JP3920603B2 - Flexible endoscope device - Google Patents

Flexible endoscope device Download PDF

Info

Publication number
JP3920603B2
JP3920603B2 JP2001260957A JP2001260957A JP3920603B2 JP 3920603 B2 JP3920603 B2 JP 3920603B2 JP 2001260957 A JP2001260957 A JP 2001260957A JP 2001260957 A JP2001260957 A JP 2001260957A JP 3920603 B2 JP3920603 B2 JP 3920603B2
Authority
JP
Japan
Prior art keywords
insertion portion
flexible tube
bending
optical fiber
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001260957A
Other languages
Japanese (ja)
Other versions
JP2003065735A (en
Inventor
直樹 鈴木
和毅 炭山
素子 川村
哲也 樽本
俊之 橋山
章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jikei University School of Medicine
Original Assignee
Jikei University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jikei University School of Medicine filed Critical Jikei University School of Medicine
Priority to JP2001260957A priority Critical patent/JP3920603B2/en
Priority to US10/150,927 priority patent/US6846286B2/en
Publication of JP2003065735A publication Critical patent/JP2003065735A/en
Application granted granted Critical
Publication of JP3920603B2 publication Critical patent/JP3920603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、胃腸内等を観察するための可撓性内視鏡装置に関する。
【0002】
【従来の技術】
胃腸内等に挿入される可撓性内視鏡装置は、胃腸等の内壁に沿って自由に屈曲するフレキシブルな挿入部可撓管を有しており、挿入部可撓管の屈曲状態を体外から把握するのは困難である。
【0003】
そのため、挿入部可撓管が胃腸に対してどのような挿入状態にあるのか判断がつかなくなったり、次の挿脱操作をどのようにすればよいか判断できなくなってしまう場合がある。
【0004】
そこで、X線透視を行えば挿入部可撓管の屈曲状態を透視することができるが、X線照射は厚い鉛壁等で囲まれた特別の室内で行う必要があるだけでなく、連続的なX線透視は放射線被爆の問題があり、人体に非常に悪い影響を与える恐れがある。
【0005】
そこで、内視鏡の挿入部の先端に磁界発生部材を取り付け、その磁界発生部材の位置を人体外に配置された磁気センサーにより検出して、体内にある挿入部の先端の位置をモニター画面に表示するようにしたものがある(特許第2959723号)。
【0006】
【発明が解決しようとする課題】
しかし、上述のように挿入部の先端に取り付けられた磁界発生部材の位置を検出する装置では、挿入部先端の位置が分かるだけで挿入部可撓管の屈曲状態は分からず、しかもそのような装置では外来ノイズの影響を受け易く、良好な状態で位置検出を継続できない場合が少なくない。
【0007】
そこで、本発明の発明者等は、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーを挿入部可撓管に取り付け、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態を検出して、その屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置を発明して先に特許出願してある(特願2001−53715)。
【0008】
本発明はその改良発明であり、挿入部可撓管の屈曲状態を効率よくしかも高精度に検出することができる可撓性内視鏡装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明の可撓性内視鏡装置は、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーの複数の曲がり検出部が挿入部可撓管の軸線方向に間隔をあけて並んで配置され、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態を検出して、挿入部可撓管の屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置において、挿入部可撓管の軸線方向に間隔をあけて並んで配置された各曲がり検出部間の間隔を、挿入部可撓管の基端寄りの部分に比べて先端寄りの部分において狭くしたものである。
【0010】
なお、曲がり検出部は、曲がり検出用光ファイバーの途中に光吸収部が所定の方向にだけ形成されたものであってもよい。
そして、曲がり検出用光ファイバーが、挿入部可撓管の外皮に沿って配置されていてもよく、或いは挿入部可撓管内に挿通配置されていてもよい。
【0011】
【発明の実施の形態】
図面を参照して本発明の実施例を説明する。
図2は可撓性内視鏡装置の全体構成を示しており、操作部2の下端に挿入部可撓管1の基端が連結され、挿入部可撓管1の先端付近の部分は、操作部2に配置された操作ノブ3を回転操作することによって任意の方向に屈曲する湾曲部1aになっている。
【0012】
挿入部可撓管1の先端には、観察窓等が配置された先端部本体4が連結されており、先端部本体4に内蔵された固体撮像素子(図示せず)で撮像された内視鏡観察像の映像信号が、操作部2から延出する映像信号線6により外部のビデオプロセッサ7に送られ、内視鏡観察画像が観察画像用モニター8に表示される。
【0013】
挿入部可撓管1には、操作部2の前面の延長方向(即ち、観察画面における上方向)の位置に、後述する複数の曲がり検出用光ファイバーが配置されたフレキシブルな合成樹脂製の帯状部材20が取り付けられていて、その基端部が光信号入出力装置30に接続されている。
【0014】
また、光信号入出力装置30の信号出力線がコンピュータ40に接続され、そのコンピュータ40には、ブラウン管又は液晶等を用いて画像表示を行う挿入状態表示用モニター41が接続されている。
