JP3920504B2 - UV sterilizer - Google Patents

UV sterilizer Download PDF

Info

Publication number
JP3920504B2
JP3920504B2 JP22646799A JP22646799A JP3920504B2 JP 3920504 B2 JP3920504 B2 JP 3920504B2 JP 22646799 A JP22646799 A JP 22646799A JP 22646799 A JP22646799 A JP 22646799A JP 3920504 B2 JP3920504 B2 JP 3920504B2
Authority
JP
Japan
Prior art keywords
transmittance
liquid
sterilized
ultraviolet
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22646799A
Other languages
Japanese (ja)
Other versions
JP2001047040A (en
Inventor
康司 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP22646799A priority Critical patent/JP3920504B2/en
Publication of JP2001047040A publication Critical patent/JP2001047040A/en
Application granted granted Critical
Publication of JP3920504B2 publication Critical patent/JP3920504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、連続式透過率計を備えた紫外線殺菌装置に関するものである。
【0002】
【従来の技術】
従来、下水処理放流水は、塩素による消毒が行なわれた後に河川や海域に排出されていたが、近年塩素副成物の影響が問題になり、このため塩素を使わないで紫外線によって下水処理放流水の殺菌が行なわれるようになってきた。
【0003】
一方紫外線ランプを用いて消毒する場合、必要な殺菌率を得るためには、使用される紫外線ランプの照度及び殺菌対象液の流量と紫外線透過率を把握しておく必要がある。特に、時間的にまた季節的に水質が変化する下水処理放流水においては、常に殺菌対象液の透過率を把握しておくことは、ランプ照度や流量の制御を行なって必要な殺菌率を確保するために必要である。
【0004】
具体的にいえば、例えば水質悪化時に対応できるような仕様で製作された装置に関しては、水質が良い状態、即ち透過率が高い場合においては、ランプ照度を下げる(即ちランプへの投入電力を小さくする)ことなどによって、省エネルギー効果を得ることができる。
【0005】
このため殺菌対象液の紫外線透過率を透過率計を用いて測定して水質の変化を常に監視しておかなければならない。しかしながら従来の透過率計は通常バッチ式であり、連続的に透過率を測定することができなかった。また紫外線透過率を連続的に測定するものもあるが、測定値の信頼性に問題があった。
【0006】
一方透過率計は、基準となる基準液(標準透過率液)を用いて定期的にその測定値を校正する必要があり、そのために純水が使用される。しかし実際には純水を継続的に使うことは困難なので、水道水が代用されるが、本殺菌装置を下水処理放流水の消毒などに使用する場合は本殺菌装置の近辺に水道水配管がないことが多く、不便であった。
【0007】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、紫外線殺菌対象液の透過率を連続的に容易且つ信頼性高く自動測定することができて紫外線殺菌装置を最適に制御できる連続式透過率計を備えた紫外線殺菌装置を提供することにある。
【0008】
【課題を解決するための手段】
上記問題点を解決するため本発明にかかる紫外線殺菌装置は、チャンバー内に殺菌対象液を流しながらこの殺菌対象液に紫外線を照射して殺菌する紫外線殺菌装置から殺菌対象液を取り出して殺菌対象液の透過率を連続的に測定する連続式透過率計と、前記連続式透過率計が測定した透過率の値に応じて前記紫外線の照度と前記チャンバーに流す殺菌対象液の流量の制御を行なう制御手段とを具備する紫外線殺菌装置において、前記連続式透過率計に、前記殺菌対象液から標準透過率液を製造する標準透過率液製造手段を設けたことを特徴とする。
また本発明は、前記標準透過率液製造手段を、通常のゴミを取る保安フィルターと、有機物を取る活性炭フィルターと、中空糸フィルターと、前記各フィルターに殺菌対象液を供給するポンプとを具備して構成したことを特徴とする。
また本発明は、前記連続式透過率計が、発光部と受光部とを有してその間に殺菌対象液を流すことで受光部の受光する光の照度によってその透過率を測定する透過率測定部を具備し、さらに前記発光部と受光部間の前記殺菌対象液に触れる面を拭うワイパー機構を設けたことを特徴とする。
また本発明は、前記制御手段を、前記紫外線の照度と前記チャンバーに流す殺菌対象液の流量の制御によっては所定の殺菌率が得られないことを検出するとともに、該検出によって警報を発する警報手段を設けるか或いは該検出によって別途設置した紫外線殺菌装置を動作せしめるようにしたことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は紫外線殺菌装置への本発明にかかる連続式透過率計Aの接続構造を示す図である。また図2は連続式透過率計Aの構成図である。
【0010】
図1に示すように紫外線殺菌装置80は、下水処理放流水等を流す配管100の途中に接続される。紫外線殺菌装置80は筒状のケーシング81のチャンバー84に透明石英製の保護管83で覆われた紫外線ランプ82を設置して構成されている。そしてケーシング81に設けた流入口85と流出口87に配管100を接続してチャンバー84に下水処理放流水を流せば、紫外線ランプ82から照射される紫外線によって下水処理法流水の殺菌が行える。なおケーシング81には、前記紫外線ランプ82から照射される紫外線の照度を測定する照度計(UVセンサー)89が取り付けられている。
【0011】
前記配管100の紫外線殺菌装置80の上流側には流量調整弁91と流量計93とが取り付けられており、また紫外線殺菌装置80の下流側には弁95が取り付けられている。
【0012】
一方紫外線殺菌装置80の下流側の配管100から引き出して紫外線殺菌装置80の上流側の配管100(流量調整弁91と流量計93の間)に接続される配管110の途中に、連続式透過率計Aが接続されている。
【0013】
配管110の連続式透過率計Aの上流側には、連続式透過率計Aに校正用の水(純水)を供給する配管120が手動弁V6を介して接続されている。
【0014】
一方連続式透過率計Aは、図2に示すように、循環ポンプPと、電磁弁V1と、保安フィルターFと、活性炭フィルターACと、中空糸フィルターMFと、電磁弁V2と、透過率測定部Sと、電磁弁V4とを直列に接続すると共に、電磁弁V1の上流側と電磁弁V2の下流側の間をバイパス配管115で接続し、また透過率測定部Sの下流側にドレイン用の配管125を接続して構成されている。バイパス配管115には電磁弁V3が取り付けられ、配管125には電磁弁V5が取り付けられている。
【0015】
ここで保安フィルターFは、通常のメッシュからなるフィルターであって通常のゴミを取るためのものである。活性炭フィルターACは、水に溶けているたんぱく質などの有機物を吸着して取り除くフィルターである。中空糸フィルターMFは、0.1ミクロン程度の穴が開いており、大腸菌などのような微細なものでも取り除けるフィルターである。そしてこれらフィルターF,AC,MFを通した水は、水道水と同等の品質になる。
【0016】
ここで図3,図4,図5は、透過率測定部Sの構造を詳細に示す図であり、図3は要部側断面図、図4は図3のA‐A断面矢視図、図5は図3のB‐B断面矢視図である。これらの図に示すように透過率測定部Sは、ケース10内に四角形状のチャンバー11を設け、その上下に受光部13と発光部15とを取り付けて構成されている。
【0017】
受光部13とチャンバー11間は、透明石英柱からなる導光体17によって光学的に接続されている。また発光部15とチャンバー11間も、透明石英柱からなる導光体19によって光学的に接続されている。導光体17,19のチャンバー11内に露出している面は対向している。発光部15内には水銀ランプからなる基準ランプ21が設置されている。また受光部13内には図示しないフォトセンサが組み込まれている。
【0018】
またケース10の導光体17,19を取り付けた対向面とは別の対向面に前記配管110が接続されている。配管110はその中心軸が導光体17,19の中心軸に直交するように取り付けられる。
【0019】
一方図4,図5に示すようにチャンバー11内には、リング状でゴム製のワイパー(ワイパーブレード)23が設置されている。ワイパー23はアーム25を介してスクリューネジ27に螺合され、スクリューネジ27を回転するモータ29によって矢印C方向に駆動されるように構成されている。モータ29の駆動はタイマーにより定期的に行われる。
【0020】
そしてこの透過率測定部Sによって下水処理放流水の透過率を測定するには、チャンバー11内に下水処理放流水を流し、同時に基準ランプ21を点灯してその光を導光体19から下水処理放流水を介して導光体17に導き、受光部13に入射せしめてその照度を測定する。そしてこの照度の減衰量を換算計算することで下水処理放流水の透過率が算出できる。
【0021】
一方導光体17,19の下水処理放流水に触れる表面は汚れるので、定期的にモータ29を駆動してワイパー23で両導光体17,19の表面を拭って洗浄する。
【0022】
次に図6はこの紫外線殺菌装置用連続式透過率計に用いる制御手段のブロック構成図である。同図に示すように制御手段は、制御部31に図1に示す照度計89と連続式透過率計Aと流量計93からの信号を入力して演算し、流量調整弁91と紫外線ランプ82と別途設けた警報部33とに信号を出力するように構成されている。ここで警報部33は例えば中央コントロール盤で構成され、▲1▼下水処理放流水の下水処理が不良であること(即ち透過率が低下したこと)や、▲2▼ランプ寿命(残り使用時間と紫外線ランプ82の現在のランプ照度)や、▲3▼目標殺菌率達成不可の表示又は別途設置した予備の紫外線殺菌装置80´を駆動する旨の表示を行う。
【0023】
次にこの紫外線殺菌装置用連続式透過率計の動作を説明する。まず図1において流量調整弁91と弁95を開いて配管100に下水処理放流水を流し、前記紫外線殺菌装置80において紫外線ランプ82を点灯してその殺菌を行う。そして下水処理放流水の透過率を測定するため、図2において電磁弁V1,V2,V5を閉じ(手動弁V6は通常閉じられたままである)、電磁弁V3,V4を開き、循環ポンプPを駆動する。これによって殺菌された下水処理放流水の一部が配管110に分岐して配管115を流れ、透過率測定部Sを通って紫外線殺菌装置80の上流側に循環される。そして透過率測定部Sでは、下水処理放流水の透過率が連続的に測定される。このように透過率の測定を連続的に行うことによって、下水処理放流水の透過率は連続的に遠隔操作によって自動的に測定することが可能となる。
【0024】
ところで透過率測定部Sにおいて正確な透過率を測定するためには、定期的に透過率のわかっている基準液を用いて前記透過率測定部Sにおける透過率を測定し、この測定値と基準液の本当の透過率とを比較して、透過率測定部Sの測定値を校正する必要がある。その方法は以下のようにして行う。
【0025】
まず前記の状態から電磁弁V3を閉じ、電磁弁V1,V2を開いて循環ポンプPを駆動することによって、殺菌後の下水処理放流水を、保安フィルターFと活性炭フィルターACと中空糸フィルターMFに通し、これによってSS(浮遊固形物)成分及びCOD(化学的酸素要求量)成分を除去し、透過率測定部Sでその透過率を測定した後に配管110に戻す。これらのフィルターを通した処理水は下記する方法で予めその透過率を測定しておいた基準液(各フィルターを透過してろ過した液の透過率は、下水処理水の性状が変化しても変化しない)なので、この基準液の透過率を基準にして透過率測定部Sの校正を行う。即ち透過率測定部Sで測定したこの基準液の透過率の値を、この基準液の予め測定した正しい透過率の値と比較することで、測定値の校正を行う。この校正は、例えば1日毎でも、1時間毎でもよく、そのインターバルは、液の性状により任意に変更できる。
【0026】
ここで前記基準液の正しい透過率は以下のようにして予め測定しておく。即ち電磁弁V3,V4を閉じ、電磁弁V1,V2,V5を開いて循環ポンプPを駆動することによって基準液をドレイン配管125から取り出す。そしてこの取り出した基準液を別途用意したバッチ式の透過率計(純水で校正したもの)で透過率を測定し、この基準液の正しい透過率とするのである。この正しい透過率の測定は、例えば半年に1回、1年に1回行えば良い。
【0027】
このように本発明によれば、下水処理放流水を連続的に測定することができるばかりか、一定の透過率を有する基準液を下水処理放流水から直接製造できるので別途水道水などを用意しなくてもその校正が容易且つ精度良く迅速に行える。
【0028】
なお透過率測定部Sの別の校正方法として、電磁弁V3,V5と手動弁V6を開き、電磁弁V1,V2,V4を閉じ、ポンプPを駆動して配管120から純水(即ち透過率100%)を供給し、これを透過率測定部Sで測定することで透過率測定部Sの測定値の校正を直接行ってもよい。
【0029】
ところで以上のように下水処理放流水の透過率を連続的に測定することで、下水処理放流水の流量と紫外線ランプ82の照度とを最適な状態に制御でき、最適殺菌率が得られる。即ち必要最小限のエネルギーで紫外線殺菌装置を運転することができる。
【0030】
具体的には例えば図6に示すように、連続式透過率計Aによる透過率の測定値を連続的に制御部31に入力することで、透過率のデータが蓄積できる。一方この透過率と前記照度計89及び流量計93によって検出した紫外線照度及び流量とから、殺菌に最適な紫外線照射量と流量とを算出して、そのようになるように紫外線ランプ82の照度調整(電圧変化によって行う)と流量調整弁91による流量調節を行う。
【0031】
そして透過率と流量と紫外線照度の値から計算して紫外線ランプ82の照度を高めることと流量調整弁91によって流量を減少させることによっては、保証できる殺菌率を達成できない場合は、これを警報部33に出力して、例えば目標殺菌率達成不可の表示を行ったり、または図1に点線で示すように別途設置した紫外線殺菌装置80´を作動させる信号を出力したりする。またその原因が下水処理放流水の前処理不良による透過率低下が原因である場合は前記透過率計Aからの透過率の測定値によってこれを検出しこれを警報部33に表示する。またその原因が紫外線ランプ82の寿命による場合は照度計89からの照度の測定値と透過率計Aからの透過率の測定値によってこれを検出しこれを警報部33に表示するようにしてもよい。また紫外線ランプ82の寿命が後どれくらいであるかを表示するようにしても良い。
【0032】
上記実施形態では殺菌対象液として下水処理放流水を用いたが、本発明はこれに限られず、農業集落排水、河川の浄化での再利用水の殺菌などに使用してもよい。要は紫外線によって殺菌しようとする殺菌対象液であればどのような液体にも適用できる。また使用する紫外線殺菌装置80の構造は、種々のものがあり、どのような構造のものであっても良い。
【0033】
【発明の効果】
以上詳細に説明したように本発明によれば以下のような優れた効果を有する。
▲1▼連続的に紫外線殺菌対象液の透過率を自動測定でき、最適な状態で紫外線殺菌装置を運転できる。
【0034】
▲2▼装置の透過率の校正が自動的に行えるので、信頼性の高い透過率の測定が容易に行える。
【0035】
▲3▼校正に必要な基準液(標準透過率液)を、現地に水道水などがなくても容易に自動的に紫外線殺菌対象液から製造できる。
【0036】
▲4▼連続式透過率計にワイパー機構を設けたので、紫外線殺菌対象液からの汚れの影響を除去できる。
【図面の簡単な説明】
【図1】紫外線殺菌装置への連続式透過率計Aの接続構造を示す図である。
【図2】連続式透過率計Aの構成図である。
【図3】透過率測定部Sの構造を詳細に示す要部側断面図である。
【図4】図3のA‐A断面矢視図である。
【図5】図3のB‐B断面矢視図である。
【図6】紫外線殺菌装置用連続式透過率計に用いる制御手段のブロック構成図である。
【符号の説明】
A 連続式透過率計
80 紫外線殺菌装置
82 紫外線ランプ
84 チャンバー
89 照度計(UVセンサー)
91 流量調整弁
93 流量計
P 循環ポンプ(標準透過率液製造手段)
F 保安フィルター(標準透過率液製造手段)
AC 活性炭フィルター(標準透過率液製造手段)
MF 中空糸フィルター(標準透過率液製造手段)
S 透過率測定部
V1,V2,V3,V4,V5 電磁弁
V6 手動弁
10 ケース
11 チャンバー
13 受光部
15 発光部
17,19 導光体
21 基準ランプ
23 ワイパー(ワイパー機構)
25 アーム(ワイパー機構)
27 スクリューネジ(ワイパー機構)
29 モータ(ワイパー機構)
31 制御部
33 警報部
125 ドレイン配管
80´ 紫外線殺菌装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultraviolet sterilizer equipped with a continuous transmittance meter.
[0002]
[Prior art]
Conventionally, sewage treatment effluent was discharged into rivers and sea areas after sterilization with chlorine, but in recent years, the influence of chlorine by-products has become a problem. Water has been sterilized.
[0003]
On the other hand, when disinfecting using an ultraviolet lamp, in order to obtain a necessary sterilization rate, it is necessary to grasp the illuminance of the ultraviolet lamp used, the flow rate of the liquid to be sterilized, and the ultraviolet transmittance. In particular, for sewage effluents whose water quality changes over time and seasonally, it is always necessary to know the permeability of the liquid to be sterilized by controlling the lamp illuminance and flow rate to ensure the necessary sterilization rate. Is necessary to do.
[0004]
More specifically, for example, for a device manufactured with specifications that can cope with deterioration of water quality, when the water quality is good, that is, when the transmittance is high, the lamp illuminance is reduced (that is, the input power to the lamp is reduced). Energy saving effect can be obtained.
[0005]
For this reason, it is necessary to constantly monitor changes in water quality by measuring the ultraviolet transmittance of the liquid to be sterilized using a transmittance meter. However, the conventional transmittance meter is usually a batch type, and the transmittance cannot be measured continuously. In addition, there is a device that continuously measures the ultraviolet transmittance, but there is a problem in the reliability of the measured value.
[0006]
On the other hand, the transmittance meter needs to periodically calibrate the measured value using a reference liquid (standard transmittance liquid) as a reference, and pure water is used for that purpose. However, in practice, it is difficult to use pure water continuously, so tap water is substituted, but when this sterilizer is used for disinfection of sewage effluent, tap water pipes are installed near this sterilizer. It was often inconvenient and inconvenient.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and its purpose is to continuously and easily and reliably automatically measure the transmittance of a liquid to be sterilized by ultraviolet rays and optimally control the ultraviolet sterilization apparatus. An object of the present invention is to provide an ultraviolet sterilizer equipped with an optical transmission meter.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the ultraviolet sterilization apparatus according to the present invention takes out the sterilization target liquid from the ultraviolet sterilization apparatus that sterilizes by irradiating the sterilization target liquid with ultraviolet rays while flowing the sterilization target liquid in the chamber. A continuous transmittance meter that continuously measures the transmittance of the liquid, and controls the illuminance of the ultraviolet light and the flow rate of the liquid to be sterilized to flow into the chamber according to the transmittance value measured by the continuous transmittance meter. In the ultraviolet sterilizer comprising the control means , the continuous transmittance meter is provided with standard transmittance liquid producing means for producing a standard transmittance liquid from the sterilization target liquid.
In addition, the present invention includes the standard transmittance liquid producing means including a safety filter for removing ordinary dust, an activated carbon filter for removing organic matter, a hollow fiber filter, and a pump for supplying a liquid to be sterilized to each filter. It is characterized by being configured.
Further, the present invention provides the transmittance measurement in which the continuous transmittance meter has a light emitting unit and a light receiving unit, and measures the transmittance according to the illuminance of light received by the light receiving unit by flowing a liquid to be sterilized between them. And a wiper mechanism for wiping the surface in contact with the liquid to be sterilized between the light emitting unit and the light receiving unit.
In the present invention, the control means detects that the predetermined sterilization rate cannot be obtained by controlling the illuminance of the ultraviolet light and the flow rate of the liquid to be sterilized to flow into the chamber, and alarm means for issuing an alarm by the detection Or an ultraviolet sterilizer installed separately by the detection is operated.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing a connection structure of a continuous transmittance meter A according to the present invention to an ultraviolet sterilizer. FIG. 2 is a configuration diagram of the continuous transmittance meter A.
[0010]
As shown in FIG. 1, the ultraviolet sterilizer 80 is connected in the middle of a pipe 100 through which sewage treatment effluent water and the like flow. The ultraviolet sterilizer 80 is configured by installing an ultraviolet lamp 82 covered with a transparent quartz protective tube 83 in a chamber 84 of a cylindrical casing 81. If the piping 100 is connected to the inlet 85 and the outlet 87 provided in the casing 81 and the sewage treatment effluent is caused to flow into the chamber 84, the sewage treatment method effluent can be sterilized by the ultraviolet rays irradiated from the ultraviolet lamp 82. The casing 81 is provided with an illuminance meter (UV sensor) 89 that measures the illuminance of ultraviolet rays emitted from the ultraviolet lamp 82.
[0011]
A flow rate adjusting valve 91 and a flow meter 93 are attached to the upstream side of the ultraviolet sterilizer 80 of the pipe 100, and a valve 95 is attached to the downstream side of the ultraviolet sterilizer 80.
[0012]
On the other hand, in the middle of the pipe 110 that is drawn out from the pipe 100 on the downstream side of the ultraviolet sterilizer 80 and connected to the pipe 100 on the upstream side of the ultraviolet sterilizer 80 (between the flow control valve 91 and the flow meter 93), Total A is connected.
[0013]
A pipe 120 for supplying calibration water (pure water) to the continuous transmittance meter A is connected to the upstream side of the continuous transmittance meter A of the pipe 110 via a manual valve V6.
[0014]
On the other hand, as shown in FIG. 2, the continuous permeability meter A has a circulation pump P, a solenoid valve V1, a safety filter F, an activated carbon filter AC, a hollow fiber filter MF, a solenoid valve V2, and a transmittance measurement. The part S and the solenoid valve V4 are connected in series, the upstream side of the solenoid valve V1 and the downstream side of the solenoid valve V2 are connected by the bypass pipe 115, and the drain side is connected to the downstream side of the transmittance measuring part S. The pipe 125 is connected. An electromagnetic valve V3 is attached to the bypass pipe 115, and an electromagnetic valve V5 is attached to the pipe 125.
[0015]
Here, the security filter F is a filter made of a normal mesh for removing normal dust. The activated carbon filter AC is a filter that adsorbs and removes organic substances such as proteins dissolved in water. The hollow fiber filter MF has a hole of about 0.1 micron and can remove even fine ones such as E. coli. And the water which passed through these filters F, AC, and MF becomes quality equivalent to tap water.
[0016]
Here, FIG. 3, FIG. 4 and FIG. 5 are diagrams showing in detail the structure of the transmittance measuring unit S, FIG. 3 is a sectional side view of the main part, FIG. 4 is a sectional view taken along the line AA in FIG. 5 is a cross-sectional view taken along the line BB in FIG. As shown in these drawings, the transmittance measuring unit S is configured by providing a rectangular chamber 11 in a case 10 and attaching a light receiving unit 13 and a light emitting unit 15 on the upper and lower sides thereof.
[0017]
The light receiving unit 13 and the chamber 11 are optically connected by a light guide 17 made of a transparent quartz column. The light emitting unit 15 and the chamber 11 are also optically connected by a light guide 19 made of a transparent quartz column. The surfaces of the light guides 17 and 19 exposed in the chamber 11 are opposed to each other. A reference lamp 21 made of a mercury lamp is installed in the light emitting unit 15. A photosensor (not shown) is incorporated in the light receiving unit 13.
[0018]
Further, the pipe 110 is connected to a facing surface different from the facing surface to which the light guides 17 and 19 of the case 10 are attached. The pipe 110 is attached so that its central axis is orthogonal to the central axes of the light guides 17 and 19.
[0019]
On the other hand, as shown in FIGS. 4 and 5, a ring-shaped rubber wiper (wiper blade) 23 is installed in the chamber 11. The wiper 23 is screwed onto a screw screw 27 via an arm 25 and is configured to be driven in the direction of arrow C by a motor 29 that rotates the screw screw 27. The motor 29 is driven periodically by a timer.
[0020]
In order to measure the transmittance of the sewage treatment effluent by the transmittance measurement unit S, the sewage treatment effluent is flowed into the chamber 11, and at the same time, the reference lamp 21 is turned on to send the light from the light guide 19 to the sewage treatment. It guide | induces to the light guide 17 through discharged water, enters into the light-receiving part 13, and measures the illumination intensity. And the transmittance | permeability of sewage treatment effluent can be calculated by converting and calculating the attenuation amount of this illumination intensity.
[0021]
On the other hand, since the surfaces that come into contact with the sewage treatment effluent water of the light guides 17 and 19 become dirty, the motor 29 is periodically driven to wipe the surfaces of the light guides 17 and 19 with the wiper 23.
[0022]
Next, FIG. 6 is a block diagram of the control means used in the continuous transmittance meter for the ultraviolet sterilizer. As shown in the figure, the control means inputs and calculates signals from the illuminance meter 89, the continuous transmittance meter A and the flow meter 93 shown in FIG. And a warning unit 33 provided separately. Here, the alarm unit 33 is composed of, for example, a central control panel, and (1) the sewage treatment of the sewage treatment effluent is poor (that is, the transmittance is reduced), or (2) the lamp life (remaining usage time and (Current lamp illuminance of the ultraviolet lamp 82), (3) display that the target sterilization rate cannot be achieved, or display that the spare ultraviolet sterilizer 80 'separately installed is driven.
[0023]
Next, the operation of the continuous transmittance meter for the ultraviolet sterilizer will be described. First, in FIG. 1, the flow rate adjusting valve 91 and the valve 95 are opened to allow the sewage treatment effluent water to flow through the pipe 100, and the ultraviolet ray sterilizer 80 is turned on to sterilize the ultraviolet ray lamp 82. In order to measure the permeability of the sewage treatment effluent, the solenoid valves V1, V2, and V5 are closed in FIG. 2 (the manual valve V6 is normally closed), the solenoid valves V3 and V4 are opened, and the circulation pump P is turned on. To drive. A part of the sewage treatment effluent sterilized by this is branched into the pipe 110 and flows through the pipe 115 and is circulated to the upstream side of the ultraviolet sterilizer 80 through the transmittance measuring unit S. And in the transmittance | permeability measurement part S, the transmittance | permeability of sewage treatment effluent water is measured continuously. By continuously measuring the transmittance in this way, the transmittance of the sewage treatment effluent can be continuously and automatically measured by remote operation.
[0024]
By the way, in order to measure the accurate transmittance in the transmittance measuring unit S, the transmittance in the transmittance measuring unit S is periodically measured using a reference liquid whose transmittance is known. It is necessary to calibrate the measured value of the transmittance measuring unit S by comparing with the real transmittance of the liquid. The method is performed as follows.
[0025]
First, the solenoid valve V3 is closed from the above state, the solenoid valves V1 and V2 are opened, and the circulation pump P is driven, so that the sewage treatment effluent after sterilization is passed to the safety filter F, the activated carbon filter AC, and the hollow fiber filter MF. Through this, the SS (floating solid) component and the COD (chemical oxygen demand) component are removed, and the transmittance is measured by the transmittance measuring unit S and then returned to the pipe 110. The treated water that has passed through these filters is a standard solution whose permeability has been measured in advance by the method described below (the permeability of the liquid that has passed through each filter and filtered is not affected by changes in the properties of the sewage treated water. Therefore, the transmittance measuring unit S is calibrated based on the transmittance of the reference solution. That is, the measured value is calibrated by comparing the transmittance value of the reference solution measured by the transmittance measuring unit S with the correct transmittance value measured in advance of the reference solution. This calibration may be performed every day or every hour, for example, and the interval can be arbitrarily changed according to the properties of the liquid.
[0026]
Here, the correct transmittance of the reference solution is measured in advance as follows. That is, by closing the solenoid valves V3 and V4 and opening the solenoid valves V1, V2 and V5 and driving the circulation pump P, the reference liquid is taken out from the drain pipe 125. Then, the transmittance is measured with a batch-type transmittance meter (calibrated with pure water) separately prepared for the taken out reference solution to obtain the correct transmittance of the reference solution. This correct transmittance measurement may be performed, for example, once every six months and once a year.
[0027]
As described above, according to the present invention, not only can the sewage treatment effluent be continuously measured, but a reference liquid having a certain permeability can be directly produced from the sewage treatment effluent, so that tap water or the like is separately prepared. Even without it, the calibration can be performed easily, accurately and quickly.
[0028]
As another calibration method of the transmittance measuring unit S, the solenoid valves V3, V5 and the manual valve V6 are opened, the solenoid valves V1, V2, V4 are closed, the pump P is driven, and pure water (that is, the transmittance) is supplied from the pipe 120. 100%) may be supplied, and this may be measured by the transmittance measuring unit S to directly calibrate the measured value of the transmittance measuring unit S.
[0029]
By continuously measuring the transmittance of the sewage treatment effluent as described above, the flow rate of the sewage treatment effluent and the illuminance of the ultraviolet lamp 82 can be controlled to the optimum state, and the optimum sterilization rate can be obtained. In other words, the ultraviolet sterilizer can be operated with the minimum necessary energy.
[0030]
Specifically, for example, as shown in FIG. 6, transmittance data can be accumulated by continuously inputting transmittance measured values by the continuous transmittance meter A to the control unit 31. On the other hand, from the transmittance and the ultraviolet illuminance and flow rate detected by the illuminance meter 89 and the flow meter 93, the optimum ultraviolet irradiation amount and flow rate for sterilization are calculated, and the illuminance adjustment of the ultraviolet lamp 82 is performed so as to be so. The flow rate adjustment by the flow rate adjustment valve 91 is performed.
[0031]
If the sterilization rate that can be guaranteed cannot be achieved by increasing the illuminance of the ultraviolet lamp 82 by calculating from the values of transmittance, flow rate, and ultraviolet illuminance and decreasing the flow rate by the flow rate adjusting valve 91, this is indicated as an alarm unit. For example, a message indicating that the target sterilization rate cannot be achieved is displayed, or a signal for operating the ultraviolet sterilizer 80 ′ separately installed is output as indicated by a dotted line in FIG. Further, when the cause is a decrease in transmittance due to poor pretreatment of sewage treatment effluent, this is detected by the measured value of the transmittance from the transmittance meter A and displayed on the alarm unit 33. Further, when the cause is due to the life of the ultraviolet lamp 82, this is detected by the measured value of illuminance from the illuminance meter 89 and the measured value of transmittance from the transmittance meter A and displayed on the alarm unit 33. Good. Further, it may be displayed how long the ultraviolet lamp 82 will last.
[0032]
In the above embodiment, sewage treatment effluent is used as the liquid to be sterilized, but the present invention is not limited to this, and may be used for sterilization of agricultural water drainage, reused water for purifying rivers, and the like. In short, any liquid can be applied as long as it is sterilized by ultraviolet rays. Moreover, there are various structures of the ultraviolet sterilizer 80 to be used, and any structure may be used.
[0033]
【The invention's effect】
As described in detail above, the present invention has the following excellent effects.
(1) The transmittance of the liquid for UV sterilization can be automatically measured continuously, and the UV sterilizer can be operated in an optimum state.
[0034]
(2) Since the transmittance of the apparatus can be automatically calibrated, it is easy to measure the transmittance with high reliability.
[0035]
(3) A reference solution (standard transmittance solution) required for calibration can be easily and automatically manufactured from a solution subject to UV sterilization without tap water or the like on site.
[0036]
(4) Since the wiper mechanism is provided in the continuous transmittance meter, the influence of dirt from the UV sterilization target liquid can be removed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a connection structure of a continuous transmittance meter A to an ultraviolet sterilizer.
FIG. 2 is a configuration diagram of a continuous transmittance meter A.
FIG. 3 is a side cross-sectional view showing a detailed structure of a transmittance measuring unit S.
4 is a cross-sectional view taken along the line AA in FIG. 3;
5 is a cross-sectional view taken along the line BB in FIG. 3;
FIG. 6 is a block diagram of the control means used in the continuous transmittance meter for the ultraviolet sterilizer.
[Explanation of symbols]
A Continuous transmittance meter 80 UV sterilizer 82 UV lamp 84 Chamber 89 Illuminance meter (UV sensor)
91 Flow control valve 93 Flow meter P Circulation pump (Standard permeability liquid production means)
F Security filter (standard transmittance liquid manufacturing means)
AC activated carbon filter (standard permeability liquid manufacturing means)
MF hollow fiber filter (standard transmittance liquid production means)
S Transmittance measuring part V1, V2, V3, V4, V5 Solenoid valve V6 Manual valve 10 Case 11 Chamber 13 Light receiving part 15 Light emitting part 17, 19 Light guide 21 Reference lamp 23 Wiper (wiper mechanism)
25 Arm (wiper mechanism)
27 Screw screw (wiper mechanism)
29 Motor (wiper mechanism)
31 Control part 33 Alarm part 125 Drain piping 80 'Ultraviolet sterilizer

Claims (4)

チャンバー内に殺菌対象液を流しながらこの殺菌対象液に紫外線を照射して殺菌する紫外線殺菌装置から殺菌対象液を取り出して殺菌対象液の透過率を連続的に測定する連続式透過率計と、前記連続式透過率計が測定した透過率の値に応じて前記紫外線の照度と前記チャンバーに流す殺菌対象液の流量の制御を行なう制御手段とを具備する紫外線殺菌装置において、
前記連続式透過率計には、前記殺菌対象液から標準透過率液を製造する標準透過率液製造手段を設けたことを特徴とする紫外線殺菌装置。
A continuous permeability meter that continuously measures the transmittance of the liquid to be sterilized by removing the liquid to be sterilized from the ultraviolet sterilizer that sterilizes by irradiating the liquid to be sterilized with ultraviolet rays while flowing the liquid to be sterilized in the chamber, In the ultraviolet sterilizer comprising the control means for controlling the illuminance of the ultraviolet light and the flow rate of the liquid to be sterilized to flow into the chamber according to the transmittance value measured by the continuous transmittance meter ,
An ultraviolet sterilization apparatus, wherein the continuous transmittance meter is provided with a standard transmittance liquid producing means for producing a standard transmittance liquid from the sterilization target liquid .
前記標準透過率液製造手段は、通常のゴミを取る保安フィルターと、有機物を取る活性炭フィルターと、中空糸フィルターと、前記各フィルターに殺菌対象液を供給するポンプとを具備して構成されていることを特徴とする請求項1記載の紫外線殺菌装置。The standard transmittance liquid producing means is configured to include a normal filter for removing dust, an activated carbon filter for taking organic substances, a hollow fiber filter, and a pump for supplying a liquid to be sterilized to each filter. The ultraviolet sterilizer according to claim 1 . 前記連続式透過率計は、発光部と受光部とを有してその間に殺菌対象液を流すことで受光部の受光する光の照度によってその透過率を測定する透過率測定部を具備し、さらに前記発光部と受光部間の前記殺菌対象液に触れる面を拭うワイパー機構を設けたことを特徴とする請求項1又は2記載の紫外線殺菌装置。The continuous transmittance meter has a transmittance measuring unit that has a light emitting unit and a light receiving unit, and measures the transmittance according to the illuminance of light received by the light receiving unit by flowing a liquid to be sterilized therebetween, The ultraviolet sterilizer according to claim 1 or 2, further comprising a wiper mechanism for wiping a surface that touches the liquid to be sterilized between the light emitting unit and the light receiving unit. 前記制御手段は、前記紫外線の照度と前記チャンバーに流す殺菌対象液の流量の制御によっては所定の殺菌率が得られないことを検出するとともに、該検出によって警報を発する警報手段を設けるか或いは該検出によって別途設置した紫外線殺菌装置を動作せしめることを特徴とする請求項1乃至3の内の何れか1項記載の紫外線殺菌装置。The control means detects that a predetermined sterilization rate cannot be obtained by controlling the illuminance of the ultraviolet light and the flow rate of the liquid to be sterilized flowing in the chamber, and is provided with an alarm means for issuing an alarm by the detection. The ultraviolet sterilizer according to any one of claims 1 to 3 , wherein an ultraviolet sterilizer installed separately is operated by detection.
JP22646799A 1999-08-10 1999-08-10 UV sterilizer Expired - Fee Related JP3920504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22646799A JP3920504B2 (en) 1999-08-10 1999-08-10 UV sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22646799A JP3920504B2 (en) 1999-08-10 1999-08-10 UV sterilizer

Publications (2)

Publication Number Publication Date
JP2001047040A JP2001047040A (en) 2001-02-20
JP3920504B2 true JP3920504B2 (en) 2007-05-30

Family

ID=16845568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22646799A Expired - Fee Related JP3920504B2 (en) 1999-08-10 1999-08-10 UV sterilizer

Country Status (1)

Country Link
JP (1) JP3920504B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791970B1 (en) * 2004-08-16 2010-11-17 Bacterioscan Detection of bacteria in fluids
US7820038B2 (en) 2005-03-29 2010-10-26 Kabushiki Kaisha Toshiba Ultraviolet radiation water treatment system
JP4138797B2 (en) * 2005-11-25 2008-08-27 株式会社荏原製作所 UV irradiation equipment
JP4970897B2 (en) * 2006-10-26 2012-07-11 株式会社日本フォトサイエンス UV irradiation system
US7883619B2 (en) * 2007-11-13 2011-02-08 Access Business Group International Llc Water treatment system with moisture detector
JP5276855B2 (en) * 2008-02-18 2013-08-28 株式会社日立製作所 Ultraviolet water treatment facility and its ultraviolet irradiation amount control device
WO2010125251A1 (en) * 2009-04-30 2010-11-04 Loïra Plant and method for removing xenobiotics from water using uv-v radiation
JP5353690B2 (en) * 2009-12-28 2013-11-27 岩崎電気株式会社 UV sterilizer
JP5414721B2 (en) * 2011-03-17 2014-02-12 株式会社東芝 Monitoring system for UV irradiation equipment
JP6067380B2 (en) * 2013-01-11 2017-01-25 スタンレー電気株式会社 UV irradiation equipment
US20140229414A1 (en) 2013-02-08 2014-08-14 Ebay Inc. Systems and methods for detecting anomalies
KR102596052B1 (en) * 2022-12-28 2023-10-31 주식회사 첨단랩 Water purification device using photocatalytic reaction
KR102570103B1 (en) * 2023-03-24 2023-08-24 주식회사 에코셋 Online UVT meter

Also Published As

Publication number Publication date
JP2001047040A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP3920504B2 (en) UV sterilizer
US7820038B2 (en) Ultraviolet radiation water treatment system
US6685825B1 (en) Water treatment system combining ozone injection and monitoring apparatuses
JP4264111B2 (en) UV irradiation system and water quality monitoring device
JP4468221B2 (en) Water treatment system using ultraviolet irradiation
CA2664021C (en) Optical radiation sensor system
JP4901250B2 (en) UV disinfection equipment
JP2010149020A (en) Ultraviolet sterilizer
JP2003305454A (en) Intake water quality controller
JP2009082774A (en) Ultraviolet water treatment system, and ultraviolet water treatment device and remote monitoring device used for this system
JP3475513B2 (en) Intake water quality control device
JP3934287B2 (en) UV sterilizer
US20070110632A1 (en) Light measurement automated zeroing and referencing system
JP5044634B2 (en) Water treatment system using ultraviolet irradiation
KR100299328B1 (en) Method and apparatus for measuring organic pollution of overflow water
JP4340181B2 (en) Potable water supply machine
JPH07209180A (en) Water quality monitor apparatus
JP5482307B2 (en) UV treatment equipment
KR101985781B1 (en) Apparatus for filtering
JP2008068203A (en) Ultraviolet sterilization system
KR100955301B1 (en) Sterilizing water apparatus using the ultra-violet ray lamp
JP2000140783A (en) Washing of water examination tank in continuous organic pollution monitor
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
JP4970897B2 (en) UV irradiation system
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees