JP3921922B2 - Dephosphorization method - Google Patents

Dephosphorization method Download PDF

Info

Publication number
JP3921922B2
JP3921922B2 JP2000154923A JP2000154923A JP3921922B2 JP 3921922 B2 JP3921922 B2 JP 3921922B2 JP 2000154923 A JP2000154923 A JP 2000154923A JP 2000154923 A JP2000154923 A JP 2000154923A JP 3921922 B2 JP3921922 B2 JP 3921922B2
Authority
JP
Japan
Prior art keywords
phosphorus
reaction tower
tower
containing wastewater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000154923A
Other languages
Japanese (ja)
Other versions
JP2001334274A (en
Inventor
昭男 大山
一郎 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000154923A priority Critical patent/JP3921922B2/en
Publication of JP2001334274A publication Critical patent/JP2001334274A/en
Application granted granted Critical
Publication of JP3921922B2 publication Critical patent/JP3921922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は脱リン方法に係り、特に、下水処理水等のリン含有排水中のリンを晶析脱リン反応によりリン酸カルシウムとして効率的に除去する脱リン方法に関する。
【0002】
【従来の技術】
従来、下水処理水等のリン含有排水の処理方法としては、次のような方法が知られている。
▲1▼ 原水にAl塩又は鉄塩等の凝集剤を添加して凝集処理し、固液分離する凝集沈殿法
▲2▼ 原水にマグネシウム化合物と必要に応じてアンモニウム化合物を添加してpH調整し、リンをMAP(リン酸アンモニウムマグネシウム)として除去するMAP法
▲3▼ 原水にカルシウム化合物を添加して種晶の固定床又は流動床に通水することにより、リンをリン酸カルシウムの結晶として除去する晶析法(特公平2−33435号公報)
しかしながら、凝集沈殿法では沈殿槽を必要とするため用地面積が大きく、また、汚泥として除去されるリンの純度が低く、リンの再利用に不利であり、含水率の高い汚泥の脱水処理が必要である上に、得られる脱水ケーキの含水率も80%以上と高いという欠点がある。
【0003】
MAP法や晶析法では沈殿槽が不要であるために用地面積が小さくて足り、また、リンを肥料として有効利用可能なMAP又はリン酸カルシウムの結晶として回収することができ、更に結晶化させるために回収物の容量も小さいという利点があるが、MAP法ではそのリン回収率が高々70%程度と低く、また、リンとマグネシウムとアンモニアの化合物であるために結晶を析出させるために必要とされる化合物が高価となる上に、pH調整用のアルカリ剤の使用量も多く、薬剤コストが高くつくという欠点がある。
【0004】
これに対して晶析法であれば、リンをリン酸カルシウムの結晶として安価にかつ比較的高い回収率で除去することができ、得られるリン酸カルシウム結晶は、肥料として有効利用することができるが、晶析法のうち、種晶の固定床を用いる固定床式晶析法では処理能力が低く、通水SVとしてSV2hr−1以下での処理しかできない上に、浮遊物で固定床が閉塞するため定期的に固定床の逆洗が必要であり、逆洗排水の処理の問題がある。
【0005】
種晶の流動床を用いる流動床式晶析法ではこのような問題はないが、流動床式晶析法であっても、PO−P濃度3〜4mg/L程度の比較的低濃度リン含有排水である下水処理水を高速で処理してPO−P濃度1mg/L以下の高水質処理水を得ることは困難であった。
【0006】
【発明が解決しようとする課題】
このように、従来においては、通水速度を上げた条件で高水質処理水を得ることができる流動床式晶析法は提供されていない。
【0007】
本発明は上記従来の問題点を解決し、PO−P濃度数mg/L〜10数mg/L程度の低濃度リン含有排水をSV=10〜20hr−1程度の高速処理によりPO−P濃度1mg/L以下の高水質処理水を得ることができる脱リン方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の脱リン方法は、塔下部にリン含有排水の導入口が設けられ、塔上部に処理水の取り出し口が設けられ、塔内にリン酸カルシウムを含有するリン吸着材の流動床が形成された反応塔に、リン含有排水を導入し、カルシウム化合物及び/又はアルカリ剤の添加により、該反応塔内で該リン含有排水中のリンをリン酸カルシウム結晶として除去する脱リン方法において、該反応塔は、該導入口から導入されたリン含有排水を流動床の下部に均一に導入するためのディストリビュータを有しており、該リン含有排水のPO−P濃度に対する該排水中のCa2+イオン濃度が10〜15モル倍となるように前記カルシウム化合物を添加すると共に、該反応塔内のpHが9〜11となるようにpH制御することを特徴とする。
