が足片90aの二つの稜線だったり一つだけになったりする場合が発生して、ダイアフラム受け盤90が周囲の固定壁91から受ける摺動抵抗が不規則に変化し、その結果膨張弁の動作特性が不安定なものになってしまう場合がある。
【0008】
そこで本発明は、ダイアフラム受け盤を側方に押す反力がロッドからダイアフラム受け盤に作用する膨張弁において、ダイアフラム受け盤に生じる摺動抵抗が不規則にならないようにして、安定した動作特性を得ることができる膨張弁を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明の膨張弁は、蒸発器に送り込まれる高圧冷媒が通る高圧冷媒流路の途中を細く絞って形成された弁座孔に対して上流側から対向するように弁体を配置して、蒸発器から送り出されて低圧冷媒流路を通る低圧冷媒の温度と圧力に対応して変位するダイアフラムに当接するダイアフラム受け盤と弁体との間に軸線方向に進退自在にロッドを挟設し、ロッドを介して弁体を開閉動作させるようにした膨張弁であって、ダイアフラム受け盤を側方に押す反力がロッドからダイアフラム受け盤に作用する膨張弁において、ダイアフラム受け盤がロッドからの反力によって側方に移動するのを規制するように周囲の固定壁に摺接する足片をダイアフラム受け盤から突設して、固定壁に対する足片の摺接面を滑らかな凸状曲面に形成したものである。
【0010】
なお、固定壁に対する足片の摺接面の断面形状が、ダイアフラム受け盤の盤面と平行な断面において、外方に凸で突端が滑らかなアール状に丸められたV字状或いはU字状、又は球面状であってもよい。
【0011】
【発明の実施の形態】
図面を参照して本発明の実施例を説明する。
図1において、1は蒸発器、2は圧縮機、3は凝縮器、4は、凝縮器3の出口側に接続されて高圧の液体冷媒を収容する受液器、10は膨張弁である。これらによって冷凍サイクルが形成されており、例えば自動車の室内冷房装置(カーエアコン)に用いられる。
【0012】
膨張弁10の本体ブロック11には、蒸発器1から圧縮機2へ送り出される低温低圧の冷媒ガスを通すための低圧冷媒流路12と、蒸発器1に送り込まれる高温高圧の冷媒液を通して断熱膨張させるための高圧冷媒流路13とが形成されている。
【0013】
低圧冷媒流路12は、入口側の端部が蒸発器1の出口に接続され、出口側が圧縮機2の入口に接続されている。高圧冷媒流路13は、入口側の端部が受液器4の出口に接続され、出口側が蒸発器1の入口に接続されている。
【0014】
低圧冷媒流路12と高圧冷媒流路13とは互いに平行に形成されており、これに垂直な貫通孔14が低圧冷媒流路12と高圧冷媒流路13との間を貫通している。また、低圧冷媒流路12の途中から側方に抜けるように、貫通孔14と同じ向きに形成された開口部には、パワーエレメント30が取り付けられている。
【0015】
高圧冷媒流路13の途中には、流路面積を途中で狭く絞った形の弁座孔15が中央部に形成されていて、その弁座孔15に上流側から対向して球状の弁体16が配置されている。
【0016】
その結果、弁体16と弁座孔15の入口部との間の隙間の最も狭い部分が高圧冷媒流路13の絞り部になり、そこから蒸発器1に到る下流側の流路内において、高圧冷媒が断熱膨張する。弁体16は、圧縮コイルスプリング17によって弁座孔15に接近する方向(即ち、閉じ方向)に付勢されている。18はスプリング受けである。
【0017】
貫通孔14に挿通されたロッド20は、軸線方向に摺動自在に設けられていて、その上端はパワーエレメント30の裏面付近に達し、中間部分が低圧冷媒流路12を垂直に横切って貫通孔14内に嵌合し、下端は、弁座孔15内を通って弁体16の頭部に当接している。
【0018】
なおロッド20は、弁座孔15の壁面との間が冷媒流路になるよう、弁座孔15に比べて細く形成されている。また、プラスチック製のガイド筒19が、低圧冷媒流路12を横切ってロッド20を囲んで配置されている。
【0019】
パワーエレメント30の上半部は、厚い金属板製のハウジング31と可撓性のある金属製薄板(例えば厚さ0.1mmのステンレス鋼板)からなるダイアフラム32によって気密に囲まれている。
【0020】
その気密空間30a内には、冷媒流路12,13内に流されている冷媒と同じか又は性質の似ている飽和蒸気状態のガスが封入されていて、ガス封入用の注入孔は、栓34によって閉塞されている。
【0021】
ダイアフラム32の裏面に当接するように、大きな皿状に形成された金属製のダイアフラム受け盤33が配置されていて、ダイアフラム受け盤33の裏面にロッド20の端部が当接している。
【0022】
ロッド20は一本の真っ直ぐな棒状であるが、ロッド20が当接するダイアフラム受け盤33の面がロッド20の軸線に対して斜めに傾いて形成されている(斜面36)。
【0023】
40は、パワーエレメント30が低圧冷媒の急激な温度変化に影響されないように、ダイアフラム32の裏面への低圧冷媒の回り込みを規制するために、ダイアフラム受け盤33に形成された冷媒通路である。
【0024】
このように構成された膨張弁10においては、低圧冷媒流路12内を流れる低圧冷媒の温度が下がると、ダイアフラム32の温度が下がって、パワーエレメント30内の飽和蒸気ガスがダイアフラム32の内表面で凝縮する。
【0025】
すると、パワーエレメント30内の圧力が下がってダイアフラム32とダイアフラム受け盤33が変位するので、ロッド20が圧縮コイルスプリング17に押されて移動し、その結果、弁体16が弁座孔15側に移動して高圧冷媒の流路面積が狭くなって、蒸発器1に送り込まれる冷媒の流量が減る。
【0026】
低圧冷媒流路12内を流れる低圧冷媒の温度が上がると、上記と逆の動作により、ダイアフラム受け盤33で押されたロッド20によって弁体16が弁座孔15から離れる方向に移動させられ、高圧冷媒の流路面積が広がって、蒸発器1に送り込まれる高圧冷媒の流量が増える。図1は、全開状態を示している。
【0027】
このような膨張弁10において、ロッド20が当接するダイアフラム受け盤33側の面がロッド20の軸線に対して傾いた斜面36になっているので、パワーエレメント30と圧縮コイルスプリング17とからロッド20が受ける力は、ロッド20の軸線方向を回転させようとする偶力としても作用する。
【0028】
その結果、ロッド20が進退する際には貫通孔14の内面壁との間において摩擦抵抗が発生するので、高圧冷媒流路13内の高圧冷媒に圧力変動があったとき、ロッド20の動作(即ち弁体16の開閉動作)がそれに対して敏感に反応しない。
【0029】
このような膨張弁10では、斜面36において、ダイアフラム受け盤33を側方(盤面に沿う方向であり、図1において右方)に押す反力がロッド20からダイアフラム受け盤33に対して作用する。
【0030】
そこでダイアフラム受け盤33には、図2に単体でも示されるように、ロッド20からの反力によってダイアフラム受け盤33が側方に移動するのを規制するように、パワーエレメント30のハウジング31の下端筒状部31aの内面に摺接する足片33aが突設されている。
【0031】
なお、この実施例では足片33aはダイアフラム受け盤33の一部を折り曲げて形成されているが、ダイアフラム受け盤33に他の部材を連結して形成しても差し支えない。
【0032】
この足片33aは、図1に示されるように、本体ブロック11に取り付けられるパワーエレメント30のハウジング31の筒状部31aの内周面に沿ってその筒状部31aの軸線方向と略平行に長く配置されている。
【0033】
この実施例においては、足片33aは、図3に示されるように、ダイアフラム受け盤33の盤面と平行な断面において、外方に凸で突端が滑らかなアール状に丸められたV字状の断面形状に形成されて、ダイアフラム受け盤33の斜面36の背面側の位置に一本だけ設けられており、ロッド20から受ける反力によりダイアフラム受け盤33が側方に移動しようとすると、足片33aの外面側が筒状部31aの内周面に押し付けられる位置にある。
【0034】
足片33aをこのようにダイアフラム受け盤33の斜面36の背面側に設けたことにより、ロッド20から受ける反力によってダイアフラム受け盤33が側方(図1において右方)に移動してしまうことが規制される。
【0035】
そして、足片33aが、滑らかなアール状に丸められたV字状断面の突端部分でハウジング31の筒状部31aと摺接するので、ダイアフラム受け盤33がふらついて足片33aの向きが変動しても、ハウジング31の筒状部31aに対する摺接面の状態はほとんど変わらない。その結果、ダイアフラム受け盤33がハウジング31の筒状部31aの内周面から受ける摺動抵抗がばらつかず、膨張弁10が常に安定した特性で動作する。
【0036】
なお、足片33aは、V字状断面のV部分の角度θが90〜95°であると、上述のような動作が安定して得られ、またダイアフラム受け盤33を折り曲げて製造する製造上も問題が生じない。
【0037】
また、パワーエレメント30のハウジング31のうちダイアフラム受け盤33の外縁部分を囲む位置にある部分31bが、本体ブロック11に近い側からダイアフラム32に近い側へ(即ち、ダイアフラム受け盤33の全開時にダイアフラム受け盤33の外縁部分に面する位置から全閉時にダイアフラム受け盤33の外縁部分に面する位置方向へ)次第に大きな径に広がって形成されている。この実施例では、その部分31bがアール面に形成されている。ただし、テーパ面等であってもよい。
【0038】
したがって、ダイアフラム受け盤33が例えば紙面と垂直方向に横振れした状態になっても、図1に示される全開状態のときダイアフラム受け盤33がハウジング31にガイドされて最も内側位置に寄せられ、そこから少しでも閉弁方向に移行すればダイアフラム受け盤33の外縁がハウジング31に触れなくなる。したがって、ダイアフラム受け盤33は足片33a以外の部分では摺動抵抗を受けることがなく安定した動作をする。
【0039】
なお、本発明は上記実施例に限定されるものではなく、例えばハウジング31の筒状部31aに対する足片33aの摺接面は、滑らかな凸状曲面に形成されていればよく、V字状に限らずU字状その他どのような形状であっても差し支えなく、球面状であってもよい。また、足片33aがダイアフラム受け盤33から複数突設されていてもよい。
【0040】
【発明の効果】
本発明によれば、ダイアフラム受け盤がロッドからの反力によって側方に移動するのを規制するように周囲の固定壁に摺接する足片の摺接面を滑らかな凸状曲面に形成したことにより、ダイアフラム受け盤に生じる摺動抵抗が不規則にならず、膨張弁が安定した特性で作動する優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の実施例の膨張弁の縦断面図である。
【図2】本発明の実施例のダイアフラム受け盤の斜視図である。
【図3】本発明の実施例のダイアフラム受け盤から突設された足片の、ダイアフラム受け盤の盤面に平行な断面における断面図である。
【図4】従来のダイアフラム受け盤の斜視図である。
【図5】従来のダイアフラム受け盤から突設された足片の、ダイアフラム受け盤の盤面に平行な断面における断面図である。
【符号の説明】
16 弁体
20 ロッド
30 パワーエレメント
31 ハウジング
31a 筒状部(固定壁)
32 ダイアフラム
33 ダイアフラム受け盤
33a 足片
36 斜面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion valve for adiabatically expanding a refrigerant while controlling a flow rate of the refrigerant sent to an evaporator in a refrigeration cycle.
[0002]
[Prior art]
There are various types of expansion valves, but the valve body is arranged so that it faces the valve seat hole formed by narrowing the middle of the high-pressure refrigerant flow path through which the high-pressure refrigerant sent to the evaporator passes. An expansion valve that opens and closes the valve body in accordance with the temperature and pressure of the low-pressure refrigerant delivered from the evaporator is widely used.
[0003]
In such an expansion valve, the valve element is opened and closed through a rod that can be moved back and forth in the axial direction by a diaphragm that operates in accordance with the temperature and pressure of the low-pressure refrigerant delivered from the evaporator.
[0004]
In order to prevent the operation of such an expansion valve from becoming too sensitive, the applicant of the present application has invented an expansion valve configured so that a couple of forces is applied to the rod from a diaphragm receiving plate abutting against the diaphragm. Patent application has been filed (Japanese Patent Application No. 11-273559).
[0005]
In the expansion valve, frictional resistance is generated by the action of a couple of forces when the rod slides in the axial direction, so even if the pressure of the high-pressure refrigerant fluctuates, the operation of the valve body does not react sensitively, and high pressure An expansion valve that is stable in operation against fluctuations in refrigerant pressure can be obtained.
[0006]
In the expansion valve as described above, the reaction force of the couple applied to the rod from the diaphragm receiving plate acts on the diaphragm receiving plate from the rod so as to push the diaphragm receiving plate to the side (direction along the board surface). As shown in FIG. 4, a foot piece 90 a slidably contacting the surrounding fixed wall is formed to protrude from the diaphragm receiving plate 90.
[0007]
[Problems to be solved by the invention]
As shown in FIG. 5, the foot piece 90 a is in sliding contact with the surrounding fixed wall 91 at the ridge line portion. Therefore, the sliding contact portion may be two ridge lines of the foot piece 90 a or only one due to the wobbling of the diaphragm receiving plate 90, and the sliding received by the diaphragm receiving plate 90 from the surrounding fixed wall 91. The dynamic resistance may change irregularly, and as a result, the operation characteristics of the expansion valve may become unstable.
[0008]
Therefore, the present invention provides a stable operating characteristic in an expansion valve in which a reaction force that pushes the diaphragm base to the side acts on the diaphragm base from the rod so that the sliding resistance generated in the diaphragm base does not become irregular. An object is to provide an expansion valve that can be obtained.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the expansion valve of the present invention is opposed to the valve seat hole formed by narrowing the middle of the high-pressure refrigerant flow path through which the high-pressure refrigerant sent to the evaporator passes from the upstream side. A valve body is arranged so that it can advance and retreat in the axial direction between the diaphragm receiving plate and the valve body that abuts on the diaphragm that is displaced from the evaporator and moves in accordance with the temperature and pressure of the low-pressure refrigerant passing through the low-pressure refrigerant flow path. In an expansion valve in which a rod is sandwiched between the two and the valve element is opened and closed via the rod, and a reaction force that pushes the diaphragm receiving plate to the side acts on the diaphragm receiving plate from the rod. A foot piece that slides on the surrounding fixed wall protrudes from the diaphragm base so as to restrict the receiving plate from moving sideways by the reaction force from the rod, and the sliding surface of the foot piece against the fixed wall is smooth. Convex It is obtained by forming on the surface.
[0010]
In addition, the cross-sectional shape of the slidable contact surface of the foot with respect to the fixed wall is V-shaped or U-shaped in a cross-section parallel to the surface of the diaphragm receiving plate, which is convex outward and the tip is rounded into a rounded shape. Alternatively, it may be spherical.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, 1 is an evaporator, 2 is a compressor, 3 is a condenser, 4 is a receiver connected to the outlet side of the condenser 3 and accommodates a high-pressure liquid refrigerant, and 10 is an expansion valve. These form a refrigeration cycle, which is used, for example, in an indoor air conditioner (car air conditioner) of an automobile.
[0012]
The main body block 11 of the expansion valve 10 is adiabatically expanded through a low-pressure refrigerant channel 12 for passing a low-temperature and low-pressure refrigerant gas sent from the evaporator 1 to the compressor 2 and a high-temperature and high-pressure refrigerant liquid sent to the evaporator 1. A high-pressure refrigerant flow path 13 is formed.
[0013]
The low-pressure refrigerant channel 12 has an inlet side end connected to the outlet of the evaporator 1 and an outlet side connected to the inlet of the compressor 2. The high-pressure refrigerant channel 13 has an inlet side end connected to the outlet of the liquid receiver 4 and an outlet side connected to the inlet of the evaporator 1.
[0014]
The low-pressure refrigerant flow path 12 and the high-pressure refrigerant flow path 13 are formed in parallel with each other, and a through hole 14 perpendicular to the low-pressure refrigerant flow path 12 and the high-pressure refrigerant flow path 13 passes through. In addition, a power element 30 is attached to an opening formed in the same direction as the through hole 14 so as to escape from the middle of the low-pressure refrigerant channel 12 to the side.
[0015]
In the middle of the high-pressure refrigerant flow path 13, a valve seat hole 15 whose channel area is narrowed in the middle is formed in the central portion, and a spherical valve body facing the valve seat hole 15 from the upstream side. 16 is arranged.
[0016]
As a result, the narrowest portion of the gap between the valve body 16 and the inlet portion of the valve seat hole 15 becomes the throttle portion of the high-pressure refrigerant flow path 13, and in the downstream flow path from there to the evaporator 1. The high-pressure refrigerant expands adiabatically. The valve body 16 is urged by a compression coil spring 17 in a direction approaching the valve seat hole 15 (that is, a closing direction). Reference numeral 18 denotes a spring receiver.
[0017]
The rod 20 inserted through the through hole 14 is provided so as to be slidable in the axial direction, the upper end thereof reaches the vicinity of the back surface of the power element 30, and the intermediate portion vertically crosses the low-pressure refrigerant flow path 12 and passes through the hole. 14, and the lower end is in contact with the head of the valve body 16 through the valve seat hole 15.
[0018]
The rod 20 is formed to be thinner than the valve seat hole 15 so that a coolant channel is formed between the rod 20 and the wall surface of the valve seat hole 15. A plastic guide cylinder 19 is disposed so as to surround the rod 20 across the low-pressure refrigerant flow path 12.
[0019]
The upper half of the power element 30 is airtightly surrounded by a thick metal plate housing 31 and a diaphragm 32 made of a flexible metal thin plate (for example, a stainless steel plate having a thickness of 0.1 mm).
[0020]
In the airtight space 30a, a saturated vapor state gas having the same or similar properties as the refrigerant flowing in the refrigerant flow paths 12 and 13 is enclosed, and the injection hole for gas injection is plugged. 34 is occluded.
[0021]
A metal diaphragm receiving plate 33 formed in a large dish shape is disposed so as to come into contact with the back surface of the diaphragm 32, and the end of the rod 20 is in contact with the back surface of the diaphragm receiving plate 33.
[0022]
The rod 20 is in the form of a single straight bar, but the surface of the diaphragm receiving plate 33 with which the rod 20 abuts is formed obliquely with respect to the axis of the rod 20 (slope 36).
[0023]
Reference numeral 40 denotes a refrigerant passage formed in the diaphragm receiving plate 33 in order to restrict the low-pressure refrigerant from entering the back surface of the diaphragm 32 so that the power element 30 is not affected by a rapid temperature change of the low-pressure refrigerant.
[0024]
In the expansion valve 10 configured as described above, when the temperature of the low-pressure refrigerant flowing in the low-pressure refrigerant flow path 12 is lowered, the temperature of the diaphragm 32 is lowered, and the saturated vapor gas in the power element 30 is changed to the inner surface of the diaphragm 32. Condenses with.
[0025]
Then, the pressure in the power element 30 decreases and the diaphragm 32 and the diaphragm receiving plate 33 are displaced, so that the rod 20 is pushed and moved by the compression coil spring 17, and as a result, the valve body 16 moves toward the valve seat hole 15. The flow area of the high-pressure refrigerant is reduced and the flow rate of the refrigerant fed into the evaporator 1 is reduced.
[0026]
When the temperature of the low-pressure refrigerant flowing in the low-pressure refrigerant channel 12 rises, the valve body 16 is moved in the direction away from the valve seat hole 15 by the rod 20 pushed by the diaphragm receiving plate 33 by the reverse operation to the above. The flow area of the high-pressure refrigerant is increased, and the flow rate of the high-pressure refrigerant sent to the evaporator 1 is increased. FIG. 1 shows a fully opened state.
[0027]
In such an expansion valve 10, the surface on the diaphragm receiving plate 33 side with which the rod 20 abuts is an inclined surface 36 inclined with respect to the axis of the rod 20, so that the rod 20 from the power element 30 and the compression coil spring 17. The force that is received also acts as a couple that tries to rotate the axial direction of the rod 20.
[0028]
As a result, when the rod 20 moves back and forth, a frictional resistance is generated between the rod 20 and the inner wall of the through hole 14, so that when the pressure of the high-pressure refrigerant in the high-pressure refrigerant flow path 13 varies, the operation of the rod 20 ( That is, the opening / closing operation of the valve body 16 does not react sensitively.
[0029]
In such an expansion valve 10, a reaction force that pushes the diaphragm receiving plate 33 laterally (in the direction along the plate surface and rightward in FIG. 1) acts on the diaphragm receiving plate 33 from the rod 20 on the inclined surface 36. .
[0030]
Therefore, the diaphragm receiving plate 33 has a lower end of the housing 31 of the power element 30 so that the diaphragm receiving plate 33 is prevented from moving sideward by a reaction force from the rod 20, as shown in FIG. A foot piece 33a is slidably in contact with the inner surface of the cylindrical portion 31a.
[0031]
In this embodiment, the foot piece 33 a is formed by bending a part of the diaphragm receiving plate 33, but it may be formed by connecting another member to the diaphragm receiving plate 33.
[0032]
As shown in FIG. 1, the foot piece 33 a is substantially parallel to the axial direction of the cylindrical portion 31 a along the inner peripheral surface of the cylindrical portion 31 a of the housing 31 of the power element 30 attached to the main body block 11. Arranged long.
[0033]
In this embodiment, as shown in FIG. 3, the foot piece 33 a has a V-shaped shape that is rounded in a round shape that is convex outward and has a smooth tip in a cross section parallel to the surface of the diaphragm receiving plate 33. When the diaphragm receiving plate 33 is moved to the side by the reaction force received from the rod 20, it is formed in a cross-sectional shape and is provided at a position on the back side of the inclined surface 36 of the diaphragm receiving plate 33. The outer surface side of 33a exists in the position pressed on the internal peripheral surface of the cylindrical part 31a.
[0034]
By providing the foot piece 33a on the back side of the inclined surface 36 of the diaphragm receiving plate 33 in this way, the diaphragm receiving plate 33 moves to the side (right side in FIG. 1) due to the reaction force received from the rod 20. Is regulated.
[0035]
Since the foot piece 33a is in sliding contact with the cylindrical portion 31a of the housing 31 at the protruding end portion of the V-shaped cross section rounded into a smooth rounded shape, the diaphragm receiving plate 33 fluctuates and the direction of the foot piece 33a varies. However, the state of the sliding contact surface with respect to the cylindrical portion 31a of the housing 31 is hardly changed. As a result, the sliding resistance received by the diaphragm receiving plate 33 from the inner peripheral surface of the cylindrical portion 31a of the housing 31 does not vary, and the expansion valve 10 always operates with stable characteristics.
[0036]
In addition, when the angle θ of the V portion of the V-shaped cross section is 90 to 95 °, the foot piece 33a is stably obtained as described above, and the footpiece 33a is manufactured by bending the diaphragm receiving plate 33. No problem.
[0037]
Further, a portion 31b of the housing 31 of the power element 30 that surrounds the outer edge portion of the diaphragm receiving plate 33 moves from the side close to the main body block 11 to the side close to the diaphragm 32 (that is, when the diaphragm receiving plate 33 is fully opened). It is formed to gradually increase in diameter from a position facing the outer edge portion of the receiving plate 33 to a position facing the outer edge portion of the diaphragm receiving plate 33 when fully closed. In this embodiment, the portion 31b is formed on the rounded surface. However, a tapered surface or the like may be used.
[0038]
Therefore, even when the diaphragm receiving plate 33 is swayed in a direction perpendicular to the paper surface, for example, the diaphragm receiving plate 33 is guided to the innermost position by the housing 31 in the fully opened state shown in FIG. As a result, the outer edge of the diaphragm receiving plate 33 does not come into contact with the housing 31 as long as it moves in the valve closing direction. Accordingly, the diaphragm receiving plate 33 operates stably without receiving sliding resistance at portions other than the foot pieces 33a.
[0039]
In addition, this invention is not limited to the said Example, For example, the sliding contact surface of the foot piece 33a with respect to the cylindrical part 31a of the housing 31 should just be formed in the smooth convex curved surface, and is V-shaped. The shape is not limited to U-shape and any other shape, and may be spherical. Further, a plurality of foot pieces 33 a may protrude from the diaphragm receiving plate 33.
[0040]
【The invention's effect】
According to the present invention, the sliding surface of the foot piece that is in sliding contact with the surrounding fixed wall is formed into a smooth convex curved surface so as to restrict the diaphragm receiving plate from moving laterally by the reaction force from the rod. Thus, the sliding resistance generated in the diaphragm receiving plate is not irregular, and the expansion valve has an excellent effect of operating with stable characteristics.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an expansion valve according to an embodiment of the present invention.
FIG. 2 is a perspective view of a diaphragm receiving plate according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view of a foot piece protruding from a diaphragm receiving plate according to an embodiment of the present invention in a cross section parallel to the surface of the diaphragm receiving plate.
FIG. 4 is a perspective view of a conventional diaphragm receiving plate.
FIG. 5 is a cross-sectional view of a foot piece protruding from a conventional diaphragm receiving plate in a cross section parallel to the surface of the diaphragm receiving plate.
[Explanation of symbols]
16 Valve body 20 Rod 30 Power element 31 Housing 31a Tubular part (fixed wall)
32 Diaphragm 33 Diaphragm base 33a Foot piece 36 Slope

Claims (2)

蒸発器に送り込まれる高圧冷媒が通る高圧冷媒流路の途中を細く絞って形成された弁座孔に対して上流側から対向するように弁体を配置して、上記蒸発器から送り出されて低圧冷媒流路を通る低圧冷媒の温度と圧力に対応して変位するダイアフラムに当接するダイアフラム受け盤と上記弁体との間に軸線方向に進退自在にロッドを挟設し、上記ロッドを介して上記弁体を開閉動作させるようにした膨張弁であって、
上記ダイアフラム受け盤を側方に押す反力が上記ロッドから上記ダイアフラム受け盤に作用する膨張弁において、
上記ダイアフラム受け盤が上記ロッドからの反力によって側方に移動するのを規制するように周囲の固定壁に摺接する足片を一本だけ上記ダイアフラム受け盤から突設して、上記固定壁に対する上記足片の摺接面を滑らかな凸状曲面に形成したことを特徴とする膨張弁。
A valve body is arranged so as to face the valve seat hole formed by narrowing the middle of the high-pressure refrigerant flow path through which the high-pressure refrigerant sent to the evaporator passes, and is sent out from the evaporator to low pressure. A rod is sandwiched between the valve body and a diaphragm receiving plate that is in contact with a diaphragm that is displaced according to the temperature and pressure of the low-pressure refrigerant passing through the refrigerant flow path, and the above-mentioned via the rod An expansion valve that opens and closes a valve body,
In the expansion valve in which a reaction force that pushes the diaphragm backing to the side acts on the diaphragm backing from the rod,
It said diaphragm receiving plate is provided to protrude from the plate support the diaphragm only one of the sliding contact foot piece around the fixed wall so as to restrict the movement laterally by a reaction force from the rod, with respect to the fixed wall An expansion valve, wherein the sliding surface of the foot piece is formed into a smooth convex curved surface.
上記固定壁に対する上記足片の摺接面の断面形状が、上記ダイアフラム受け盤の盤面と平行な断面において、外方に凸で突端が滑らかなアール状に丸められたV字状或いはU字状、又は球面状である請求項1記載の膨張弁。The cross-sectional shape of the slidable contact surface of the foot piece with respect to the fixed wall is a V-shape or U-shape in which the cross-section is parallel to the surface of the diaphragm receiving plate and is convex outward and the tip is rounded into a smooth round shape. The expansion valve according to claim 1, which has a spherical shape.
JP2000346370A 2000-11-14 2000-11-14 Expansion valve Expired - Lifetime JP3924119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346370A JP3924119B2 (en) 2000-11-14 2000-11-14 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346370A JP3924119B2 (en) 2000-11-14 2000-11-14 Expansion valve

Publications (2)

Publication Number Publication Date
JP2002147899A JP2002147899A (en) 2002-05-22
JP3924119B2 true JP3924119B2 (en) 2007-06-06

Family

ID=18820252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346370A Expired - Lifetime JP3924119B2 (en) 2000-11-14 2000-11-14 Expansion valve

Country Status (1)

Country Link
JP (1) JP3924119B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501670B2 (en) * 2009-06-23 2014-05-28 株式会社不二工機 Diaphragm type fluid control valve
JP7217504B2 (en) * 2018-11-02 2023-02-03 株式会社不二工機 expansion valve

Also Published As

Publication number Publication date
JP2002147899A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP3576886B2 (en) Expansion valve
JPH08145505A (en) Expansion valve
JP3452719B2 (en) Expansion valve
JP3924119B2 (en) Expansion valve
JP3897974B2 (en) Expansion valve
JP3481036B2 (en) Expansion valve
JP3507615B2 (en) Expansion valve
JP3485748B2 (en) Expansion valve
JP3507616B2 (en) Expansion valve
JPH10238903A (en) Expansion valve
JP3780127B2 (en) Expansion valve
JPH11173705A (en) Expansion valve with bypass pipeline for refrigeration cycle
JP3782896B2 (en) Supercooling control type expansion valve
JP3859913B2 (en) Expansion valve
JP2001153498A (en) Supercooling degree control type expansion valve
JP3507612B2 (en) Expansion valve
JP3827898B2 (en) Expansion valve
JPH09113072A (en) Expansion valve
JP2001091108A (en) Expansion valve
JPH10205926A (en) Expansion valve
JP2001091109A (en) Expansion valve
JP2001091106A (en) Expansion valve
JP4077308B2 (en) Expansion valve
JPH10253200A (en) Expansion valve
JP2001091107A (en) Expansion valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3924119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term