【0015】
図3は、挿入部可撓管1の先端付近を示しており、先端部本体4の先端面に観察窓11、照明窓12、処置具突出口13等が配置され、照明窓12から放射された照明光により照明された被写体が、観察窓11内に配置された対物光学系(図示せず)により固体撮像素子の撮像面に結像する。
【0016】
帯状部材20は、挿入部可撓管1の「上方向」の外表面に密着して挿入部可撓管1の軸線と平行方向に配置されていて、例えばその外側から挿入部可撓管1と共に熱収縮チューブによって包み込まれて押圧固定されている。
【0017】
ただし、挿入部可撓管1に対する帯状部材20の固定は、接着その他どのような手段を用いても差し支えない。また、帯状部材20を挿入部可撓管1内に挿通配置してもよく、挿入部可撓管1内に挿通配置されている内蔵物に曲がり検出用光ファイバー21を取り付け、帯状部材20を省いても差し支えない。
【0018】
図3に示されるように、複数の曲がり検出用光ファイバー21は順に位置を変えて滑らかなU字状に後方に曲げ戻されている。そして、各曲がり検出用光ファイバー21の曲げ戻し部の近傍に曲がり検出部22が形成されている。
【0019】
曲がり検出部22は、挿入部可撓管1の軸線方向に例えば数センチメートル程度の間隔をあけて、挿入部可撓管1の全長にわたって例えば10〜50個程度配置されている。
【0020】
ただし、図1に略示されるように、各曲がり検出部22間の間隔は、使用時に比較的大きな曲率半径でしか屈曲されない挿入部可撓管1の基端寄りの部分の間隔L1に比べて、しばしば小さな曲率半径で屈曲される先端寄りの部分(特に湾曲部1a)の間隔L2の方が狭く設定されている。即ち、L1>L2である。
【0021】
曲がり検出部22は、プラスチック製のコアにクラッドが被覆された曲がり検出用光ファイバー21の途中の部分に、光吸収部分が所定の方向(例えば上方向又は下方向)にだけ形成されたものであり、曲がり検出部22が曲げられた程度に対応して光の伝達量が変化するので、それを検出することによって曲がり検出部22が配置された部分の曲がり角度を検出することができる。
【0022】
その原理については米国特許第5633494号等に記載されている通りであるが、以下に簡単に説明をする。
図4において、21aと21bは、一本の曲がり検出用光ファイバー21のコアとクラッドであり、曲がり検出部22には、コア21a内を通過してきた光をコア21a内に全反射せずに吸収してしまう光吸収部22aが、クラッド21bの特定方向(ここでは「下方向」)の部分に形成されている。
【0023】
すると、図5に示されるように、曲がり検出用光ファイバー21が上方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が増えるので、曲がり検出用光ファイバー21の光伝達量が減少する。
【0024】
逆に、図6に示されるように、曲がり検出用光ファイバー21が下方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が減少するので、曲がり検出用光ファイバー21の光伝達量が増加する。
【0025】
このような、光吸収部22aにおける曲がり検出用光ファイバー21の曲がり量と光伝達量とは一定の関係(例えば一次関数的関係)になるので、曲がり検出用光ファイバー21の光伝達量を検出することにより、光吸収部22aが形成されている曲がり検出部22部分の曲がり角度を検出することができる。
【0026】
したがって、挿入部可撓管1の軸線方向に間隔をあけて複数の曲がり検出部22が配列されている場合には、各曲がり検出部22間の間隔と検出された各曲がり検出部22の曲がり角度から、挿入部可撓管1全体の上下方向の屈曲状態を検出することができる。
【0027】
そして、図7に略示されるように、上述のような曲がり検出部22と並列にさらに第2の曲がり検出部22′を配置して、横に並んだ二つの曲がり検出部22,22′の光伝達量を比較すれば、左右方向に捩れがない場合には双方の光伝達量に差がなく、左右方向の捩じれ量に応じて双方の光伝達量の差が大きくなる。
【0028】
したがって、各曲がり検出部22,22′の光伝達量を計測してその計測値を比較することにより、曲がり検出部22,22′が配置された部分の左右方向の捩れ量を検出することができる。この原理は、米国特許第6127672号等に記載されている通りである。
【0029】
したがって、複数の曲がり検出部22を挿入部可撓管1の軸線方向に所定の間隔で配置すると共に、それと並列に第2の複数の曲がり検出部22′を配置して、各曲がり検出部22,22′における光伝達量を検出、比較することにより挿入部可撓管1全体の三次元の屈曲状態を検出することができる。
【0030】
そこで本実施例の可撓性内視鏡装置においては、図8に示されるように、帯状部材20の長手方向に一定の間隔で曲がり検出部22が位置するように、複数の曲がり検出用光ファイバー21を帯状部材20の表面側に取り付けると共に、表側の各曲がり検出部22の横に第2の曲がり検出部22′が並ぶように、帯状部材20の裏面側に第2の複数の曲がり検出用光ファイバー21′が取り付けられている。
【0031】
また、光吸収部22aが形成されていないシンプルなリファレンス用光ファイバー21Rを少なくとも一本配置して、各曲がり検出用光ファイバー21の光伝達量をリファレンス用光ファイバー21Rの光伝達量と比較することにより、曲がり検出用光ファイバー21の光伝達量に対する温度や経時劣化等の影響を除くことができる。
【0032】
図9は、光信号入出力装置30を示しており、一つの発光ダイオード31からの射出光が全部の光ファイバー21,21′,21Rに入射される。32は、発光ダイオード31の駆動回路である。
【0033】
そして、各光ファイバー21,21′,21Rの射出端毎に、光の強度レベルを電圧レベルに変換して出力するフォトダイオード33が配置されていて、各フォトダイオード33からの出力が、アンプ34で増幅されてからアナログ/デジタル変換器35によりデジタル信号化されてコンピュータ40に送られる。
【0034】
このように構成された可撓性内視鏡装置の挿入部可撓管1が体内に挿入される際には、図10に示されるように、挿入部案内部材50が体内への入口部分(例えば口又は肛門)に取り付けられて、挿入部可撓管1はその挿入部案内部材50内を通される。
【0035】
そこで、挿入部案内部材50に挿入部可撓管1の挿入長(即ち、挿入部案内部材50に対する通過長)Lを検出するためのエンコーダ60等が設けられていて、エンコーダ60からの出力信号がコンピュータ40に送られるようになっている。
【0036】
図11は、そのような挿入部案内部材50の一例を示しており、圧縮コイルスプリング52によって付勢された複数の回転自在な球状部材51が、挿入部可撓管1を周囲から挟み付ける状態に配置されている。
【0037】
したがって、各球状部材51は挿入部可撓管1の挿入長Lに比例して回転し、球状部材51のうちの一つに、挿入部可撓管1の挿入長Lに比例する数のパルスを出力するエンコーダ60が連結されている。
【0038】
ただし、挿入部案内部材50における挿入部可撓管1の挿入長Lの検出は、例えば特開昭56−97429号や特開昭60−217326号等に記載されているように、挿入部可撓管1の表面からの光反射等を利用してもよく、その他の手段によっても差し支えない。
【0039】
このようにして、図10に示されるように、コンピュータ40には光信号入出力装置30とエンコーダ60から挿入部可撓管1の屈曲状態検出信号と挿入長検出信号が入力し、挿入部案内部材50の画像50′と、挿入部可撓管1の屈曲状態を示す画像1′が挿入状態表示用モニター41に表示される。
【0040】
このとき、挿入部案内部材50の画像50′の表示位置を挿入状態表示用モニター41上において固定し、それより前方に挿入された部分の挿入部可撓管1の屈曲状態を示す画像1′を、挿入部可撓管1の変化に合わせてリアルタイムで変化させることにより、体内における挿入部可撓管1の状態を容易に把握することができる。
【0041】
そして、このような可撓性内視鏡装置において、使用中にしばしば小さな曲率半径で屈曲される挿入部可撓管1の先端寄りの部分の間隔L2が狭く設定されているので、その部分では曲がり検出を高精度に行うことができ、使用中に比較的大きな曲率半径でしか屈曲されない挿入部可撓管1の基端寄りの部分の間隔L1は広く設定されているので、その部分では検出箇所が少なくなって効率のよい装置構成にすることができる。
【0042】
図12は、そのような挿入部可撓管1の屈曲状態の画像1′を挿入状態表示用モニター41に表示させるためのコンピュータ40のソフトウェアの内容の概略を示すフロー図であり、図中のSはステップを示す。
【0043】
挿入状態表示用モニター41に正確な屈曲状態を表示させるためには、まず挿入部可撓管1を体内に挿入する前に、実際に用いられる内視鏡の挿入部可撓管1の屈曲角度と曲がり検出用光ファイバー21から得られる検出信号とを対比させるキャリブレーションを行っておくことが好ましい(S1)。
【0044】
そして、挿入部可撓管1を体内に挿入したら、エンコーダ60から挿入部可撓管1の挿入長Lの検出信号を入力して(S2)、挿入部案内部材50が挿入部可撓管1のどの位置にあるかを算出する(S3)。
【0045】
次いで、各曲がり検出用光ファイバー21からの検出信号V1 …を入力して(S4)、その検出信号V1 …をキャリブレーションデータに基づいて曲がり角度に変換し(S5)、各曲がり検出部22部分の曲がり角度から、三次元座標上における各曲がり検出部22の位置を算出する(S6)。
【0046】
そして、挿入状態表示用モニター41において挿入部案内部材50の像50′の位置を動かさないようにして、各曲がり検出部22の位置を滑らかに結んで表示することにより挿入部可撓管1の屈曲状態が表示され(S7)、S2へ戻ってS2〜S7を繰り返す。
【0047】
このような表示を行う際、挿入状態表示用モニター41における表示は二次元画像であるが、各曲がり検出部22の位置についての三次元データが得られているので、「上方向」だけでなく任意の回転方向における挿入部可撓管1の屈曲状態を表示させることができる。
【0048】
なお、挿入部案内部材50の球状部材51から挿入部可撓管1の軸線周りの回転方向を検出して、挿入部可撓管1の軸線周りの回転量に対応して挿入状態表示用モニター41の表示像を回転させれば、挿入状態表示用モニター41に患者の身体の向きが固定されたかのごとく画像表示させることができる。
【0049】
【発明の効果】
本発明によれば、挿入部可撓管の軸線方向に間隔をあけて並んで配置された各曲がり検出部間の間隔を、挿入部可撓管の基端寄りの部分に比べて先端寄りの部分において狭くしたことにより、使用中にしばしば小さな曲率半径で屈曲される挿入部可撓管の先端寄りの部分では曲がり検出を高精度に行うことができ、使用中に比較的大きな曲率半径でしか屈曲されない挿入部可撓管の基端寄りの部分では検出箇所が少なくなって効率のよい装置構成にすることができる。
【図面の簡単な説明】
【図1】本発明の実施例の可撓性内視鏡装置の挿入部可撓管における曲がり検出部の配置状態を示す略示図である。
【図2】本発明の実施例の可撓性内視鏡装置の全体構成(挿入部案内部材を除く)の略示図である。
【図3】本発明の実施例の可撓性内視鏡装置の挿入部可撓管の先端付近の斜視図である。
【図4】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部の略示断面図である。
【図5】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が屈曲した状態の略示断面図である。
【図6】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が逆方向に屈曲した状態の略示断面図である。
【図7】本発明の実施例に用いられる曲がり検出用光ファイバーによる三次元の屈曲状態検出の原理を説明するための略示図である。
【図8】本発明の実施例の曲がり検出用光ファイバーが取り付けられた帯状部材の平面図である。
【図9】本発明の実施例の光信号入出力装置の回路図である。
【図10】本発明の実施例の可撓性内視鏡装置の使用状態の全体構成を示す略示図である。
【図11】本発明の実施例の挿入部案内部材の正面断面図である。
【図12】本発明の実施例のコンピュータのソフトウェアの内容を略示するフロー図である。
【符号の説明】
1 挿入部可撓管
1′ 挿入部可撓管の屈曲状態の画像
20 帯状部材
21,21′ 曲がり検出用光ファイバー
22,22′ 曲がり検出部
30 光信号入出力装置
40 コンピュータ
41 挿入状態表示用モニター
50 挿入部案内部材
50′ 挿入部案内部材の画像
L1 挿入部可撓管の基端寄りの部分における曲がり検出部間の間隔
L2 挿入部可撓管の先端寄りの部分における曲がり検出部間の間隔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible endoscope apparatus for observing the inside of a gastrointestinal tract or the like.
[0002]
[Prior art]
A flexible endoscope apparatus that is inserted into the gastrointestinal tract or the like has a flexible insertion section flexible tube that bends freely along the inner wall of the gastrointestinal tract or the like. It is difficult to grasp from.
[0003]
For this reason, it may not be possible to determine the insertion state of the insertion portion flexible tube with respect to the gastrointestinal tract, or it may not be possible to determine how to perform the next insertion / removal operation.
[0004]
Therefore, if X-ray fluoroscopy is performed, the bending state of the insertion portion flexible tube can be seen through. However, X-ray irradiation not only needs to be performed in a special room surrounded by a thick lead wall but also continuously. Such fluoroscopy has a problem of radiation exposure and may have a very bad influence on the human body.
[0005]
Therefore, a magnetic field generating member is attached to the distal end of the insertion portion of the endoscope, the position of the magnetic field generating member is detected by a magnetic sensor arranged outside the human body, and the position of the distal end of the insertion portion inside the body is displayed on the monitor screen. There is a display (Japanese Patent No. 2959723).
[0006]
[Problems to be solved by the invention]
However, in the apparatus for detecting the position of the magnetic field generating member attached to the distal end of the insertion portion as described above, the bending state of the insertion portion flexible tube is not known only by knowing the position of the distal end of the insertion portion. In many cases, the apparatus is easily affected by external noise and position detection cannot be continued in a good state.
[0007]
Therefore, the inventors of the present invention attach a plurality of flexible bending detection optical fibers to the insertion portion flexible tube having a bending detection portion in which the amount of transmitted light changes according to the angle of the bent angle, A flexible endoscope that detects the bending state of the insertion portion flexible tube in the portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber, and displays the bending state on the monitor screen. The device was invented and a patent application was filed earlier (Japanese Patent Application No. 2001-53715).
[0008]
The present invention is an improved invention, and an object of the present invention is to provide a flexible endoscope apparatus that can efficiently and accurately detect the bending state of the insertion portion flexible tube.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a flexible endoscope apparatus according to the present invention has a plurality of flexible bend detection units having a bend detection unit in which the amount of transmitted light changes according to the magnitude of a bent angle. A plurality of bending detection portions of the optical fiber are arranged side by side in the axial direction of the insertion portion flexible tube, and the insertion portion flexible tube in a portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber In a flexible endoscope apparatus that detects the bending state of the insertion portion and displays the bending state of the insertion portion flexible tube on the monitor screen, it is arranged side by side in the axial direction of the insertion portion flexible tube. The intervals between the respective bent detection parts are narrower in the portion closer to the distal end than in the portion closer to the proximal end of the insertion portion flexible tube.
[0010]
Note that the bending detection unit may be one in which a light absorption unit is formed only in a predetermined direction in the middle of the bending detection optical fiber.
The bending detection optical fiber may be disposed along the outer skin of the insertion portion flexible tube, or may be inserted and disposed in the insertion portion flexible tube.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the overall configuration of the flexible endoscope apparatus. The base end of the insertion portion flexible tube 1 is connected to the lower end of the operation portion 2, and the portion near the distal end of the insertion portion flexible tube 1 is A bending portion 1a that bends in an arbitrary direction by rotating the operation knob 3 disposed in the operation portion 2 is formed.
[0012]
A distal end main body 4 in which an observation window or the like is arranged is connected to the distal end of the insertion portion flexible tube 1, and an internal image captured by a solid-state imaging device (not shown) built in the distal end main body 4. The video signal of the mirror observation image is sent to the external video processor 7 through the video signal line 6 extending from the operation unit 2, and the endoscopic observation image is displayed on the observation image monitor 8.
[0013]
The insertion section flexible tube 1 is a flexible synthetic resin strip member in which a plurality of bending detection optical fibers, which will be described later, are arranged at a position in the extending direction of the front surface of the operation section 2 (that is, the upward direction on the observation screen). 20 is attached, and the base end portion thereof is connected to the optical signal input / output device 30.
[0014]
A signal output line of the optical signal input / output device 30 is connected to a computer 40, and an insertion state display monitor 41 for displaying an image using a cathode ray tube or a liquid crystal is connected to the computer 40.
[0015]
FIG. 3 shows the vicinity of the distal end of the insertion portion flexible tube 1. An observation window 11, an illumination window 12, a treatment instrument protruding port 13, and the like are disposed on the distal end surface of the distal end portion body 4, and are emitted from the illumination window 12. The subject illuminated by the illumination light forms an image on the imaging surface of the solid-state imaging device by an objective optical system (not shown) arranged in the observation window 11.
[0016]
The belt-like member 20 is disposed in close contact with the “upward” outer surface of the insertion portion flexible tube 1 and parallel to the axis of the insertion portion flexible tube 1. At the same time, it is wrapped and heat-fixed by a heat-shrinkable tube.
[0017]
However, the band-shaped member 20 may be fixed to the insertion portion flexible tube 1 by any means such as adhesion. Further, the band-shaped member 20 may be inserted and arranged in the insertion portion flexible tube 1, and the bending detection optical fiber 21 is attached to a built-in object inserted and arranged in the insertion portion flexible tube 1, thereby omitting the band-shaped member 20. There is no problem.
[0018]
As shown in FIG. 3, the plurality of bending detecting optical fibers 21 are bent back in a smooth U shape by changing their positions in order. A bend detector 22 is formed in the vicinity of the bent back portion of each bend detection optical fiber 21.
[0019]
For example, about 10 to 50 bending detectors 22 are arranged over the entire length of the insertion section flexible tube 1 with an interval of, for example, several centimeters in the axial direction of the insertion section flexible tube 1.
[0020]
However, as schematically shown in FIG. 1, the interval between the bending detection portions 22 is larger than the interval L1 of the portion near the proximal end of the insertion portion flexible tube 1 that is bent only with a relatively large radius of curvature when used. The distance L2 between the portions near the tip (particularly the curved portion 1a) that is often bent with a small radius of curvature is set narrower. That is, L1> L2.
[0021]
The bending detection unit 22 is formed by forming a light absorption part only in a predetermined direction (for example, upward or downward) in a middle part of the optical fiber 21 for bending detection in which a plastic core is covered with a clad. Since the amount of transmitted light changes corresponding to the degree to which the bending detection unit 22 is bent, the bending angle of the portion where the bending detection unit 22 is arranged can be detected by detecting this.
[0022]
The principle is as described in US Pat. No. 5,633,494, but will be briefly described below.
In FIG. 4, reference numerals 21a and 21b denote the core and clad of one bending detection optical fiber 21, and the bending detection unit 22 absorbs light that has passed through the core 21a without being totally reflected into the core 21a. The light absorbing portion 22a is formed in a specific direction (here, “downward”) of the clad 21b.
[0023]
Then, as shown in FIG. 5, when the bending detection optical fiber 21 is bent upward, the amount (area) of light that hits the light absorbing portion 22a out of the light passing through the core 21a increases. 21 light transmission amount decreases.
[0024]
On the contrary, as shown in FIG. 6, when the bending detection optical fiber 21 is bent downward, the amount (area) of light that hits the light absorbing portion 22a out of the light that passes through the core 21a decreases, so that bending detection is performed. The light transmission amount of the optical fiber 21 for use increases.
[0025]
Since the bending amount of the bending detection optical fiber 21 and the light transmission amount in the light absorption unit 22a are in a certain relationship (for example, a linear function relationship), the light transmission amount of the bending detection optical fiber 21 is detected. By this, it is possible to detect the bend angle of the bend detection unit 22 portion where the light absorption unit 22a is formed.
[0026]
Therefore, when a plurality of bending detection units 22 are arranged at intervals in the axial direction of the insertion portion flexible tube 1, the intervals between the bending detection units 22 and the detected bending angles of the respective bending detection units 22. Therefore, the bending state in the vertical direction of the entire insertion portion flexible tube 1 can be detected.
[0027]
Then, as schematically shown in FIG. 7, a second bend detector 22 'is arranged in parallel with the bend detector 22 as described above, and the two bend detectors 22 and 22' arranged side by side are arranged. Comparing the amount of light transmission, when there is no twist in the left-right direction, there is no difference in the amount of light transmission between the two, and the difference in the amount of light transmission between the two increases according to the amount of twist in the left-right direction.
[0028]
Therefore, by measuring the light transmission amount of each bending detection unit 22, 22 'and comparing the measured values, it is possible to detect the amount of twist in the left-right direction of the portion where the bending detection unit 22, 22' is arranged. it can. This principle is as described in US Pat. No. 6,127,672.
[0029]
Accordingly, the plurality of bending detection units 22 are arranged at predetermined intervals in the axial direction of the insertion portion flexible tube 1, and the second plurality of bending detection units 22 ′ are arranged in parallel therewith, and each bending detection unit 22 is arranged. , 22 ′ can detect and compare the light transmission amount, and the three-dimensional bending state of the entire insertion portion flexible tube 1 can be detected.
[0030]
Therefore, in the flexible endoscope apparatus of the present embodiment, as shown in FIG. 8, a plurality of bending detection optical fibers are arranged so that the bending detection units 22 are positioned at a constant interval in the longitudinal direction of the belt-like member 20. 21 is attached to the front surface side of the band-shaped member 20, and a second plurality of bending detections are provided on the back surface side of the band-shaped member 20 so that the second bending detection unit 22 ′ is arranged beside each bending detection unit 22 on the front side. An optical fiber 21 'is attached.
[0031]
Further, by arranging at least one simple reference optical fiber 21R in which the light absorbing portion 22a is not formed and comparing the light transmission amount of each bending detection optical fiber 21 with the light transmission amount of the reference optical fiber 21R, The influence of temperature, deterioration with time, etc., on the light transmission amount of the bending detection optical fiber 21 can be eliminated.
[0032]
FIG. 9 shows an optical signal input / output device 30, and the light emitted from one light emitting diode 31 is incident on all the optical fibers 21, 21 ′, 21 R. Reference numeral 32 denotes a drive circuit for the light emitting diode 31.
[0033]
A photodiode 33 for converting the light intensity level into a voltage level and outputting it is arranged for each emission end of each of the optical fibers 21, 21 ′, 21 R, and the output from each photodiode 33 is output by an amplifier 34. After being amplified, it is converted into a digital signal by the analog / digital converter 35 and sent to the computer 40.
[0034]
When the insertion tube flexible tube 1 of the thus configured flexible endoscope apparatus is inserted into the body, as shown in FIG. For example, the insertion portion flexible tube 1 is passed through the insertion portion guide member 50.
[0035]
Therefore, the insertion portion guide member 50 is provided with an encoder 60 for detecting the insertion length L of the insertion portion flexible tube 1 (that is, the passage length with respect to the insertion portion guide member 50) L, and an output signal from the encoder 60 is provided. Is sent to the computer 40.
[0036]
FIG. 11 shows an example of such an insertion portion guide member 50, in which a plurality of rotatable spherical members 51 urged by a compression coil spring 52 sandwich the insertion portion flexible tube 1 from the periphery. Is arranged.
[0037]
Accordingly, each spherical member 51 rotates in proportion to the insertion length L of the insertion portion flexible tube 1, and one of the spherical members 51 has a number of pulses proportional to the insertion length L of the insertion portion flexible tube 1. Are connected to each other.
[0038]
However, the insertion length L of the insertion portion flexible tube 1 in the insertion portion guide member 50 can be detected as described in, for example, JP-A-56-97429 and JP-A-60-217326. Light reflection from the surface of the flexible tube 1 may be used, and other means may be used.
[0039]
In this way, as shown in FIG. 10, the computer 40 receives the bending state detection signal and the insertion length detection signal of the insertion portion flexible tube 1 from the optical signal input / output device 30 and the encoder 60, and guides the insertion portion. An image 50 ′ of the member 50 and an image 1 ′ showing the bending state of the insertion portion flexible tube 1 are displayed on the insertion state display monitor 41.
[0040]
At this time, the display position of the image 50 ′ of the insertion portion guide member 50 is fixed on the insertion state display monitor 41, and the image 1 ′ showing the bent state of the insertion portion flexible tube 1 at the portion inserted in front of it. Is changed in real time in accordance with the change of the insertion portion flexible tube 1, the state of the insertion portion flexible tube 1 in the body can be easily grasped.
[0041]
And in such a flexible endoscope apparatus, since the interval L2 of the portion near the tip of the insertion portion flexible tube 1 that is often bent with a small radius of curvature during use is set narrow, The interval L1 between the proximal end portions of the insertion tube flexible tube 1 that can be bent with high accuracy and is bent only with a relatively large radius of curvature during use is set wide. The number of locations is reduced, and an efficient apparatus configuration can be achieved.
[0042]
FIG. 12 is a flowchart showing an outline of the contents of the software of the computer 40 for displaying such an image 1 ′ of the bending state of the insertion portion flexible tube 1 on the insertion state display monitor 41. S indicates a step.
[0043]
In order to display an accurate bending state on the insertion state display monitor 41, first, before inserting the insertion portion flexible tube 1 into the body, the bending angle of the insertion portion flexible tube 1 of the endoscope actually used. It is preferable to perform calibration for comparing the detection signal obtained from the bending detection optical fiber 21 (S1).
[0044]
When the insertion portion flexible tube 1 is inserted into the body, a detection signal of the insertion length L of the insertion portion flexible tube 1 is input from the encoder 60 (S2), and the insertion portion guide member 50 is inserted into the insertion portion flexible tube 1. Which position is located is calculated (S3).
[0045]
Next, detection signals V 1 ... From the respective bending detection optical fibers 21 are input (S 4), the detection signals V 1 ... Are converted into bending angles based on the calibration data (S 5), and the respective bending detection units 22. From the bending angle of the portion, the position of each bending detection unit 22 on the three-dimensional coordinates is calculated (S6).
[0046]
The insertion state display monitor 41 does not move the position of the image 50 ′ of the insertion portion guide member 50, and smoothly displays the positions of the respective bending detection portions 22 to display the insertion portion flexible tube 1. The bent state is displayed (S7), and the process returns to S2 to repeat S2 to S7.
[0047]
When such display is performed, the display on the insertion state display monitor 41 is a two-dimensional image, but since three-dimensional data about the position of each bending detection unit 22 is obtained, not only “upward” but also “upward” The bending state of the insertion portion flexible tube 1 in an arbitrary rotation direction can be displayed.
[0048]
An insertion state display monitor corresponding to the amount of rotation around the axis of the insertion portion flexible tube 1 is detected from the spherical member 51 of the insertion portion guide member 50 and the rotation direction around the axis of the insertion portion flexible tube 1 is detected. If the display image 41 is rotated, the image can be displayed on the insertion state display monitor 41 as if the orientation of the patient's body is fixed.
[0049]
【The invention's effect】
According to the present invention, the interval between the bending detection portions arranged side by side in the axial direction of the insertion portion flexible tube is set closer to the distal end than the portion closer to the proximal end of the insertion portion flexible tube. By narrowing the part, bending detection can be performed with high accuracy in the part near the distal end of the flexible tube, which is often bent with a small radius of curvature during use, and only with a relatively large radius of curvature during use. In the portion near the base end of the insertion portion flexible tube that is not bent, the number of detection points is reduced, and an efficient apparatus configuration can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an arrangement state of a bending detection portion in an insertion portion flexible tube of a flexible endoscope apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view of an overall configuration (excluding an insertion portion guide member) of a flexible endoscope apparatus according to an embodiment of the present invention.
FIG. 3 is a perspective view of the vicinity of the distal end of an insertion portion flexible tube of the flexible endoscope apparatus according to the embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view of a bending detection portion of a bending detection optical fiber used in an embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing a bent state of a bending detection portion of a bending detection optical fiber used in an embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view of a state in which a bend detection unit of a bend detection optical fiber used in an embodiment of the present invention is bent in a reverse direction.
FIG. 7 is a schematic diagram for explaining the principle of detecting a three-dimensional bending state using a bending detection optical fiber used in an embodiment of the present invention.
FIG. 8 is a plan view of a belt-like member to which a bending detection optical fiber according to an embodiment of the present invention is attached.
FIG. 9 is a circuit diagram of an optical signal input / output device according to an embodiment of the present invention.
FIG. 10 is a schematic diagram showing the overall configuration of the usage state of the flexible endoscope apparatus according to the embodiment of the present invention.
FIG. 11 is a front sectional view of the insertion portion guide member according to the embodiment of the present invention.
FIG. 12 is a flowchart schematically showing the contents of software of a computer according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insertion part flexible tube 1 'Image of bending state of insertion part flexible tube 20 Band-shaped members 21, 21' Bend detection optical fiber 22, 22 'Bend detection part 30 Optical signal input / output device 40 Computer 41 Insertion state display monitor 50 Insert portion guide member 50 'Image of insert portion guide member L1 Distance between bend detection portions in the portion near the proximal end of the insert portion flexible tube L2 Distance between bend detection portions in the portion near the distal end of the insert portion flexible tube

Claims (5)

曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーの上記複数の曲がり検出部が上記挿入部可撓管の軸線方向に間隔をあけて並んで配置され、上記各曲がり検出用光ファイバーの光伝達量から上記各曲がり検出部が位置する部分における上記挿入部可撓管の屈曲状態を検出して、上記挿入部可撓管の屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置において、
上記挿入部可撓管の軸線方向に間隔をあけて並んで配置された各曲がり検出部間の間隔を、上記挿入部可撓管の基端寄りの部分に比べて先端寄りの部分において狭くすると共に、
上記挿入部可撓管が通過する挿入部案内部材と、上記挿入部案内部材に対する上記挿入部可撓管の通過長さを検出するための挿入長検出手段とを設けて、上記挿入部可撓管の屈曲状態と共に上記挿入部可撓管に対する上記挿入部案内部材の位置が上記モニター画面に表示されるようにしたことを特徴とする可撓性内視鏡装置。
The plurality of bend detection sections of the plurality of flexible bend detection optical fibers having a bend detection section in which the amount of transmitted light changes corresponding to the angle of the bent angle is spaced in the axial direction of the insertion section flexible tube. The bending portion of the insertion portion flexible tube is detected by detecting the bending state of the insertion portion flexible tube in the portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber. In a flexible endoscope apparatus configured to display a bent state on a monitor screen,
The interval between each bend detection unit are arranged side by side at intervals in the axial direction of the flexible tube, to narrow in a portion of the tip-sided than the proximal end side of the portion of the flexible tube With
An insertion portion guide member through which the insertion portion flexible tube passes, and an insertion length detecting means for detecting a passage length of the insertion portion flexible tube with respect to the insertion portion guide member are provided. A flexible endoscope apparatus, wherein a position of the insertion portion guide member with respect to the insertion portion flexible tube is displayed on the monitor screen together with a bending state of the tube .
上記曲がり検出部は、上記曲がり検出用光ファイバーの途中に光吸収部が所定の方向にだけ形成されたものである請求項1記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1, wherein the bend detection unit is configured such that a light absorption unit is formed only in a predetermined direction in the middle of the bend detection optical fiber. 上記曲がり検出用光ファイバーが、上記挿入部可撓管の外皮に沿って配置されている請求項1又は2記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1 or 2, wherein the bending detection optical fiber is disposed along an outer skin of the insertion portion flexible tube. 上記曲がり検出用光ファイバーが、上記挿入部可撓管内に挿通配置されている請求項1又は2記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1 or 2, wherein the bending detection optical fiber is inserted and disposed in the insertion portion flexible tube. 上記モニター画面に、上記挿入部案内部材が動かない状態に表示される請求項1ないし4のいずれかの項に記載の可撓性内視鏡装置。The flexible endoscope apparatus according to any one of claims 1 to 4, wherein the insertion portion guide member is displayed on the monitor screen in a state where the insertion portion guide member does not move.
JP2001260957A 2001-05-22 2001-08-30 Flexible endoscope device Expired - Lifetime JP3920603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001260957A JP3920603B2 (en) 2001-08-30 2001-08-30 Flexible endoscope device
US10/150,927 US6846286B2 (en) 2001-05-22 2002-05-21 Endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260957A JP3920603B2 (en) 2001-08-30 2001-08-30 Flexible endoscope device

Publications (2)

Publication Number Publication Date
JP2003065735A JP2003065735A (en) 2003-03-05
JP3920603B2 true JP3920603B2 (en) 2007-05-30

Family

ID=19088070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260957A Expired - Lifetime JP3920603B2 (en) 2001-05-22 2001-08-30 Flexible endoscope device

Country Status (1)

Country Link
JP (1) JP3920603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111580B2 (en) 2015-04-10 2018-10-30 Olympus Corporation Fiber sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930195B2 (en) * 2012-06-20 2016-06-08 オリンパス株式会社 Curve sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10111580B2 (en) 2015-04-10 2018-10-30 Olympus Corporation Fiber sensor

Also Published As

Publication number Publication date
JP2003065735A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4005318B2 (en) Flexible endoscope device
US6846286B2 (en) Endoscope system
US20160198982A1 (en) Endoscope measurement techniques
JP2018537155A (en) Apparatus and method for tracking the position of an endoscope within a patient's body
JP2009521973A (en) Method and system for locating blood vessels
JPS60217326A (en) Endoscope
JP3917391B2 (en) Flexible endoscope device
JP2003093326A (en) Flexible electronic endoscope device
JP4017877B2 (en) Flexible endoscope monitor device
JP4864249B2 (en) Flexible endoscope device
JP2003102677A (en) Flexible endoscope apparatus
JP3881525B2 (en) Flexible endoscope device
JP6150579B2 (en) Insertion device
JP3920603B2 (en) Flexible endoscope device
JP3881526B2 (en) Flexible endoscope device
JP4864248B2 (en) Flexible endoscope device
JP3943355B2 (en) Flexible endoscope device
JP3898910B2 (en) Flexible endoscope device
JP3911139B2 (en) Flexible endoscope device
JP4694062B2 (en) Flexible electronic endoscope device
JP3943353B2 (en) Flexible ultrasound endoscope device
JP3845270B2 (en) Flexible ultrasonic endoscope device
JP2003070718A (en) Flexible endoscope
US20130218027A1 (en) Imaging device and methods of using the same
JP2003065734A (en) Flexible endoscopic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3920603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term