【0009】
本発明では、Ca2+/PO−Pのモル比、即ち、PO態のリン濃度に対するカルシウムイオン濃度の割合が10〜15のカルシウム過剰条件と高pH条件を採用することにより反応塔内のリンの晶析反応効率を高めると共に、反応塔にディストリビュータを設けることで、流動床内のリン含有排水の上昇流を均一化し、排水のショートパスを防止して、種晶と十分に接触させてリンを確実に除去する。このため、後述の実施例の結果からも明らかなように、PO−P濃度3〜3.5mg/Lのリン含有排水をSV15hr−1の高速処理で、PO−P濃度0.3〜0.4mg/Lの高水質処理水を得ることができる。
【0010】
なお、本発明の方法で除去されるリンは、PO態のリンであるため、他の有機態等の形態のリンが被処理排水中に含まれる場合には、酸化処理等により可溶化させる前処理を行って、PO態に変換させることが好ましい。
【0011】
【発明の実施の形態】
以下に図面を参照して本発明の脱リン方法の実施の形態を詳細に説明する。
【0012】
図1は本発明の脱リン方法の実施の形態を示す系統図である。
【0013】
なお、以下においてはカルシウム化合物として消石灰:水酸化カルシウム(Ca(OH))を用いた場合を例示するが、本発明で用いるカルシウム化合物はCa(OH)に限定されるものではなく、塩化カルシウム等の他のカルシウム化合物を用いることもできる。ただし、アルカリ剤としての機能を兼用できることから、カルシウム化合物としてはCa(OH)を用いることが望ましい。
【0014】
図1の方法では、原水(リン含有排水)をまず配管11よりpH調整槽1に導入し、このpH調整槽1において、消石灰溶解槽2から供給されるCa(OH)を添加してpH調整する。
【0015】
このpH調整槽1でpH調整した液は配管12より晶析反応塔3に送給し、塔下部から導入する。
【0016】
この晶析反応塔3は塔下部に導入口を有し、塔上部に処理水の排出口を有し、塔内に種晶(リン吸着材)の流動床4が形成されたものである。
【0017】
この種晶としては、リン酸カルシウムを含むものが好ましく、例えば骨炭、リン酸カルシウム、リン鉱石等を用いることができ、特に、リン鉱石が好適である。また、その粒径は0.15〜0.3mm程度であることが好ましい。
【0018】
この流動床4の下部に対し、配管12から導入された液を均一に流入させて種晶を流動床4内に均一に展開させると共に、種晶と水流とを確実に接触させるためのディストリビュータ5が設けられている。ディストリビュータ5は配管12から導入された液を流動床4に均一に導入させ得るものであれば任意のものが使用でき、例えば流動床4下部の支持板に複数のノズルをつけたものなどが挙げられる。なお、流動床4の上部には流動床4の過大な展開を抑えるための押さえ傾斜板を設けられても良い。
【0019】
また、晶析反応塔3には、消石灰溶解槽2からCa(OH)が供給されてpH調整される。
【0020】
このような晶析反応塔3の下部に配管12より導入された液は、流動床4内で晶析反応を起こし、液中のリンがリン酸カルシウムとして除去され、処理水は配管13より抜き出され、処理水槽6に送給される。処理水槽6内の処理水の一部はポンプPを備える配管14より抜き出され、配管15,16よりそれぞれpH調整槽1、晶析反応塔3に循環される。また、処理水槽6内の処理水の残部は配管17より系外へ排出される。
【0021】
図1の方法では、消石灰溶解槽2のCa(OH)水溶液をポンプPを備える配管18で循環させ、この循環配管18から、配管19,20により、処理水をpH調整槽1に循環する配管15及び晶析反応塔3に循環する配管16にそれぞれCa(OH)を注入している。
【0022】
そして、各配管18,19,20に設けられた自動弁V,V,Vの開閉制御で、pH調整槽1のpHが9以下、好ましくは8.8〜9.0となるように、また、反応塔3のpHが9〜11、好ましくは9.5〜10.5となるように、各々pH計1A,3Aの測定値に基く弁V〜Vの開閉制御でCa(OH)の添加量が調整される。
【0023】
この自動弁V〜Vの開閉制御の方法には特に制限はないが、例えば弁V,Vを一定時間開、一定時間閉とする開閉を繰り返し(弁Vは弁V,V開のとき閉、弁V,V閉のとき開)、この繰り返し開閉制御において、pH調整槽1や反応塔3のpH測定値が制御範囲を超えないように、適宜開閉時間の微調整を行うのが好ましい。
【0024】
本発明においては、このようにpH調整を行うと共に、反応塔3に導入される液中のCa2+/PO−Pが10〜15モル倍となるようにCa(OH)の添加量を制御する。
【0025】
従って、上記pH調整で添加されるCa(OH)量で、十分にCa2+/PO−P=10〜15の範囲となる場合には特にCa2+/PO−P調整のための処理を行う必要はないが、Ca2+が不足する場合には、更に塩化カルシウム(CaCl)等の中性のカルシウム化合物を添加してCa2+を補充する。逆にCa2+が過剰となる場合には、Ca(OH)の一部を水酸化ナトリウム(NaOH)等のアルカリ剤に置き換えてpH調整しても良いが、Ca2+が過剰となっても一般的には処理水に支障をきたすことはない。
【0026】
このような本発明の方法では、上記pH範囲及びCa2+/PO−Pに調整すると共に、反応塔にディストリビュータを設けたことによる水流の均一化効果で、反応塔の通水SV10〜20hr−1という高流速処理が可能であり、これにより反応塔の小型化を図ることができる。なお、種晶の流動化のため、反応塔内LVは8m/hr以上、好ましくは10〜20m/hrとすることが望ましい。
【0027】
また、処理水の循環は必ずしも必要とされないが、pH調整槽1に処理水を循環してこの循環配管15にCa(OH)を注入し、また、処理水を晶析反応塔3に循環し、この循環配管16にCa(OH)を注入するように、絶えず循環している循環配管にCa(OH)を注入することにより、pH値の安定化を図ることができ、好ましい。
【0028】
この処理水の循環量には特に制限はないが、pH調整槽1への循環水量は原水量に対して50〜150倍、反応塔3への循環水量は原水量に対して50〜150倍程度とするのが好ましい。なお、反応塔3への循環水は、反応塔3の下部に導入する。
【0029】
図1の方法では、晶析反応塔3の前段にpH調整槽1を設け、pH調整を2段階で行っているが、このようにpH調整を2段階で行うことにより、晶析反応塔3内のpHを安定化させ、晶析反応を安定かつ確実に進行させることができ、好ましい。
【0030】
【実施例】
以下に実施例及びを挙げて本発明をより具体的に説明する。
【0031】
実施例1
図1に示す方法に従って下水処理水(PO−P濃度:3〜3.5mg/L)を450L/hrの水量で処理した。カルシウム化合物(アルカリ剤)としては10重量%Ca(OH)水溶液を用い、pH調整槽1での調整pHは上限値9.0とし、反応塔3内の調整pHは9.5〜10.5とした。このときのCa(OH)の添加量はCa換算で40〜45mg−Ca/Lであった。また、反応塔3には種晶としてリン鉱石(平均粒径0.15mm)を0.42m投入し、消石灰循環配管18の流量は300L/hr、処理水循環配管14,15,16の流量はそれぞれ30,20,10L/hrとし、反応塔3へはSV15hr−1,LV10m/hrで通水した。
【0032】
このときの消石灰循環配管18及び消石灰注入配管19,20の弁V〜Vの開閉制御は、基本的には弁V,Vを5秒間開、15秒間閉の開閉を繰り返すこととし(弁V,Vが開のとき、弁Vは閉、弁V,Vが閉のとき、弁Vは開)、各々pHの制御範囲で随時開閉を調整した。
【0033】
その結果、反応塔からはPO−P濃度0.3〜0.4mg/Lの処理水が得られ、リンの平均回収率80%で安定かつ効率的な処理を行えた。
【0034】
比較例1〜3
実施例1において、処理条件を表1に示す通り変えたこと以外は同様に処理を行って、得られた処理水の水質を実施例1の結果と共に表1に示した。
【0035】
【表1】

Figure 0003921922
【0036】
表1より、本発明によれば、高い通水SVで高水質処理水を得ることができることがわかる。
【0037】
【発明の効果】
以上詳述した通り、本発明の脱リン方法によれば、リン含有排水を高い脱リン効率で処理して、リンが低濃度にまで除去された高水質処理水を安定かつ効率的に得ることができる。特に、本発明によれば、反応塔へのリン含有排水の通水流速を従来に比べて大幅に高めることができるため、反応塔の小型化を図ることができ、工業的に極めて有利である。
【図面の簡単な説明】
【図1】本発明の脱リン方法の実施の形態を示す系統図である。
【符号の説明】
1 pH調整槽
2 消石灰溶解槽
3 晶析反応槽
4 流動床
5 ディストリビュータ
6 処理水槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dephosphorization method, and more particularly to a dephosphorization method that efficiently removes phosphorus in phosphorus-containing wastewater such as sewage treated water as calcium phosphate by crystallization dephosphorization reaction.
[0002]
[Prior art]
Conventionally, the following methods are known as methods for treating phosphorus-containing wastewater such as sewage treated water.
(1) Agglomeration and precipitation method in which an aggregating agent such as Al salt or iron salt is added to the raw water for agglomeration treatment and solid-liquid separation (2) A magnesium compound and, if necessary, an ammonium compound are added to the raw water to adjust the pH. MAP Method for Removing Phosphorus as MAP (Ammonium Magnesium Phosphate) (3) Crystal that removes phosphorus as calcium phosphate crystals by adding calcium compound to raw water and passing it through a fixed bed or fluidized bed of seed crystals Analysis method (Japanese Patent Publication No. 2-3334)
However, since the coagulation sedimentation method requires a sedimentation tank, the land area is large, the purity of phosphorus removed as sludge is low, it is disadvantageous for the reuse of phosphorus, and dewatering treatment of sludge with a high water content is necessary. In addition, the water content of the dehydrated cake obtained is high at 80% or more.
[0003]
The MAP method and crystallization method do not require a sedimentation tank, so the land area is small, and phosphorus can be recovered as crystals of MAP or calcium phosphate that can be effectively used as fertilizer, and for further crystallization Although there is an advantage that the volume of the recovered material is small, the MAP method has a low phosphorus recovery rate of about 70% at the most, and it is required to precipitate crystals because it is a compound of phosphorus, magnesium and ammonia. In addition to the high cost of the compound, the amount of the alkaline agent used for adjusting the pH is large, and there is a disadvantage that the cost of the drug is high.
[0004]
In contrast, the crystallization method can remove phosphorus as calcium phosphate crystals at low cost and with a relatively high recovery rate, and the obtained calcium phosphate crystals can be effectively used as fertilizer. Among the methods, the fixed bed type crystallization method using a fixed bed of seed crystals has a low processing capacity, and can only be treated with SV2 hr −1 or less as the water flow SV, and the fixed bed is blocked by floating substances, so that the fixed bed is regularly used. In addition, backwashing of the fixed floor is necessary, and there is a problem of treatment of backwash drainage.
[0005]
Although there is no such problem in the fluidized bed crystallization method using a fluidized bed of seed crystals, even with the fluidized bed crystallization method, a relatively low concentration phosphorus having a PO 4 -P concentration of about 3 to 4 mg / L. It was difficult to obtain high-quality treated water having a PO 4 -P concentration of 1 mg / L or less by treating the sewage treated water, which is waste water, at high speed.
[0006]
[Problems to be solved by the invention]
Thus, conventionally, there has not been provided a fluidized bed crystallization method capable of obtaining high-quality treated water under conditions where the water flow rate is increased.
[0007]
The present invention solves the above-mentioned conventional problems, and low concentration phosphorus-containing wastewater having a PO 4 -P concentration of several mg / L to several tens of mg / L is subjected to PO 4 − by high-speed treatment of SV = 10 to 20 hr −1. It aims at providing the dephosphorization method which can obtain the high water quality treated water of P concentration 1 mg / L or less.
[0008]
[Means for Solving the Problems]
In the dephosphorization method of the present invention, an inlet for phosphorus-containing wastewater is provided at the bottom of the tower, an outlet for treated water is provided at the top of the tower, and a fluidized bed of phosphorus adsorbent containing calcium phosphate is formed in the tower. In the dephosphorization method of introducing phosphorus-containing wastewater into a reaction tower and removing phosphorus in the phosphorus-containing wastewater as calcium phosphate crystals in the reaction tower by adding a calcium compound and / or an alkaline agent, the reaction tower comprises: It has a distributor for uniformly introducing the phosphorus-containing wastewater introduced from the inlet into the lower part of the fluidized bed, and the Ca 2+ ion concentration in the wastewater with respect to the PO 4 -P concentration of the phosphorus-containing wastewater is 10 While adding the said calcium compound so that it may become ~ 15 mol times, pH control is carried out so that pH in this reaction column may become 9-11.
[0009]
In the present invention, Ca 2+ / PO 4 -P molar ratio, i.e., the reaction tower by percentage of calcium ion concentration on phosphorus concentration of PO 4 state adopts calcium excess condition and a high pH conditions 10-15 In addition to improving the crystallization reaction efficiency of phosphorus and providing a distributor in the reaction tower, the upward flow of phosphorus-containing wastewater in the fluidized bed is made uniform, and short-circuiting of the wastewater is prevented, making it sufficiently in contact with the seed crystals. Make sure to remove phosphorus. For this reason, as is clear from the results of Examples described later, a phosphorus-containing wastewater having a PO 4 -P concentration of 3 to 3.5 mg / L is obtained by high-speed treatment with SV15hr −1 and a PO 4 -P concentration of 0.3 to 0.4 mg / L of high quality treated water can be obtained.
[0010]
In addition, since the phosphorus removed by the method of the present invention is PO 4 state phosphorus, when phosphorus in other organic forms is contained in the wastewater to be treated, it is solubilized by oxidation treatment or the like. Pretreatment is preferably performed to convert to PO 4 state.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the dephosphorization method of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a system diagram showing an embodiment of the dephosphorization method of the present invention.
[0013]
In the following, the case where slaked lime: calcium hydroxide (Ca (OH) 2 ) is used as the calcium compound is exemplified, but the calcium compound used in the present invention is not limited to Ca (OH) 2 , and is chlorinated. Other calcium compounds such as calcium can also be used. However, it is desirable to use Ca (OH) 2 as the calcium compound because it can also function as an alkaline agent.
[0014]
In the method of FIG. 1, raw water (phosphorus-containing wastewater) is first introduced into the pH adjustment tank 1 from the pipe 11, and in this pH adjustment tank 1, Ca (OH) 2 supplied from the slaked lime dissolution tank 2 is added to adjust the pH. adjust.
[0015]
The liquid whose pH is adjusted in the pH adjusting tank 1 is fed to the crystallization reaction tower 3 through the pipe 12 and introduced from the lower part of the tower.
[0016]
The crystallization reaction tower 3 has an inlet at the lower part of the tower, an outlet of treated water at the upper part of the tower, and a fluidized bed 4 of seed crystals (phosphorous adsorbent) is formed in the tower.
[0017]
As this seed crystal, what contains calcium phosphate is preferable, for example, bone charcoal, calcium phosphate, a phosphate ore, etc. can be used, and a phosphate ore is especially suitable. Moreover, it is preferable that the particle size is about 0.15-0.3 mm.
[0018]
A distributor 5 for allowing the liquid introduced from the pipe 12 to uniformly flow into the lower part of the fluidized bed 4 so that the seed crystals are uniformly developed in the fluidized bed 4 and to ensure that the seed crystals and the water flow come into contact with each other. Is provided. As the distributor 5, any one can be used as long as the liquid introduced from the pipe 12 can be uniformly introduced into the fluidized bed 4. For example, a distributor provided with a plurality of nozzles on a support plate below the fluidized bed 4 can be used. It is done. In addition, a pressing inclined plate for suppressing excessive development of the fluidized bed 4 may be provided on the upper part of the fluidized bed 4.
[0019]
Further, the crystallization reaction tower 3 is supplied with Ca (OH) 2 from the slaked lime dissolving tank 2 to adjust the pH.
[0020]
The liquid introduced into the lower part of the crystallization reaction tower 3 from the pipe 12 causes a crystallization reaction in the fluidized bed 4, phosphorus in the liquid is removed as calcium phosphate, and treated water is extracted from the pipe 13. Then, it is fed to the treated water tank 6. Some of the treated water in the treated water tank 6 is withdrawn from the pipe 14 with a pump P 2, respectively from the pipe 15, 16 pH adjustment tank 1 and circulated to the crystallization reactor 3. The remaining treated water in the treated water tank 6 is discharged out of the system through the pipe 17.
[0021]
In the method of FIG. 1, the Ca (OH) 2 aqueous solution in the slaked lime dissolution tank 2 is circulated through a pipe 18 provided with a pump P 1 , and treated water is circulated from the circulation pipe 18 to the pH adjustment tank 1 through pipes 19 and 20. Ca (OH) 2 is injected into each of the piping 15 and the piping 16 circulating to the crystallization reaction tower 3.
[0022]
And by the opening / closing control of the automatic valves V 1 , V 2 , V 3 provided in the pipes 18, 19, 20, the pH of the pH adjusting tank 1 is 9 or less, preferably 8.8 to 9.0. In addition, the control of the valves V 1 to V 3 based on the measured values of the pH meters 1A and 3A, respectively, so that the pH of the reaction tower 3 is 9 to 11, preferably 9.5 to 10.5. The amount of (OH) 2 added is adjusted.
[0023]
The method for controlling the opening and closing of the automatic valves V 1 to V 3 is not particularly limited. For example, the valves V 2 and V 3 are opened and closed repeatedly for a certain period of time (the valve V 1 is a valve V 2 , When V 3 is open, closed when valves V 2 and V 3 are closed), in this repetitive open / close control, an appropriate open / close time is set so that the pH measurement value of the pH adjusting tank 1 and the reaction tower 3 does not exceed the control range. It is preferable to perform fine adjustment.
[0024]
In the present invention, the pH is adjusted in this way, and the addition amount of Ca (OH) 2 is adjusted so that Ca 2+ / PO 4 -P in the liquid introduced into the reaction tower 3 is 10 to 15 mole times. Control.
[0025]
Therefore, when the amount of Ca (OH) 2 added in the pH adjustment is sufficiently in the range of Ca 2+ / PO 4 -P = 10 to 15, particularly, the treatment for adjusting Ca 2+ / PO 4 -P. However, when Ca 2+ is insufficient, a neutral calcium compound such as calcium chloride (CaCl 2 ) is further added to replenish Ca 2+ . Conversely, when Ca 2+ is excessive, the pH may be adjusted by replacing a part of Ca (OH) 2 with an alkali agent such as sodium hydroxide (NaOH), but even if Ca 2+ is excessive. In general, the treated water will not be hindered.
[0026]
In such a method of the present invention, the water flow SV10-20 hr of the reaction tower is adjusted by adjusting the pH range and the Ca 2+ / PO 4 −P and the effect of making the water flow uniform by providing a distributor in the reaction tower. 1 can be processed at a high flow rate, and the reaction tower can be downsized. In order to fluidize the seed crystals, the LV in the reaction tower is 8 m / hr or more, preferably 10 to 20 m / hr.
[0027]
Further, the treatment water is not necessarily circulated, but the treatment water is circulated in the pH adjusting tank 1 and Ca (OH) 2 is injected into the circulation pipe 15, and the treatment water is circulated in the crystallization reaction tower 3. Then, it is preferable that the pH value can be stabilized by injecting Ca (OH) 2 into the circulating piping that is constantly circulating so that Ca (OH) 2 is injected into the circulating piping 16.
[0028]
Although there is no restriction | limiting in particular in the circulating amount of this treated water, The circulating water amount to the pH adjustment tank 1 is 50 to 150 times with respect to the raw water amount, and the circulating water amount to the reaction tower 3 is 50 to 150 times with respect to the raw water amount. It is preferable to set the degree. The circulating water to the reaction tower 3 is introduced into the lower part of the reaction tower 3.
[0029]
In the method of FIG. 1, the pH adjustment tank 1 is provided in the front stage of the crystallization reaction tower 3 and the pH adjustment is performed in two stages. By thus adjusting the pH in two stages, the crystallization reaction tower 3 is adjusted. The pH of the inside can be stabilized, and the crystallization reaction can proceed stably and reliably, which is preferable.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and examples.
[0031]
Example 1
According to the method shown in FIG. 1, sewage treated water (PO 4 -P concentration: 3 to 3.5 mg / L) was treated with a water amount of 450 L / hr. As the calcium compound (alkali agent), a 10 wt% Ca (OH) 2 aqueous solution is used, the adjusted pH in the pH adjusting tank 1 is set to the upper limit value 9.0, and the adjusted pH in the reaction tower 3 is set to 9.5 to 10. It was set to 5. The addition amount of Ca (OH) 2 at this time was 40 to 45 mg-Ca / L in terms of Ca. In addition, 0.42 m 3 of phosphate ore (average particle size 0.15 mm) is charged as seed crystal in the reaction tower 3, the flow rate of the slaked lime circulation pipe 18 is 300 L / hr, and the flow rates of the treated water circulation pipes 14, 15, 16 are Water was passed through the reaction tower 3 at SV15 hr −1 and LV 10 m / hr, respectively at 30, 20, and 10 L / hr.
[0032]
At this time, the open / close control of the valves V 1 to V 3 of the slaked lime circulation pipe 18 and the slaked lime injection pipes 19 and 20 is basically to repeatedly open and close the valves V 2 and V 3 for 5 seconds and close for 15 seconds. When the valves V 2 and V 3 are open, the valve V 1 is closed, and when the valves V 2 and V 3 are closed, the valve V 1 is opened.
[0033]
As a result, treated water having a PO 4 -P concentration of 0.3 to 0.4 mg / L was obtained from the reaction tower, and stable and efficient treatment could be performed with an average recovery rate of phosphorus of 80%.
[0034]
Comparative Examples 1-3
In Example 1, the treatment was performed in the same manner except that the treatment conditions were changed as shown in Table 1, and the quality of the obtained treated water was shown in Table 1 together with the results of Example 1.
[0035]
[Table 1]
Figure 0003921922
[0036]
From Table 1, it can be seen that according to the present invention, high quality water can be obtained with high water flow SV.
[0037]
【The invention's effect】
As described above in detail, according to the dephosphorization method of the present invention, phosphorus-containing wastewater is treated with high dephosphorization efficiency, and high-quality treated water from which phosphorus has been removed to a low concentration can be obtained stably and efficiently. Can do. In particular, according to the present invention, the flow rate of the phosphorus-containing wastewater to the reaction tower can be greatly increased compared to the conventional case, so that the reaction tower can be downsized and is extremely advantageous industrially. .
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the dephosphorization method of the present invention.
[Explanation of symbols]
1 pH adjustment tank 2 Slaked lime dissolution tank 3 Crystallization reaction tank 4 Fluidized bed 5 Distributor 6 Treated water tank

Claims (1)

塔下部にリン含有排水の導入口が設けられ、塔上部に処理水の取り出し口が設けられ、塔内にリン酸カルシウムを含有するリン吸着材の流動床が形成された反応塔に、リン含有排水を導入し、カルシウム化合物及び/又はアルカリ剤の添加により、該反応塔内で該リン含有排水中のリンをリン酸カルシウム結晶として除去する脱リン方法において、
該反応塔は、該導入口から導入されたリン含有排水を流動床の下部に均一に導入するためのディストリビュータを有しており、
該リン含有排水のPO−P濃度に対する該排水中のCa2+イオン濃度が10〜15モル倍となるように前記カルシウム化合物を添加すると共に、該反応塔内のpHが9〜11となるようにpH制御することを特徴とする脱リン方法。
A phosphorus-containing wastewater is introduced into a reaction tower provided with a phosphorus-containing wastewater inlet at the bottom of the tower, a treated water outlet at the top of the tower, and a fluidized bed of phosphorus adsorbent containing calcium phosphate in the tower. In the dephosphorization method of introducing and removing phosphorus in the phosphorus-containing wastewater as calcium phosphate crystals in the reaction tower by adding a calcium compound and / or an alkali agent,
The reaction tower has a distributor for uniformly introducing the phosphorus-containing wastewater introduced from the inlet into the lower part of the fluidized bed,
The calcium compound is added so that the Ca 2+ ion concentration in the wastewater is 10 to 15 mol times the PO 4 -P concentration of the phosphorus-containing wastewater, and the pH in the reaction tower is 9 to 11 A dephosphorization method characterized by controlling pH.
JP2000154923A 2000-05-25 2000-05-25 Dephosphorization method Expired - Fee Related JP3921922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154923A JP3921922B2 (en) 2000-05-25 2000-05-25 Dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154923A JP3921922B2 (en) 2000-05-25 2000-05-25 Dephosphorization method

Publications (2)

Publication Number Publication Date
JP2001334274A JP2001334274A (en) 2001-12-04
JP3921922B2 true JP3921922B2 (en) 2007-05-30

Family

ID=18659945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154923A Expired - Fee Related JP3921922B2 (en) 2000-05-25 2000-05-25 Dephosphorization method

Country Status (1)

Country Link
JP (1) JP3921922B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631295B2 (en) * 2004-03-03 2011-02-16 栗田工業株式会社 Treatment method for wastewater containing phosphorus
JP4649170B2 (en) * 2004-11-01 2011-03-09 株式会社大気社 Fluorine removal method and fluorine removal equipment
CN102476848A (en) * 2011-10-20 2012-05-30 常州亚环环保科技有限公司 Composite dephosphorizing agent for removing phosphorus from low-concentration phosphorous-containing wastewater and application method thereof
JP6342232B2 (en) * 2014-06-19 2018-06-13 水ing株式会社 Phosphorus recovery apparatus and phosphorus recovery method

Also Published As

Publication number Publication date
JP2001334274A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
WO2005049511A1 (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP3921922B2 (en) Dephosphorization method
JPH0777640B2 (en) Dephosphorization device
JPH0712477B2 (en) How to remove phosphorus in water
JP2576679B2 (en) Dephosphorization device
JPH11267665A (en) Dephosphorizing device
JP2000334474A (en) Method for removing phosphorus from waste water
JP4568391B2 (en) Fluidized bed crystallization reactor
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP4147609B2 (en) Dephosphorization device
JP3883222B2 (en) Granulation dephosphorization equipment
JP2001198582A (en) Dephosphorizing device
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP2001113288A (en) Waste water treatment method
JPS60168587A (en) Fluidized bed type catalytic dephosphorization
JP3726429B2 (en) Dephosphorization device
JPS6097090A (en) Treatment of water containing fluoride ion and sulfate ion
TWI644857B (en) Method of synthesizing homogeneous zinc-containing crystals by using fluidized-bed crystallization technology
JP2000061473A (en) Method of removing phosphorus in sewage water
JP2002292202A5 (en)
JP2002292202A (en) Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JP2002102602A (en) Crystallization reaction device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees