JP3919918B2 - Process for producing optically active 2-halo-1- (substituted phenyl) ethanol - Google Patents

Process for producing optically active 2-halo-1- (substituted phenyl) ethanol Download PDF

Info

Publication number
JP3919918B2
JP3919918B2 JP2080298A JP2080298A JP3919918B2 JP 3919918 B2 JP3919918 B2 JP 3919918B2 JP 2080298 A JP2080298 A JP 2080298A JP 2080298 A JP2080298 A JP 2080298A JP 3919918 B2 JP3919918 B2 JP 3919918B2
Authority
JP
Japan
Prior art keywords
halo
ethanol
substituted phenyl
general formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2080298A
Other languages
Japanese (ja)
Other versions
JPH11215995A (en
Inventor
良彦 八十原
郁男 澤
真 上田
淳三 長谷川
昌 清水
道彦 片岡
大 和田
潤 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2080298A priority Critical patent/JP3919918B2/en
Publication of JPH11215995A publication Critical patent/JPH11215995A/en
Application granted granted Critical
Publication of JP3919918B2 publication Critical patent/JP3919918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学活性2−ハロ−1−(置換フェニル)エタノールの製造法に関する。更に詳しくは光学活性2−ハロ−1−(置換フェニル)エタノールは、光学活性を必要とする医薬品、農薬等の合成原料として有用な光学活性置換スチレンオキサイドへ極めて容易に誘導することができる化合物であり、特に、光学活性3′−クロロスチレンオキサイドは、抗肥満薬の合成中間体として重要な化合物である。
【0002】
【従来の技術】
光学活性2−ハロ−1−(置換フェニル)エタノールの製造方法として知られているものとしては、2−ハロ−1−(置換フェニル)エタノンに微生物を作用させることにより製造する方法が開示されている(特開平4−218384)が、この方法により製造できる化合物の立体配置は(−)体すなわち(R)体のみである。また、基質の仕込み濃度が低く実用的とは言い難い。一方、光学活性スチレンオキサイドの製造方法については、光学活性2−ハロ−1−(置換フェニル)エタノールをアルカリ条件下で閉環する方法が開示されている(特開平4−218384)。また、クロロ置換スチレンのノカルディア・コラリーナによるエポキシ化により72〜86%eeを得たという報告(有機合成化学、43、162(1987))がある。また、クロロ置換ベンズアルデヒドとジメチルスルフォニウムメテリドとの相間移動触媒反応によって合成する方法があるが、光学純度が極めて低い(特開昭51−105024)。
【0003】
【発明が解決しようとする課題】
本発明者らは、光学活性2−ハロ−1−(置換フェニル)エタノールの効率的な製造法を開発すべく検討を重ねた結果、2−ハロ−1−(置換フェニル)エタノンを立体選択的に還元し、光学活性2−ハロ−1−(置換フェニル)エタノールに変換する能力を有するいままでに報告例のない酵素源を発見し、本発明を完成するに至った。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決すべくを鋭意検討した結果、本発明を完成するに至った。
即ち、本発明の第1は、一般式[1]
【0005】
【化9】

Figure 0003919918
【0006】
(式中、Xは塩素原子又は臭素原子を示し、置換基R1、R2、R3は水素原子、塩素原子、フッ素原子、メチル基、メトキシ基を示す。ただし、置換基すべてが水素原子の場合は除く。)で示される2−ハロ−1−(置換フェニル)エタノンを、
一般式[2]
【0007】
【化10】
Figure 0003919918
【0008】
(式中、X及び置換基R1、R2、R3は一般式[1]と同じ。)で示される(R)−2−ハロ−1−(置換フェニル)エタノールを生成する能力を有するオガタエア属、デバリオマイセス属に属する微生物群の中から選ばれた微生物の培養液、菌体または菌体処理物に作用させ、生成する一般式[2]で示される(R)−2−ハロ−1−(置換フェニル)エタノールを採取することを特徴とする(R)−2−ハロ−1−(置換フェニル)エタノールの製造法に関する。
【0014】
本発明の第は、一般式[1]
【0015】
【化13】
Figure 0003919918
【0016】
(式中、Xは塩素原子又は臭素原子を示し、置換基R1、R2、R3は水素原子、塩素原子、フッ素原子、メチル基、メトキシ基を示す。ただし、置換基すべてが水素原子の場合は除く。)で示される2−ハロ−1−(置換フェニル)エタノンを、
一般式[3]
【0017】
【化14】
Figure 0003919918
【0018】
(式中、X及び置換基R1、R2、R3は一般式[1]と同じ。)で示される(S)−2−ハロ−1−(置換フェニル)エタノールを生成する能力を有するヤマダジーマ属、シュードモナス属、ブレバンディモナス属、クリプトコッカス属に属する微生物群の中から選ばれた微生物の培養液、菌体または菌体処理物に作用させ、生成した一般式[3]で示される(S)−2−ハロ−1−(置換フェニル)エタノールを採取することを特徴とする(S)−2−ハロ−1−(置換フェニル)エタノールの製造法に関する。
【0025】
【発明の実施の形態】
以下、本発明について詳述する。
本発明に用いる2−ハロ−1−(置換フェニル)エタノンを不斉還元し、2−ハロ−1−(置換フェニル)エタノールに変換する微生物は、以下に説明する方法によって見出すことができる。例えば、グルコース5%、ペプトン0.5%、リン酸二水素カリウム0.2%、リン酸水素二カリウム0.1%、硫酸マグネシウム0.02%、酵母エキス0.1%の組成からなるA培地50ml(pH6.5)を500ml容坂口フラスコに入れ殺菌後、微生物を植え、30℃で2〜3日間振とうする。その後、菌体を遠心分離により集め2−クロロ−1−(3′−クロロフェニル)エタノン0.1〜0.5%およびグルコース5%を含んだリン酸緩衝液25mlに懸濁し、500ml容坂口フラスコ中で2〜3日間30℃で振とうする。この際、遠心分離により得た菌体をデシケーター中またはアセトンにより乾燥したものを用いることもできる。さらに、これら微生物もしくはその処理物と2−クロロ−1−(3′−クロロフェニル)エタノンを反応させる際に、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)および/または酸化型ニコチンアミドアデニンジヌクレオチドりん酸(NADP)とグルコース脱水素酵素を添加してもよい。変換反応ののち反応液と同体積の酢酸エチルを加え抽出を行ない生成する2−クロロ−1−(3′−クロロフェニル)エタノールを高速液体クロマトクロマトグラフィー(カラム:ダイセル化学工業株式会社製Chiralcel OJ、溶離液:n−ヘキサン/イソプロパノール=39/1、流速:1ml/min、検出:210nm、カラム温度:室温、溶出時間2−クロロ−1−(3′−クロロフェニル)エタノン:28分、(R)−2−クロロ−1−(3′−クロロフェニル)エタノール:37分、(S)−2−クロロ−1−(3′−クロロフェニル)エタノール:45分)により分析する。
本発明に使用しうる微生物としては、2−ハロ−1−(置換フェニル)エタノンを不斉還元して光学活性な2−ハロ−1−(置換フェニル)エタノールに変換する能力を有する微生物としてオガタエア属、デバリオマイセス属、キャンディダ属、ヤマダジーマ属、シュードモナス属、ブレバンディモナス属、クリプトコッカス属に属する微生物が使用しうるが、具体的には例えば、オガタエア・ミニュータ・バー・ミニュータ(Ogataea minuta var.minuta) IFO 0975、オガタエア・ミニュータ・バー・ノンファーメンタンス(Ogataea minuta var.nonfermentans) IFO 1473、デバリオマイセス・カルソニー(Debaryomyces carsonii) IFO 0946、キャンディダ・パラプシロシス(Candida parapsilosis) IFO 0585、キャンディダ・ツェイラノイデス(Candida zeylanoides) IFO 0719、ヤマダジーマ・ファリノサ(Yamadazyma farinosa) IFO 0459、ヤマダジーマ・ファリノサ(Yamadazyma farinosa) IFO 0193、シュードモナス・プチダ(Pseudomonas putida) IFO 12966、ブレバンディモナス・ディミヌータ(Brevundimonas diminuta) IFO 12697、クリプトコッカス・フミコラス(Cryptococcus humicolus) IFO 0760、クリプトコッカス・フミコラス(Cryptococcus humicolus) JCM1460などを用いることができる。これら微生物は一般に、入手または購入が容易な保存株から得ることができる。また、自然界から分離することもできる。なお、これらの微生物に変異を生じさせてより本反応に有利な性質を有する菌株を得ることもできる。
これらの微生物の培養には、通常これらの微生物が資化しうる栄養源であれば何でも使用しうる。たとえば、グルコース、シュークロース、マルトース等の糖類、乳酸、酢酸、クエン酸、プロピオン酸等の有機酸類、エタノール、グリセリン等のアルコール類、パラフィン等の炭化水素類、大豆油、菜種油等の油脂類、またはこれらの混合物等の炭素源や、硫酸アンモニウム、リン酸アンモニウム、尿素、酵母エキス、肉エキス、ペプトン、コーンスチープリカー等の窒素源を混合することもできる。更に、その他の無機塩、ビタミン類等の栄養源を適宜混合することもできる。
微生物の培養は通常一般の条件により行なうことができ、例えば、pH4.0〜9.5、温度範囲20℃〜45℃の範囲で、好気的に10〜96時間培養する。2−ハロ−1−(置換フェニル)エタノンに微生物を反応させる場合においては、通常、上記微生物の培養液をそのまま反応に使用することもできるが、培養液の濃縮物も用いることができる。また、培養液中の成分が反応に悪影響を与える場合には、培養液を遠心分離等により処理して得られる菌体または菌体処理物を使用することが好ましい。
上記微生物の菌体処理物としては特に限定されず、例えば、アセトンや五酸化二リンによる脱水処理またはデシケーターや扇風機を利用した乾燥によって得られる乾燥菌体、界面活性剤処理物、溶菌酵素処理物、固定化菌体または菌体を破砕した無細胞抽出標品などをあげることができる。更に、培養物より不斉還元反応を触媒する酵素を精製し、これを使用してもよい。
一般式[1]に示される2−ハロ−1−(置換フェニル)エタノンを一般式[2]、または[3]に示される光学活性な2−ハロ−1−(置換フェニル)エタノールに変換する能力を有する微生物の培養液、菌体あるいは菌体処理物、または当該能力を有する微生物から得られる当該活性を有する酵素を以下「酵素源」という。
また、微生物の培養液、菌体または菌体処理物としての当該能力の強弱に関係なく、その微生物より得られた酵素が当該活性を有していれば、その酵素をも酵素源とすることができる。こうした酵素としては、たとえば、4−クロロアセト酢酸エチルを還元して4−クロロ−3−ヒドロキシ酪酸エチルを与える酵素を用いることができる。この還元反応を触媒する酵素としては、キャンディダ属に属する微生物から得られる酵素であることが好ましい。
酵素源は多くの場合微生物から得ることができる。微生物の培養物からの酵素の抽出精製には、当業者に通常用いられている酵素の抽出精製法が用いられ得る。たとえば、培養液から遠心分離により菌体を集め、これを適当な緩衝液中に懸濁し、該菌体をグラスビーズ等の物理的手法、酵素等の生化学的手法などを用いて破砕または溶解したのち遠心分離により該溶液中の不溶物を除去して、粗酵素液を得ることができる。該粗酵素液を通常当業者が用いる方法、たとえば、硫酸アンモニウム沈殿、透析、クロマトグラフィーを単独または組み合わせて用いてさらに精製し得る。こうした粗酵素液を含む酵素精製操作の各段階の酵素画分が当該反応を触媒する場合、これらを酵素源として使用することができる。また、当該反応を触媒する酵素遺伝子を単離し、遺伝子工学的手法により得られる組み換え微生物の培養液、菌体または菌体処理物もまた酵素源として使用可能である。このようにして得られる当該反応を触媒する酵素としては、たとえば、PCT/JP97/03051記載のキャンディダ属に属する微生物から得られる以下の(1)から(7)の理化学的性質を有する酵素S1を例示することができる。
(1)作用:
NADPHを補酵素として、4−クロロアセト酢酸エチルに作用し、(S)−4−クロロ−3−ヒドロキシ酪酸エチルを生成する、
(2)基質特異性:
4−クロロアセト酢酸エチルに対して強い活性を示し、アセト酢酸エチルには実質的に活性を示さない、
(3)至適pH:pH5.5〜6.5、
(4)至適温度:50〜55℃、
(5)分子量:ゲル濾過分析において約76000、SDSポリアクリルアミド電気泳動分析において約32000、
(6)熱安定性:pH7.0で30分間処理したときに約40℃まで安定である、および
(7)阻害剤:水銀イオン、クエルセチンにより阻害される。
【0026】
また、以下の(1)から(5)の理化学的性質を有するキャンディダ属微生物由来のカルボニル還元酵素S4も例示することができる。
(1)作用:
NADPHを補酵素として、4−クロロアセト酢酸エチルに作用し、(S)−4−クロロ−3−ヒドロキシ酪酸エチルを生成する、
(2)基質特異性:
4−クロロアセト酢酸エチルに活性を示し、ケトパントイルラクトンに対して強い活性を示す、
(3)至適pH:pH6.0、
(4)至適温度:50℃、および
(5)分子量:ゲル濾過分析において約86000、SDSポリアクリルアミド電気泳動分析において約29000。
還元反応の際には、基質である2−ハロ−1−(置換フェニル)エタノンを反応の初期に一括して添加してもよく、反応の進行にあわせて分割して添加してもよい。
また、反応時の温度は通常10〜60℃、好ましくは、20〜40℃であり。反応時のpHは2.5〜9、好ましくは、5〜9である。
反応液中の酵素源の量はこれらの基質を還元する能力に応じ適宜決定すればよい。また、反応液中の基質濃度は0.01〜50%(W/V)が好ましく、より好ましくは、0.1〜30%である。
反応は通常、振とうまたは通気攪拌しながら行なう。反応時間は基質濃度、酵素源の量およびその他の反応条件により適宜決定される。通常、2〜168時間で反応が終了するように各条件を設定することが好ましい。
還元反応を促進させるために、反応液にグルコース、エタノールなどのエネルギー源を1〜30%の割合で加えると優れた結果が得られるので好ましい。また、一般に生物学的方法による還元反応に必要とされている還元型ニコチンアミド・アデニンジヌクレオチド(NADH)、還元型ニコチンアミド・アデニンジヌクレオチドりん酸(NADPH)等の補酵素を添加することにより、反応を促進させることもできる。具体的には、反応液に直接これらを添加してもよく、NADH、NADPHを生成する反応系を酸化型の補酵素とともに反応液に添加してもよい。例えば、ギ酸脱水素酵素がギ酸から二酸化炭素と水とを生成する際にNADをNADHに還元する反応系や、グルコース脱水素酵素がグルコースからグルコノラクトンを生成する際にNADまたはNADPをNADHまたはNADPHにそれぞれ還元する反応系を利用することができる。また、トリトン(ナカライテスク株式会社製)、スパン(関東化学株式会社製)、ツイーン(ナカライテスク株式会社製)などの界面活性剤を反応液に添加することも効果的である。さらに、基質および/または還元反応の生成物であるアルコール体による反応の阻害を回避する目的で、酢酸エチル、酢酸ブチル、イソプロピルエーテル、トルエンなどの水に不溶な有機溶媒を反応液に添加してもよい。さらに、基質の溶解度を高める目的で、メタノール、エタノール、アセトン、テトラヒドロフラン、ジメチルスルホキシドなどの水に可溶な有機溶媒を添加することもできる。
還元反応により生成した光学活性な2−ハロ−1−(置換フェニル)エタノールの採取は、反応液から直接、あるいは菌体等を分離後、酢酸エチル、n−ヘキサン等の溶剤で抽出し、脱水後、蒸留あるいはシリカゲルカラムクロマトグラフィー等により精製すれば高純度の光学活性2−ハロ−1−(置換フェニル)エタノールが容易に得られる。
【0027】
上記の如くして得られた光学活性な2−ハロ−1−(置換フェニル)エタノールは、苛性ソーダ等のアルカリを等モル以上共存させ、加熱あるいは室温放置することにより容易に閉環し、光学活性な置換スチレンオキサイドに変換されうる。
【0028】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の記載において、「%」は特に断らない限り「重量%」を意味する。
実施例1
前記のA培地50mlを500ml容坂口フラスコに入れ殺菌後、表1に示す微生物をそれぞれ植菌した。そして30℃で2日間好気的に振とう培養を行なった。この培養液から遠心分離によって菌体を集め、2−クロロ−1−(3′−クロロフェニル)エタノン1%、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)0.06%、酸化型ニコチンアミドアデニンジヌクレオチドりん酸(NADP)0.06%、グルコース5%、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)14.3U/mlを含有する50mMリン酸緩衝液(pH6.0)20mlに懸濁し、500ml容坂口フラスコに入れて30℃、24時間振とう反応させた。反応後、反応液から同体積の酢酸エチルで光学活性2−クロロ−1−(3′−クロロフェニル)エタノールを2回抽出し、酢酸エチル層を高速液体クロマトグラフィーで分析して、反応率および光学純度を測定した。その結果を表1に示す。
【0029】
【表1】
Figure 0003919918
【0030】
実施例2
表2に示す微生物について、グルコース1%、ペプトン1.5%、リン酸水素二カリウム0.3%、硫酸マグネシウム0.02%、塩化ナトリウム0.2%、酵母エキス0.1%の組成からなるB培地(pH7.0)を用いたほかは実施例1と同様の操作を行ない、反応率および光学純度を測定した。その結果を表2に示す。
【0031】
【表2】
Figure 0003919918
【0032】
実施例3
A培地50mlを含む500ml容坂口フラスコ20本に、オガタエア・ミニュータ・バー・ノンファーメンタンス(Ogataea minuta var.nonfermentans) IFO 1473を植菌し、30℃で48時間振とう培養した。培養後菌体を遠心分離により集菌し、これにグルコース40g、NADP240mg、NAD240mg、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)80mgを含む50mMりん酸緩衝液(pH6.0)を加えて全量を800mlとした。さらに、基質である2−クロロ−1−(3′−クロロフェニル)エタノンを1.6g加えて還元反応を開始した。反応は30℃で、2M炭酸ナトリウム水溶液により反応液のpHを6.0に調整しながら攪拌しつつ行なった。反応液の一部を定期的にHPLCにより分析し、基質が枯渇している場合にはさらに基質1.6gを追加し反応を継続させた。この操作を繰り返しつつ約50時間反応を行なった。反応終了時のHPLC分析の結果によると、反応液の2−クロロ−1−(3′−クロロフェニル)エタノールの濃度は9.8mg/mlであった。反応終了後、1000mlの酢酸エチルで2回抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥したのち、減圧下脱溶剤し、オイル状物質を得た。このものを減圧蒸留(130℃/3mmHg)し、無色オイル状の(R)−2−クロロ−1−(3′−クロロフェニル)エタノール8.8gを得た。その比旋光度は[α](20,D)=−33.6゜(c=1.02)を示し、HPLC分析によれば光学純度99.3%eeであった。H-NMR(CDCl3)δppm 2.69(br,s,1H), 3.27〜3.90(m,2H),4.88(dd,1H),7.15〜7.54(m,4H)
実施例4
A培地50mlを含む500ml容坂口フラスコ20本に、ヤマダジーマ・ファリノサ(Yamadazyma farinosa) IFO 0459を植菌し、30℃で48時間振とう培養した。培養後菌体を遠心分離により集菌し、これにグルコース40g、NADP240mg、NAD240mg、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)80mgを含む50mMりん酸緩衝液(pH6.0)を加えて全量を800mlとした。さらに、基質である2−クロロ−1−(3′−クロロフェニル)エタノンを1.6g加えて還元反応を開始した。実施例3と同様の操作により還元反応を約50時間行なった。反応終了時のHPLC分析の結果によると、反応液の2−クロロ−1−(3′−クロロフェニル)エタノールの濃度は11.8mg/mlであった。反応終了後、1000mlの酢酸エチルで2回抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥したのち、減圧下脱溶剤し、オイル状物質を得た。このものを減圧蒸留(130℃/3mmHg)し、無色オイル状の(S)−2−クロロ−1−(3′−クロロフェニル)エタノール10.6gを得た。その比旋光度は[α](20,D)=33.5゜(c=1.02)を示し、HPLC分析によれば光学純度99.1%eeであった。H-NMR(CDCl3)δppm 2.69(br,s,1H), 3.27〜3.90(m,2H),4.88(dd,1H),7.15〜7.54(m,4H)
実施例5
B培地50mlを含む500ml容坂口フラスコ20本に、ブレバンディモナス・ディミヌータ(Brevundimonas diminuta) IFO 12697を植菌し、30℃で24時間振とう培養した。培養後菌体を遠心分離により集菌し、これにグルコース40g、NADP240mg、NAD240mg、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)80mgを含む50mMりん酸緩衝液(pH6.0)を加えて全量を800mlとした。さらに、基質である2−クロロ−1−(3′−クロロフェニル)エタノンを1.6g加えて還元反応を開始した。実施例3と同様の操作により還元反応を約50時間行なった。反応終了時のHPLC分析の結果によると、反応液の(S)−2−クロロ−1−(3′−クロロフェニル)エタノールの濃度は18.4mg/ml、光学純度は、84.2%eeであった。
実施例6
A培地8000mlを調製し、2000ml容坂口フラスコに400mlずつ分注して、120℃で20分間蒸気殺菌した。これらの培地にあらかじめ同培地中で前培養しておいたオガタエア・ミニュータ・バー・ノンファーメンタンス(Ogataea minuta var.nonfermentans) IFO 1473の培養液を5mlずつ接種し、30℃で2日間振とう培養した。この培養液から遠心分離により菌体を集め、生理食塩水にて2回洗浄した。得られた湿菌体を400mlの50mMりん酸緩衝液(pH7.0)に懸濁し、次いで菌体をダイノミル(Dyno−Mill社製)で破砕した。この菌体破砕物から遠心分離にて菌体残渣を除き、無細胞抽出液700mlを得た。大型試験菅に、2−クロロ−1−(3′−クロロフェニル)エタノン100mg、NADP0.6mg、グルコース500mg、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)143Uを秤取り、これに調製した無細胞抽出液10mlを加えて、30℃で24時間振とう反応させた。反応後、反応液を10mlの酢酸エチルで2回抽出し、得られた有機層を実施例1に示した方法により分析したところ、2−クロロ−1−(3′−クロロフェニル)エタノールへの反応率は60%、その光学純度は99.3%、立体配置は(R)体であった。
参考例1 キャンディダ属微生物からの酵素S1の調製
酵素活性の測定は、200mMりん酸緩衝液(pH7.0)に、基質4−クロロアセト酢酸エチル0.2mM、補酵素NADPH0.32mMおよび酵素を添加し、30℃で波長340nmの吸光度の減少を測定することにより行なう。この反応条件において、1分間に1μmolのNADPHをNADPに酸化する酵素活性を1unitと定義する。また、酵素反応により生成した4−クロロ−3−ヒドロキシ酪酸エチルの光学純度の測定は、光学分割カラムCHIRALCEL OB(ダイセル化学工業株式会社製)を用いたHPLC分析により行なう(移動相;ヘキサン/イソプロパノール=9/1、流速;0.8ml/ml、カラム温度;0℃、検出;215nm)。
【0033】
以下の組成からなる液体培地8000mlを調製し、2000ml容坂口フラスコに400mlずつ分注して、120℃で20分間蒸気殺菌した。
培地組成;
グルコース 5%
ポリペプトン 0.5%
KH2PO4 0.2%
2HPO4 0.1%
MgSO4/7H2O 0.02%
水道水
pH 6.5
これらの培地に、あらかじめ同培地にて前培養しておいたキャンディダ・マグノリエ(Candida magnoliae IFO 0705)の培養液を5mlずつ接種し、30℃で3日間振とう培養した。遠心分離によりこの培養液から菌体を集め、生理食塩水にて2回洗浄を行ない、湿菌体230gを得た。このうち180gを360mlの50mMりん酸緩衝液(pH7.0)に懸濁した後、菌体をダイノミル(Dyno-Mill社製)で破砕した。この菌体破砕物を遠心分離して残さを除き、無細胞抽出液760mlを得た。この無細胞抽出液に40%飽和となるように硫酸アンモニウムを添加し、生じた沈殿を遠心分離により除去し、上清を0.1%DTTを含む10mMりん酸緩衝液(pH7.0)に対して一晩透析した。これを同一緩衝液であらかじめ平衡化したDEAE sephacel(Pharmacia Biotech社製)カラムに供し、同緩衝液でカラムを洗浄した。素通りしてくる溶液から活性画分を回収し、終濃度4MとなるようにNaClを添加した。この活性画分を4MのNaClと0.1mMのDTTを含む10mMりん酸緩衝液(pH7.0)であらかじめ平衡化しておいたPhenyl sepharose CL-4B(Pharmacia Biotech社製)カラムに供し、酵素を吸着させた。同一緩衝液でカラムを洗浄の後、10mMりん酸緩衝液(pH7.0)を用い、NaCl(4Mから0Mまで)およびエチレングリコール(0%から50%(W/V)まで)のリニアグラジエントにより、活性画分を溶出させた。これを10mMりん酸緩衝液(pH7.0)に対して一晩透析した。
この透析液を、0.1mMDTTを含む10mMりん酸緩衝液(pH7.0)であらかじめ平衡化しておいたMono Q HR5/5(Pharmacia Biotech社製)カラムに供し、同一緩衝液で洗浄した。洗浄液中の活性画分を集め、限外濾過にて濃縮し、0.2MNaClおよび0.1mMDTTを含む10mMりん酸緩衝液(pH7.0)にてあらかじめ平衡化しておいたSuperdex 200 HR10/30(Pharmacia Biotech社製)カラムに供し、同緩衝液で溶出した。活性画分を集め精製酵素標品とした。
参考例2 キャンディダ属微生物から得られた酵素S1の酵素化学的性質
酵素活性の測定は、基本的には、200mMりん酸緩衝液(pH7.0)に、基質4−クロロアセト酢酸エチル0.2mM、補酵素NADPH0.32mM、および酵素溶液0.1mlを含む3.0mlの反応液中、30℃、1分間反応させ、波長340nmの吸光度の減少を測定することにより行なった。
(1)作用:
NADPHを補酵素として、4−クロロアセト酢酸エチルに作用し、光学純度99%ee以上の(S)−4−クロロ−3−ヒドロキシ酪酸エチルを生成した。
(2)基質特異性:
表3に示す各種カルボニル化合物を基質として、4−クロロアセト酢酸エチルと同様の条件で反応を行なった結果、本酵素は表3に示すような基質特異性を示した。
【0034】
【表3】
Figure 0003919918
【0035】
(3)至適pH:
緩衝液としてりん酸緩衝液、トリス−塩酸緩衝液を用いてpH5.0〜8.5の範囲で、上記の方法により4−クロロアセト酢酸エチルを基質とした場合の酵素活性を測定した。その結果、至適pHは5.5〜6.5であった。
(4)作用至適温度:
20〜60℃の温度での1分間の、4−クロロアセト酢酸エチルを基質とした場合の活性を測定した。その結果、至適温度は50〜55℃であった。
(5)熱安定性:
本酵素をpH7.0において40℃で30分間加熱したのちの4−クロロアセト酢酸エチルを基質とした場合の活性を測定した。その結果加熱処理前の90%の活性が残存していた。
(6)阻害剤:
反応液に、表4に示す濃度の各種の化合物を添加して、4−クロロアセト酢酸エチルを基質とした場合の活性を測定した。表4に示すように、本酵素はクエルセチンおよび水銀イオンにより阻害をうけた。
【0036】
【表4】
Figure 0003919918
【0037】
(7)分子量:
酵素の分子量の測定は、TSK-G3000Wカラムを用い、溶離液として0.1MNa2SO4および0.05%NaN3を含む100mMりん酸緩衝液(pH7.0)を用いた。この場合の分子量は約76000であった。酵素のサブユニットの分子量は、2%の2−メルカプトエタノール存在下、10%SDS−ポリアクリルアミドゲル電気泳働分析により標準蛋白の相対移動度から算出した。その結果、本酵素のサブユニットの分子量は約32000であった。
(8)有機溶媒耐性:
本酵素が溶解しているpH7.0のりん酸緩衝液に同体積の酢酸エチルまたは酢酸ブチルを添加し、28℃で30分間振とうののち、遠心分離により水相と有機相を分離した。水相中の残存する酵素活性を4−クロロアセト酢酸エチルを基質として測定した。その結果、酢酸エチルを用いた場合では72%、酢酸ブチルを用いた場合には85%の酵素活性の残存が認められた。
実施例7 キャンディダ属微生物からの酵素S4の調製
参考例1と同様の操作により得られた無細胞抽出液1100mlに60gのポリエチレングリコールを攪拌しながら加え、添加後約2時間放置した。その後遠心分離により得られた上清を0.1mMDTTを含む10mMりん酸緩衝液(pH7.0)に対し透析し、同緩衝液で平衡化したDEAE sephacel(Pharmacia Biotech社製)カラムに供した。つぎに同緩衝液でカラムを洗浄ののち、NaClの0Mから0.2Mのリニアグラジエントにより活性画分を溶出させた。この画分を同緩衝液に対して透析ののち、2M硫酸アンモニウムを含む同緩衝液で平衡化したButyl toyopearl 650(東ソー社製)に供した。硫酸アンモニウムを含まない同緩衝液により活性画分を溶出し、限外濾過により脱塩および濃縮した。この酵素液を同緩衝液で平衡化したMono Q HR 10/10(Pharmacia Biotech社製)カラムに供した。0.25MのNaClにより活性画分を溶出し、同緩衝液に対して透析した。これを、2M硫酸アンモニウムを含む同緩衝液で平衡化したAlkyl Superose HR 10/10(Pharmacia Biotech社製)に供した。エチレングリコールおよび硫酸アンモニウムによるリニアグラジエントにより溶出すると、目的の活性は前者の0%から10%および後者の2Mから0Mの画分に見い出され、これを精製酵素標品とした。
実施例8 キャンディダ属微生物から得られた酵素S4の酵素化学的性質
参考例2と同様の操作により酵素S4の諸性質を調べた。
(1)作用:
NADPHを補酵素として、4−クロロアセト酢酸エチルに作用し、光学純度51%eeの(S)−4−クロロ−3−ヒドロキシ酪酸エチルを生成する。
(2)基質特異性:
表5に示す各種カルボニル化合物を基質として、4−クロロアセト酢酸エチルと同様の条件で反応を行なった結果、表5に示すような基質特異性を示した。
【0038】
【表5】
Figure 0003919918
【0039】
(3)至適pH:
緩衝液としてりん酸緩衝液、トリス塩酸緩衝液を用いてpH5.0〜pH8.5の範囲で、参考例2の方法により酵素活性を測定した。その結果、4−クロロアセト酢酸エチルに作用する至適pHは6.0であった。
(4)至適温度:
20℃〜60℃の温度で1分間の、4−クロロアセト酢酸エチルを基質とした場合の酵素の活性を測定して至適温度を求めたところ、50℃であった。
(5)分子量:
酵素の分子量の測定は、参考例2の方法により行ない、ゲル濾過分析により約86000、SDSポリアクリルアミドゲル電気泳動分析により、約29000と算出された。
実施例9
参考例1で精製した酵素S1を5units、2−クロロ−1−(3′−クロロフェニル)エタノン25mg、NADP0.16mg、グルコース28mg、グルコース脱水素酵素(商品名:GLUCDH”Amano”II、天野製薬株式会社製)6unitsを含む100mMりん酸緩衝液(pH6.5)2.5mlを、30℃で24時間攪拌した。反応液を酢酸エチルで抽出し、脱溶剤したのち抽出物の分析を行なうと、反応率80%、光学純度99%ee以上の(S)−2−クロロ−1−(3′−クロロフェニル)エタノールが生成していた。
実施例10
実施例7で精製した酵素S4を用いて、実施例9と同様の操作を行ない、反応物を分析したところ、反応率50%、光学純度91%eeの(R)−2−クロロ−1−(3′−クロロフェニル)エタノールが生成していた。
実施例11
A培地50mlを500ml容坂口フラスコに入れ殺菌後、表6に示す微生物をそれぞれ植菌した。30℃で2日間好気的に振とう培養を行なった。この培養液から菌体を遠心分離によって集め、2−ブロモ−1−(3′−クロロフェニル)エタノン0.5%を0.3%グルコース含有100mMりん酸緩衝液(pH7.0)25mlに懸濁し、500ml容坂口フラスコに入れて30℃で48時間振とう反応させた。反応後、反応液から等量の酢酸エチルで2−ブロモ−1−(3′−クロロフェニル)エタノールを抽出し、酢酸エチル層をガスクロマトグラフィーで分析し、反応率を調べた。また、実施例1と同じ方法により光学純度を測定した。これらの結果を表6に示した。
【0040】
【表6】
Figure 0003919918
【0041】
実施例12
A培地3Lを含む5L容ミニジャーファーメンターにクリプトコッカス・フミコラス(Cryptococcus humicolus)IFO0760を植菌し、30℃、通気1vvm、攪拌500rpmにて24時間培養した。終了後、遠心分離により菌体を集め、750mlの水に懸濁し、2−ブロモ−1−(3′−クロロフェニル)エタノン7.5g、グルコース38gを添加し、pHを1N苛性ソーダ水溶液で7.0に保ちながら30℃、攪拌150rpmで24時間反応させた。反応後、750mlの酢酸エチルで2回抽出し、これを脱水し、減圧下脱溶剤し、油状物質を得た。このものを蒸留し(130℃/3mmHg)、無色オイル状の(S)−2−ブロモ−1−(3′−クロロフェニル)エタノール2.5gを得た。その比旋光度は[α](20、D)24.5(c=1,メタノール)を示し、HPLCによる光学純度は97%eeであった。
1H-NMR δppm 2.88(br,1H),3.35〜3.90(m,4H),4.90(dd,2H),6.98〜7.51(m,4H)
参考例3
実施例3で得られた(R)−2−クロロ−1−(3′−クロロフェニル)エタノール2gを等モル相当の40%苛性ソーダ水溶液、塩化メチレン10mlと混合し、50℃で6時間反応した。冷却後、塩化メチレン10mlを加え、有機層を飽和食塩水で洗浄し脱水濾過した後、塩化メチレンを脱溶剤し、粗エポキシド油状物を得た。このものを減圧蒸留(80℃、4mmHg)により精製し、無色オイル状の(R)―3′−クロロスチレンオキサイド1gを得た。その比旋光度は[α](20,D)=−67.5(c=1)であった。
1H-NMR(CDCl3) δppm 2.63(dd,1H),3.15(dd,1H),4.17(dd,1H),7.01〜7.51(m,4H)
【0042】
【発明の効果】
本発明によれば、光学活性2−ハロ−1―(置換フェニル)エタノールを効率的にかつ工業的規模で生産することが可能となる。得られる光学活性2−ハロ−1―(置換フェニル)エタノールは医薬品等の合成原料として有用な光学活性置換スチレンオキサイドへ容易に導くことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing optically active 2-halo-1- (substituted phenyl) ethanol. More specifically, optically active 2-halo-1- (substituted phenyl) ethanol is a compound that can be very easily derived into optically active substituted styrene oxide useful as a synthetic raw material for pharmaceuticals, agricultural chemicals and the like that require optical activity. In particular, optically active 3'-chlorostyrene oxide is an important compound as a synthetic intermediate for anti-obesity drugs.
[0002]
[Prior art]
As a known method for producing optically active 2-halo-1- (substituted phenyl) ethanol, a method for producing 2-halo-1- (substituted phenyl) ethanone by causing a microorganism to act is disclosed. However, the configuration of the compound that can be produced by this method is only the (−) isomer, ie, the (R) isomer. Moreover, it is difficult to say that the substrate concentration is low and practical. On the other hand, as a method for producing optically active styrene oxide, a method of ring-closing optically active 2-halo-1- (substituted phenyl) ethanol under alkaline conditions is disclosed (Japanese Patent Laid-Open No. 4-218384). There is also a report that 72-86% ee was obtained by epoxidation of chloro-substituted styrene with Nocardia Coralina (Organic Synthetic Chemistry, 43, 162 (1987)). Also, there is a method of synthesizing by a phase transfer catalyzed reaction of chloro-substituted benzaldehyde and dimethylsulfonium meteride, but the optical purity is extremely low (Japanese Patent Laid-Open No. 51-105024).
[0003]
[Problems to be solved by the invention]
As a result of repeated studies to develop an efficient production method of optically active 2-halo-1- (substituted phenyl) ethanol, the present inventors have stereoselectively selected 2-halo-1- (substituted phenyl) ethanone. Thus, the present invention has been completed by discovering an unprecedented source of enzyme having the ability to be reduced to optically active 2-halo-1- (substituted phenyl) ethanol.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the first of the present invention is the general formula [1]
[0005]
[Chemical 9]
Figure 0003919918
[0006]
(In the formula, X represents a chlorine atom or a bromine atom, and the substituents R1, R2, and R3 represent a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, and a methoxy group. However, when all the substituents are hydrogen atoms, 2-halo-1- (substituted phenyl) ethanone represented by
General formula [2]
[0007]
[Chemical Formula 10]
Figure 0003919918
[0008]
(Wherein X and substituents R 1, R 2 and R 3 are the same as in general formula [1].) Ogataae having the ability to produce (R) -2-halo-1- (substituted phenyl) ethanol, (R) -2-halo-1- (substituted) represented by the general formula [2] produced by reacting with a culture solution, fungus body or treated cell of a microorganism selected from the group of microorganisms belonging to the genus Devariomyces The present invention relates to a method for producing (R) -2-halo-1- (substituted phenyl) ethanol, characterized by collecting phenyl) ethanol.
[0014]
First of the present invention 2 Is the general formula [1]
[0015]
Embedded image
Figure 0003919918
[0016]
(In the formula, X represents a chlorine atom or a bromine atom, and the substituents R1, R2, and R3 represent a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, and a methoxy group. However, when all the substituents are hydrogen atoms, 2-halo-1- (substituted phenyl) ethanone represented by
General formula [3]
[0017]
Embedded image
Figure 0003919918
[0018]
(Wherein X and substituents R 1, R 2 and R 3 are the same as those in the general formula [1].) Having the ability to produce (S) -2-halo-1- (substituted phenyl) ethanol, (S) − represented by the general formula [3] generated by acting on a culture solution, fungus body or treated product of a microorganism selected from the group of microorganisms belonging to the genus Pseudomonas, Brebandimonas, and Cryptococcus The present invention relates to a method for producing (S) -2-halo-1- (substituted phenyl) ethanol, which comprises collecting 2-halo-1- (substituted phenyl) ethanol.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
A microorganism that asymmetrically reduces 2-halo-1- (substituted phenyl) ethanone used in the present invention and converts it into 2-halo-1- (substituted phenyl) ethanol can be found by the method described below. For example, A composed of 5% glucose, 0.5% peptone, 0.2% potassium dihydrogen phosphate, 0.1% dipotassium hydrogen phosphate, 0.02% magnesium sulfate, and 0.1% yeast extract. 50 ml of medium (pH 6.5) is placed in a 500 ml Sakaguchi flask, sterilized, and then microorganisms are planted and shaken at 30 ° C. for 2 to 3 days. Thereafter, the cells were collected by centrifugation and suspended in 25 ml of a phosphate buffer containing 0.1-0.5% 2-chloro-1- (3′-chlorophenyl) ethanone and 5% glucose, and a 500 ml Sakaguchi flask. Shake at 30 ° C for 2-3 days. Under the present circumstances, what dried the microbial cell obtained by centrifugation in the desiccator or acetone can also be used. Furthermore, oxidized nicotinamide adenine dinucleotide (NAD) and / or oxidized nicotinamide adenine dinucleotide phosphate when reacting these microorganisms or treated products thereof with 2-chloro-1- (3′-chlorophenyl) ethanone (NADP) and glucose dehydrogenase may be added. After the conversion reaction, 2-chloro-1- (3′-chlorophenyl) ethanol, which is extracted by adding the same volume of ethyl acetate as the reaction solution, is extracted with high performance liquid chromatography (column: Chiralcel OJ, manufactured by Daicel Chemical Industries, Ltd. Eluent: n-hexane / isopropanol = 39/1, flow rate: 1 ml / min, detection: 210 nm, column temperature: room temperature, elution time 2-chloro-1- (3′-chlorophenyl) ethanone: 28 minutes, (R) 2-chloro-1- (3′-chlorophenyl) ethanol: 37 minutes, (S) -2-chloro-1- (3′-chlorophenyl) ethanol: 45 minutes).
As a microorganism that can be used in the present invention, Ogata Air is a microorganism having the ability to asymmetrically reduce 2-halo-1- (substituted phenyl) ethanone and convert it into optically active 2-halo-1- (substituted phenyl) ethanol. Microorganisms belonging to the genus, Debariomyces, Candida, Yamadazima, Pseudomonas, Brevandimonas, Cryptococcus can be used.Specifically, for example, Ogataea minuta var.minuta (Ogataea minuta var.minuta ) IFO 0975, Ogataea minuta var.nonfermentans IFO 1473, Debaryomyces carsonii IFO 0946, Candida parapsilosis IFO 0585, Candida ceiranoides Candida zeylanoides) IFO 0719, Yamadazima Farinosa (Yamadazyma farinosa) IFO 0459, Yamadazyma farinosa IFO 0193, Pseudomonas putida IFO 12966, Brevundimonas diminuta IFO 12697, Cryptococcus fumicocus 760 -Cumiptococcus humicolus JCM1460 etc. can be used. These microorganisms can generally be obtained from stocks that are readily available or purchased. It can also be separated from nature. It is also possible to obtain a strain having properties more advantageous for this reaction by causing mutation in these microorganisms.
For culturing these microorganisms, any nutrient source that can be assimilated by these microorganisms can be used. For example, sugars such as glucose, sucrose and maltose, organic acids such as lactic acid, acetic acid, citric acid and propionic acid, alcohols such as ethanol and glycerin, hydrocarbons such as paraffin, fats and oils such as soybean oil and rapeseed oil, Alternatively, a carbon source such as a mixture thereof, or a nitrogen source such as ammonium sulfate, ammonium phosphate, urea, yeast extract, meat extract, peptone, corn steep liquor or the like can be mixed. Furthermore, other nutrients such as inorganic salts and vitamins can be appropriately mixed.
The culture of microorganisms can be usually performed under general conditions. For example, the microorganism is aerobically cultured for 10 to 96 hours at a pH of 4.0 to 9.5 and a temperature range of 20 ° C to 45 ° C. In the case of reacting a microorganism with 2-halo-1- (substituted phenyl) ethanone, the culture solution of the microorganism can be used for the reaction as it is, but a concentrate of the culture solution can also be used. In addition, when the components in the culture solution adversely affect the reaction, it is preferable to use microbial cells or processed microbial cells obtained by treating the culture solution by centrifugation or the like.
The microbial cell processed product is not particularly limited. For example, a dried microbial cell obtained by dehydration using acetone or diphosphorus pentoxide or drying using a desiccator or a fan, a surfactant-treated product, or a lysed enzyme-treated product. Examples thereof include immobilized cells or cell-free extract preparations obtained by disrupting cells. Furthermore, an enzyme that catalyzes the asymmetric reduction reaction may be purified from the culture and used.
The 2-halo-1- (substituted phenyl) ethanone represented by the general formula [1] is converted into the optically active 2-halo-1- (substituted phenyl) ethanol represented by the general formula [2] or [3]. An enzyme having the activity obtained from a culture solution of a microorganism having ability, a microbial cell or a treated product of the microorganism, or a microorganism having the ability is hereinafter referred to as “enzyme source”.
In addition, if the enzyme obtained from the microorganism has the activity regardless of the strength of the ability as a culture solution, microbial cell or treated microbial product, the enzyme should also be used as the enzyme source. Can do. As such an enzyme, for example, an enzyme that reduces ethyl 4-chloroacetoacetate to give ethyl 4-chloro-3-hydroxybutyrate can be used. The enzyme that catalyzes this reduction reaction is preferably an enzyme obtained from a microorganism belonging to the genus Candida.
The enzyme source can often be obtained from a microorganism. For extraction and purification of enzymes from microbial cultures, enzyme extraction and purification methods commonly used by those skilled in the art can be used. For example, cells are collected from the culture solution by centrifugation, suspended in an appropriate buffer solution, and disrupted or dissolved using physical methods such as glass beads or biochemical methods such as enzymes. Thereafter, the insoluble matter in the solution is removed by centrifugation to obtain a crude enzyme solution. The crude enzyme solution can be further purified by methods usually used by those skilled in the art, for example, ammonium sulfate precipitation, dialysis, or chromatography alone or in combination. When the enzyme fraction in each stage of the enzyme purification operation including such a crude enzyme solution catalyzes the reaction, these can be used as an enzyme source. In addition, an enzyme gene that catalyzes the reaction is isolated, and a recombinant microorganism culture solution, fungus body, or treated cell product obtained by genetic engineering techniques can also be used as an enzyme source. As an enzyme that catalyzes the reaction thus obtained, for example, an enzyme S1 having the following physicochemical properties (1) to (7) obtained from a microorganism belonging to the genus Candida described in PCT / JP97 / 03051 Can be illustrated.
(1) Action:
Using NADPH as a coenzyme, it acts on ethyl 4-chloroacetoacetate to produce ethyl (S) -4-chloro-3-hydroxybutyrate,
(2) Substrate specificity:
Show strong activity against ethyl 4-chloroacetoacetate and substantially no activity against ethyl acetoacetate,
(3) Optimal pH: pH 5.5-6.5,
(4) Optimal temperature: 50-55 ° C.
(5) Molecular weight: about 76000 in gel filtration analysis, about 32000 in SDS polyacrylamide electrophoresis analysis
(6) Thermal stability: stable to about 40 ° C. when treated at pH 7.0 for 30 minutes, and
(7) Inhibitor: Inhibited by mercury ion and quercetin.
[0026]
Further, carbonyl reductase S4 derived from Candida microorganisms having the following physicochemical properties (1) to (5) can also be exemplified.
(1) Action:
Using NADPH as a coenzyme, it acts on ethyl 4-chloroacetoacetate to produce ethyl (S) -4-chloro-3-hydroxybutyrate,
(2) Substrate specificity:
Active against ethyl 4-chloroacetoacetate and strong against ketopantoyl lactone,
(3) Optimal pH: pH 6.0,
(4) Optimal temperature: 50 ° C., and
(5) Molecular weight: about 86000 in gel filtration analysis, about 29000 in SDS polyacrylamide electrophoresis analysis.
In the reduction reaction, the substrate 2-halo-1- (substituted phenyl) ethanone may be added all at once at the beginning of the reaction, or may be added in portions as the reaction proceeds.
Moreover, the temperature at the time of reaction is 10-60 degreeC normally, Preferably it is 20-40 degreeC. The pH during the reaction is 2.5-9, preferably 5-9.
The amount of the enzyme source in the reaction solution may be appropriately determined according to the ability to reduce these substrates. In addition, the substrate concentration in the reaction solution is preferably 0.01 to 50% (W / V), more preferably 0.1 to 30%.
The reaction is usually carried out with shaking or stirring with aeration. The reaction time is appropriately determined depending on the substrate concentration, the amount of enzyme source, and other reaction conditions. Usually, it is preferable to set each condition so that the reaction is completed in 2 to 168 hours.
In order to promote the reduction reaction, it is preferable to add an energy source such as glucose or ethanol to the reaction solution at a ratio of 1 to 30% because excellent results can be obtained. In addition, by adding coenzymes such as reduced nicotinamide / adenine dinucleotide (NADH) and reduced nicotinamide / adenine dinucleotide phosphate (NADPH), which are generally required for reduction reactions by biological methods. The reaction can also be promoted. Specifically, these may be added directly to the reaction solution, or a reaction system that generates NADH and NADPH may be added to the reaction solution together with the oxidized coenzyme. For example, a reaction system that reduces NAD to NADH when formate dehydrogenase generates carbon dioxide and water from formic acid, or NAD or NADP is converted to NADH or glucose when dehydrogenase generates gluconolactone from glucose. A reaction system that reduces each to NADPH can be used. It is also effective to add a surfactant such as Triton (manufactured by Nacalai Tesque), Span (manufactured by Kanto Chemical Co., Ltd.), Tween (manufactured by Nacalai Tesque) to the reaction solution. In addition, an organic solvent insoluble in water such as ethyl acetate, butyl acetate, isopropyl ether, toluene or the like is added to the reaction solution for the purpose of avoiding the inhibition of the reaction by the substrate and / or the alcohol which is the product of the reduction reaction. Also good. Furthermore, for the purpose of increasing the solubility of the substrate, an organic solvent soluble in water such as methanol, ethanol, acetone, tetrahydrofuran, dimethyl sulfoxide and the like can be added.
Collection of optically active 2-halo-1- (substituted phenyl) ethanol produced by the reduction reaction can be carried out directly from the reaction solution or after separation of the cells, etc., followed by extraction with a solvent such as ethyl acetate or n-hexane, and dehydration Thereafter, if it is purified by distillation or silica gel column chromatography, highly pure optically active 2-halo-1- (substituted phenyl) ethanol can be easily obtained.
[0027]
The optically active 2-halo-1- (substituted phenyl) ethanol obtained as described above easily closes the ring by coexisting an equimolar amount of alkali such as caustic soda and left standing at room temperature. Can be converted to substituted styrene oxide.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples. In the following description, “%” means “% by weight” unless otherwise specified.
Example 1
50 ml of the A medium was put into a 500 ml Sakaguchi flask and sterilized, and then the microorganisms shown in Table 1 were inoculated. Then, shaking culture was performed aerobically at 30 ° C. for 2 days. Bacteria were collected from the culture by centrifugation, 2-chloro-1- (3′-chlorophenyl) ethanone 1%, oxidized nicotinamide adenine dinucleotide (NAD) 0.06%, oxidized nicotinamide adenine dinucleotide. 50 mM phosphate buffer (pH 6.) containing 0.06% phosphate (NADP), glucose 5%, glucose dehydrogenase (trade name: GLUCDH “Amano” II, Amano Pharmaceutical Co., Ltd.) 14.3 U / ml 0) Suspended in 20 ml, placed in a 500 ml Sakaguchi flask and allowed to react with shaking at 30 ° C. for 24 hours. After the reaction, optically active 2-chloro-1- (3′-chlorophenyl) ethanol was extracted twice from the reaction solution with the same volume of ethyl acetate, and the ethyl acetate layer was analyzed by high performance liquid chromatography. Purity was measured. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003919918
[0030]
Example 2
About microorganisms shown in Table 2, glucose 1%, peptone 1.5%, dipotassium hydrogen phosphate 0.3%, magnesium sulfate 0.02%, sodium chloride 0.2%, yeast extract 0.1% The reaction rate and optical purity were measured in the same manner as in Example 1 except that B medium (pH 7.0) was used. The results are shown in Table 2.
[0031]
[Table 2]
Figure 0003919918
[0032]
Example 3
Ogataea minuta var. Nonfermentans IFO 1473 was inoculated into 20 500 ml Sakaguchi flasks containing 50 ml of medium A, and cultured with shaking at 30 ° C. for 48 hours. After incubation, the cells were collected by centrifugation, and this was collected with 50 mM phosphate buffer (containing 40 g glucose, 240 mg NADP, 240 mg NAD, 80 mg glucose dehydrogenase (trade name: GLUCDH “Amano” II, Amano Pharmaceutical Co., Ltd.)) pH 6.0) was added to make the total volume 800 ml. Furthermore, 1.6 g of the substrate 2-chloro-1- (3′-chlorophenyl) ethanone was added to initiate the reduction reaction. The reaction was carried out at 30 ° C. with stirring while adjusting the pH of the reaction solution to 6.0 with a 2M aqueous sodium carbonate solution. A part of the reaction solution was periodically analyzed by HPLC. When the substrate was depleted, 1.6 g of the substrate was further added to continue the reaction. The reaction was carried out for about 50 hours while repeating this operation. According to the result of HPLC analysis at the end of the reaction, the concentration of 2-chloro-1- (3′-chlorophenyl) ethanol in the reaction solution was 9.8 mg / ml. After completion of the reaction, extraction was performed twice with 1000 ml of ethyl acetate. The ethyl acetate layer was dried over anhydrous sodium sulfate and then desolvated under reduced pressure to obtain an oily substance. This was distilled under reduced pressure (130 ° C./3 mmHg) to obtain 8.8 g of colorless oily (R) -2-chloro-1- (3′-chlorophenyl) ethanol. The specific rotation was [α] (20, D) = − 33.6 ° (c = 1.02), and the optical purity was 99.3% ee according to HPLC analysis. H-NMR (CDCl Three ) Δppm 2.69 (br, s, 1H), 3.27 to 3.90 (m, 2H), 4.88 (dd, 1H), 7.15 to 7.54 (m, 4H)
Example 4
Yamadazyma farinosa IFO 0459 was inoculated into 20 500 ml Sakaguchi flasks containing 50 ml of medium A, and cultured with shaking at 30 ° C. for 48 hours. After incubation, the cells were collected by centrifugation, and this was collected with 50 mM phosphate buffer (containing 40 g glucose, 240 mg NADP, 240 mg NAD, 80 mg glucose dehydrogenase (trade name: GLUCDH “Amano” II, Amano Pharmaceutical Co., Ltd.)) pH 6.0) was added to make the total volume 800 ml. Furthermore, 1.6 g of the substrate 2-chloro-1- (3′-chlorophenyl) ethanone was added to initiate the reduction reaction. The reduction reaction was carried out for about 50 hours in the same manner as in Example 3. According to the result of HPLC analysis at the end of the reaction, the concentration of 2-chloro-1- (3′-chlorophenyl) ethanol in the reaction solution was 11.8 mg / ml. After completion of the reaction, extraction was performed twice with 1000 ml of ethyl acetate. The ethyl acetate layer was dried over anhydrous sodium sulfate and then desolvated under reduced pressure to obtain an oily substance. This was distilled under reduced pressure (130 ° C./3 mmHg) to obtain 10.6 g of colorless oily (S) -2-chloro-1- (3′-chlorophenyl) ethanol. The specific rotation was [α] (20, D) = 33.5 ° (c = 1.02), and the optical purity was 99.1% ee according to HPLC analysis. H-NMR (CDCl Three ) Δppm 2.69 (br, s, 1H), 3.27 to 3.90 (m, 2H), 4.88 (dd, 1H), 7.15 to 7.54 (m, 4H)
Example 5
Brevundimonas diminuta IFO 12697 was inoculated into 20 500 ml Sakaguchi flasks containing 50 ml of B medium and cultured with shaking at 30 ° C. for 24 hours. After incubation, the cells were collected by centrifugation, and this was collected with 50 mM phosphate buffer (containing 40 g glucose, 240 mg NADP, 240 mg NAD, 80 mg glucose dehydrogenase (trade name: GLUCDH “Amano” II, Amano Pharmaceutical Co., Ltd.)) pH 6.0) was added to make the total volume 800 ml. Furthermore, 1.6 g of the substrate 2-chloro-1- (3′-chlorophenyl) ethanone was added to initiate the reduction reaction. The reduction reaction was carried out for about 50 hours in the same manner as in Example 3. According to the results of HPLC analysis at the end of the reaction, the concentration of (S) -2-chloro-1- (3′-chlorophenyl) ethanol in the reaction solution was 18.4 mg / ml, and the optical purity was 84.2% ee. there were.
Example 6
8000 ml of A medium was prepared, 400 ml was dispensed into a 2000 ml Sakaguchi flask, and steam sterilized at 120 ° C. for 20 minutes. Inoculate 5 ml each of Ogataea minuta var. Nonfermentans IFO 1473 culture medium pre-cultured in the same medium and shake at 30 ° C. for 2 days. Cultured. Bacteria were collected from this culture solution by centrifugation and washed twice with physiological saline. The obtained wet cells were suspended in 400 ml of 50 mM phosphate buffer (pH 7.0), and then the cells were crushed with Dynomill (Dyno-Mill). The cell residue was removed from the crushed cell by centrifugation to obtain 700 ml of a cell-free extract. In a large test bowl, 2-chloro-1- (3′-chlorophenyl) ethanone 100 mg, NADP 0.6 mg, glucose 500 mg, glucose dehydrogenase (trade name: GLUCDH “Amano” II, Amano Pharmaceutical Co., Ltd.) 143U are weighed. 10 ml of the prepared cell-free extract was added thereto, and the mixture was shaken at 30 ° C. for 24 hours. After the reaction, the reaction solution was extracted twice with 10 ml of ethyl acetate, and the obtained organic layer was analyzed by the method shown in Example 1. As a result, the reaction to 2-chloro-1- (3′-chlorophenyl) ethanol was performed. The ratio was 60%, the optical purity was 99.3%, and the configuration was (R).
Reference Example 1 Preparation of enzyme S1 from Candida microorganisms
The enzyme activity was measured by adding the substrate 4-chloroacetoacetate 0.2 mM, coenzyme NADPH 0.32 mM and enzyme to 200 mM phosphate buffer (pH 7.0), and measuring the decrease in absorbance at a wavelength of 340 nm at 30 ° C. To do so. Under this reaction condition, the enzyme activity that oxidizes 1 μmol of NADPH to NADP per minute is defined as 1 unit. The optical purity of ethyl 4-chloro-3-hydroxybutyrate produced by the enzyme reaction is measured by HPLC analysis using an optical resolution column CHIRALCEL OB (manufactured by Daicel Chemical Industries, Ltd.) (mobile phase; hexane / isopropanol). = 9/1, flow rate; 0.8 ml / ml, column temperature; 0 ° C., detection; 215 nm).
[0033]
8000 ml of a liquid medium having the following composition was prepared, dispensed 400 ml each into a 2000 ml Sakaguchi flask, and steam sterilized at 120 ° C. for 20 minutes.
Medium composition;
Glucose 5%
Polypeptone 0.5%
KH 2 PO Four 0.2%
K 2 HPO Four 0.1%
MgSO Four / 7H 2 O 0.02%
Tap water
pH 6.5
Each of these media was inoculated with 5 ml of a Candida magnoliae IFO 0705 culture solution pre-cultured in the same medium, and cultured with shaking at 30 ° C. for 3 days. Bacteria were collected from this culture solution by centrifugation and washed twice with physiological saline to obtain 230 g of wet cells. Of these, 180 g was suspended in 360 ml of 50 mM phosphate buffer (pH 7.0), and the cells were disrupted with Dynomill (Dyno-Mill). This cell disruption was centrifuged to remove the residue, and 760 ml of cell-free extract was obtained. Ammonium sulfate was added to this cell-free extract so as to be 40% saturation, the resulting precipitate was removed by centrifugation, and the supernatant was added to 10 mM phosphate buffer (pH 7.0) containing 0.1% DTT. And dialyzed overnight. This was applied to a DEAE sephacel (Pharmacia Biotech) column pre-equilibrated with the same buffer, and the column was washed with the same buffer. The active fraction was recovered from the passing solution, and NaCl was added to a final concentration of 4M. This active fraction was applied to a Phenyl sepharose CL-4B (Pharmacia Biotech) column pre-equilibrated with 10 mM phosphate buffer (pH 7.0) containing 4 M NaCl and 0.1 mM DTT. Adsorbed. After washing the column with the same buffer, a linear gradient of NaCl (4M to 0M) and ethylene glycol (0% to 50% (W / V)) using 10 mM phosphate buffer (pH 7.0) The active fraction was eluted. This was dialyzed overnight against 10 mM phosphate buffer (pH 7.0).
This dialysate was applied to a Mono Q HR5 / 5 (Pharmacia Biotech) column that had been equilibrated in advance with 10 mM phosphate buffer (pH 7.0) containing 0.1 mM DTT, and washed with the same buffer. The active fractions in the washing solution were collected, concentrated by ultrafiltration, and Superdex 200 HR10 / 30 (equilibrated in advance with 10 mM phosphate buffer (pH 7.0) containing 0.2 M NaCl and 0.1 mM DTT). (The column was manufactured by Pharmacia Biotech) and eluted with the same buffer. The active fraction was collected and used as a purified enzyme preparation.
Reference Example 2 Enzymatic properties of enzyme S1 obtained from Candida microorganisms
The enzyme activity was measured basically by 3.0 ml containing 200 mM phosphate buffer (pH 7.0), substrate 4-chloroacetoacetate 0.2 mM, coenzyme NADPH 0.32 mM, and enzyme solution 0.1 ml. In the reaction solution at 30 ° C. for 1 minute, and the decrease in absorbance at a wavelength of 340 nm was measured.
(1) Action:
NADPH was used as a coenzyme to act on ethyl 4-chloroacetoacetate to produce ethyl (S) -4-chloro-3-hydroxybutyrate having an optical purity of 99% ee or higher.
(2) Substrate specificity:
As a result of carrying out the reaction under the same conditions as in ethyl 4-chloroacetoacetate using various carbonyl compounds shown in Table 3 as substrates, the enzyme showed substrate specificity as shown in Table 3.
[0034]
[Table 3]
Figure 0003919918
[0035]
(3) Optimum pH:
The enzyme activity was measured using 4-chloroacetoacetate as a substrate in the pH range of 5.0 to 8.5 using a phosphate buffer and Tris-HCl buffer as the buffer. As a result, the optimum pH was 5.5 to 6.5.
(4) Optimum temperature of action:
The activity was measured using ethyl 4-chloroacetoacetate as a substrate for 1 minute at a temperature of 20 to 60 ° C. As a result, the optimum temperature was 50 to 55 ° C.
(5) Thermal stability:
After the enzyme was heated at 40 ° C. for 30 minutes at pH 7.0, the activity was measured when ethyl 4-chloroacetoacetate was used as a substrate. As a result, 90% of the activity before the heat treatment remained.
(6) Inhibitor:
Various compounds having concentrations shown in Table 4 were added to the reaction solution, and the activity when ethyl 4-chloroacetoacetate was used as a substrate was measured. As shown in Table 4, this enzyme was inhibited by quercetin and mercury ions.
[0036]
[Table 4]
Figure 0003919918
[0037]
(7) Molecular weight:
The molecular weight of the enzyme was measured using a TSK-G3000W column with 0.1M Na as the eluent. 2 SO Four And 0.05% NaN Three 100 mM phosphate buffer solution (pH 7.0) was used. The molecular weight in this case was about 76000. The molecular weight of the subunit of the enzyme was calculated from the relative mobility of the standard protein by 10% SDS-polyacrylamide gel electrophoresis analysis in the presence of 2% 2-mercaptoethanol. As a result, the molecular weight of the subunit of this enzyme was about 32000.
(8) Organic solvent resistance:
The same volume of ethyl acetate or butyl acetate was added to a pH 7.0 phosphate buffer in which this enzyme was dissolved, and the mixture was shaken at 28 ° C. for 30 minutes, and then the aqueous phase and the organic phase were separated by centrifugation. The remaining enzyme activity in the aqueous phase was measured using ethyl 4-chloroacetoacetate as a substrate. As a result, 72% of the remaining enzyme activity was observed when ethyl acetate was used, and 85% when butyl acetate was used.
Example 7 Preparation of enzyme S4 from Candida microorganisms
60 g of polyethylene glycol was added to 1100 ml of the cell-free extract obtained by the same operation as in Reference Example 1 with stirring, and the mixture was allowed to stand for about 2 hours after the addition. Thereafter, the supernatant obtained by centrifugation was dialyzed against 10 mM phosphate buffer (pH 7.0) containing 0.1 mM DTT and applied to a DEAE sephacel (Pharmacia Biotech) column equilibrated with the same buffer. Next, the column was washed with the same buffer, and the active fraction was eluted with a linear gradient of NaCl from 0 M to 0.2 M. This fraction was dialyzed against the same buffer and then subjected to Butyl toyopearl 650 (manufactured by Tosoh Corporation) equilibrated with the same buffer containing 2M ammonium sulfate. The active fraction was eluted with the same buffer containing no ammonium sulfate, desalted and concentrated by ultrafiltration. This enzyme solution was applied to a Mono Q HR 10/10 (Pharmacia Biotech) column equilibrated with the same buffer. The active fraction was eluted with 0.25 M NaCl and dialyzed against the same buffer. This was subjected to Alkyl Superose HR 10/10 (Pharmacia Biotech) equilibrated with the same buffer containing 2M ammonium sulfate. When eluted with a linear gradient with ethylene glycol and ammonium sulfate, the desired activity was found in the former fractions of 0% to 10% and the latter 2M to 0M, and this was used as a purified enzyme preparation.
Example 8 Enzymatic chemistry of enzyme S4 obtained from Candida microorganisms
Various properties of enzyme S4 were examined by the same operation as in Reference Example 2.
(1) Action:
Using NADPH as a coenzyme, it acts on ethyl 4-chloroacetoacetate to produce ethyl (S) -4-chloro-3-hydroxybutyrate having an optical purity of 51% ee.
(2) Substrate specificity:
As a result of performing the reaction under the same conditions as for ethyl 4-chloroacetoacetate using various carbonyl compounds shown in Table 5 as substrates, the substrate specificity as shown in Table 5 was shown.
[0038]
[Table 5]
Figure 0003919918
[0039]
(3) Optimum pH:
The enzyme activity was measured by the method of Reference Example 2 in the range of pH 5.0 to pH 8.5 using phosphate buffer and Tris-HCl buffer as buffer. As a result, the optimum pH acting on ethyl 4-chloroacetoacetate was 6.0.
(4) Optimal temperature:
It was 50 degreeC when the activity of the enzyme when using 4-chloroacetoacetic acid ethyl as a substrate for 1 minute at the temperature of 20 to 60 degreeC was calculated | required, and the optimal temperature was calculated | required.
(5) Molecular weight:
The molecular weight of the enzyme was measured by the method of Reference Example 2, and calculated to be about 86000 by gel filtration analysis and about 29000 by SDS polyacrylamide gel electrophoresis analysis.
Example 9
5 units of enzyme S1 purified in Reference Example 1, 25 mg of 2-chloro-1- (3′-chlorophenyl) ethanone, 0.16 mg of NADP, 28 mg of glucose, glucose dehydrogenase (trade name: GLUCDDH “Amano” II, Amano Pharmaceutical Co., Ltd.) 2.5 ml of 100 mM phosphate buffer solution (pH 6.5) containing 6 units was stirred at 30 ° C. for 24 hours. The reaction solution was extracted with ethyl acetate, the solvent was removed, and the extract was analyzed. (S) -2-chloro-1- (3'-chlorophenyl) ethanol having a reaction rate of 80% and an optical purity of 99% ee or higher. Was generated.
Example 10
Using the enzyme S4 purified in Example 7, the same operation as in Example 9 was performed, and the reaction product was analyzed. As a result, (R) -2-chloro-1- with a reaction rate of 50% and an optical purity of 91% ee was obtained. (3'-Chlorophenyl) ethanol was produced.
Example 11
50 ml of medium A was placed in a 500 ml Sakaguchi flask and sterilized, and then the microorganisms shown in Table 6 were inoculated. The culture was aerobically shaken at 30 ° C. for 2 days. Bacteria were collected from this culture by centrifugation, and 0.5% 2-bromo-1- (3′-chlorophenyl) ethanone was suspended in 25 ml of 100 mM phosphate buffer (pH 7.0) containing 0.3% glucose. In a 500 ml Sakaguchi flask, the reaction was shaken at 30 ° C. for 48 hours. After the reaction, 2-bromo-1- (3′-chlorophenyl) ethanol was extracted from the reaction solution with an equal amount of ethyl acetate, and the ethyl acetate layer was analyzed by gas chromatography to examine the reaction rate. Further, the optical purity was measured by the same method as in Example 1. These results are shown in Table 6.
[0040]
[Table 6]
Figure 0003919918
[0041]
Example 12
Cryptococcus humicolus IFO0760 was inoculated into a 5 L minijar fermenter containing 3 L of A medium, and cultured at 30 ° C., aeration 1 vvm, and stirring at 500 rpm for 24 hours. After completion, the cells were collected by centrifugation, suspended in 750 ml of water, 7.5 g of 2-bromo-1- (3′-chlorophenyl) ethanone and 38 g of glucose were added, and the pH was adjusted to 7.0 with 1N aqueous sodium hydroxide solution. The mixture was allowed to react at 30 ° C. with stirring at 150 rpm for 24 hours. After the reaction, the mixture was extracted twice with 750 ml of ethyl acetate, dehydrated, and desolvated under reduced pressure to obtain an oily substance. This was distilled (130 ° C./3 mmHg) to obtain 2.5 g of colorless oily (S) -2-bromo-1- (3′-chlorophenyl) ethanol. The specific rotation was [α] (20, D) 24.5 (c = 1, methanol), and the optical purity by HPLC was 97% ee.
1H-NMR δppm 2.88 (br, 1H), 3.35 to 3.90 (m, 4H), 4.90 (dd, 2H), 6.98 to 7.51 (m, 4H)
Reference example 3
2 g of (R) -2-chloro-1- (3′-chlorophenyl) ethanol obtained in Example 3 was mixed with an equimolar equivalent of 40% aqueous sodium hydroxide solution and 10 ml of methylene chloride, and reacted at 50 ° C. for 6 hours. After cooling, 10 ml of methylene chloride was added, and the organic layer was washed with saturated brine, dehydrated and filtered, and then methylene chloride was removed from the solvent to obtain a crude epoxide oil. This was purified by distillation under reduced pressure (80 ° C., 4 mmHg) to obtain 1 g of colorless oily (R) -3′-chlorostyrene oxide. The specific rotation was [α] (20, D) = − 67.5 (c = 1).
1H-NMR (CDCl Three ) δppm 2.63 (dd, 1H), 3.15 (dd, 1H), 4.17 (dd, 1H), 7.01 to 7.51 (m, 4H)
[0042]
【The invention's effect】
According to the present invention, optically active 2-halo-1- (substituted phenyl) ethanol can be efficiently produced on an industrial scale. The obtained optically active 2-halo-1- (substituted phenyl) ethanol can be easily led to an optically active substituted styrene oxide useful as a synthetic raw material for pharmaceuticals and the like.

Claims (4)

一般式[1]
Figure 0003919918
(式中、Xは塩素原子又は臭素原子を示し、置換基R1、R2、R3は水素原子、塩素原子、フッ素原子、メチル基、メトキシ基を示す。ただし、置換基すべてが水素原子の場合は除く。)で示される2−ハロ−1−(置換フェニル)エタノンを、一般式[2]
Figure 0003919918
(式中、X及び置換基R1、R2、R3は一般式[1]と同じ。)で示される(R)−2−ハロ−1−(置換フェニル)エタノールを生成する能力を有するオガタエア属、デバリオマイセス属に属する微生物群の中から選ばれた微生物の培養液、菌体または菌体処理物に作用させ、生成する一般式[2]で示される(R)−2−ハロ−1−(置換フェニル)エタノールを採取することを特徴とする(R)−2−ハロ−1−(置換フェニル)エタノールの製造法。
General formula [1]
Figure 0003919918
(In the formula, X represents a chlorine atom or a bromine atom, and the substituents R1, R2, and R3 represent a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, and a methoxy group. However, when all the substituents are hydrogen atoms, 2-halo-1- (substituted phenyl) ethanone represented by the general formula [2]
Figure 0003919918
(Wherein X and substituents R 1, R 2 and R 3 are the same as in general formula [1].) Ogataae having the ability to produce (R) -2-halo-1- (substituted phenyl) ethanol, (R) -2-halo-1- (substituted) represented by the general formula [2] produced by reacting with a culture solution, fungus body or treated cell of a microorganism selected from the group of microorganisms belonging to the genus Devariomyces A method for producing (R) -2-halo-1- (substituted phenyl) ethanol, which comprises collecting phenyl) ethanol.
微生物が、オガタエア・ミニュータ・バー・ミニュータ、オガタエア・ミニュータ・バー・ノンファーメンタンス、デバリオマイセス・カルソニーからなる群から選ばれた微生物である、請求項1記載の製造法。  The production method according to claim 1, wherein the microorganism is a microorganism selected from the group consisting of Ogata Air Minuta Bar Minuta, Ogata Air Minuta Bar Nonfermentance, and Debaryomyces Carthony. 一般式[1]
Figure 0003919918
(式中、Xは塩素原子又は臭素原子を示し、置換基R1、R2、R3は水素原子、塩素原子、フッ素原子、メチル基、メトキシ基を示す。ただし、置換基すべてが水素原子の場合は除く。)で示される2−ハロ−1−(置換フェニル)エタノンを、一般式[3]
Figure 0003919918
(式中、X及び置換基R1、R2、R3は一般式[1]と同じ。)で示される(S)−2−ハロ−1−(置換フェニル)エタノールを生成する能力を有するヤマダジーマ属、シュードモナス属、ブレバンディモナス属、クリプトコッカス属に属する微生物群の中から選ばれた微生物の培養液、菌体または菌体処理物に作用させ、生成した一般式[3]で示される(S)−2−ハロ−1−(置換フェニル)エタノールを採取することを特徴とする(S)−2−ハロ−1−(置換フェニル)エタノールの製造法。
General formula [1]
Figure 0003919918
(In the formula, X represents a chlorine atom or a bromine atom, and the substituents R1, R2, and R3 represent a hydrogen atom, a chlorine atom, a fluorine atom, a methyl group, and a methoxy group. However, when all the substituents are hydrogen atoms, 2-halo-1- (substituted phenyl) ethanone represented by general formula [3]
Figure 0003919918
(Wherein X and substituents R 1, R 2 and R 3 are the same as those in the general formula [1].) Having the ability to produce (S) -2-halo-1- (substituted phenyl) ethanol, (S) − represented by the general formula [3] generated by acting on a culture solution, fungus body or treated product of a microorganism selected from the group of microorganisms belonging to the genus Pseudomonas, Brebandimonas, and Cryptococcus A method for producing (S) -2-halo-1- (substituted phenyl) ethanol, which comprises collecting 2-halo-1- (substituted phenyl) ethanol.
微生物が、ヤマダジーマ・ファリノサ、シュードモナス・プチダ、ブレバンジモナス・ディミヌータ、クリプトコッカス・フミコラスからなる群から選ばれた微生物である、請求項記載の製造法。The method according to claim 3 , wherein the microorganism is a microorganism selected from the group consisting of Yamadajima Falinosa, Pseudomonas putida, Brevanzymonas diminuta, Cryptococcus fumicolas.
JP2080298A 1998-02-02 1998-02-02 Process for producing optically active 2-halo-1- (substituted phenyl) ethanol Expired - Fee Related JP3919918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080298A JP3919918B2 (en) 1998-02-02 1998-02-02 Process for producing optically active 2-halo-1- (substituted phenyl) ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080298A JP3919918B2 (en) 1998-02-02 1998-02-02 Process for producing optically active 2-halo-1- (substituted phenyl) ethanol

Publications (2)

Publication Number Publication Date
JPH11215995A JPH11215995A (en) 1999-08-10
JP3919918B2 true JP3919918B2 (en) 2007-05-30

Family

ID=12037192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080298A Expired - Fee Related JP3919918B2 (en) 1998-02-02 1998-02-02 Process for producing optically active 2-halo-1- (substituted phenyl) ethanol

Country Status (1)

Country Link
JP (1) JP3919918B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000290A (en) * 2001-06-25 2003-01-07 Kanegafuchi Chem Ind Co Ltd Method for producing optically active (r)-2-chloro-1-(3'- chlorophenyl)ethanol
ATE416255T1 (en) * 2002-04-30 2008-12-15 Kaneka Corp CARBONYL REDUCTASE, ITS GENE AND USE
AU2003264502A1 (en) 2002-09-19 2004-04-08 Kaneka Corporation Novel carbonyl reductase, gene thereof and method of using the same
DE10248277A1 (en) * 2002-10-16 2004-05-06 X-Zyme Gmbh Preparation of optically active 1-hydroxy-2-alkylaminoethane compounds, useful as bronchodilators for treating e.g. asthma, by reacting an amine with reactive 2-substituted ethanol, also new intermediates
JP4736654B2 (en) * 2005-09-09 2011-07-27 住友化学株式会社 Reductase gene and its use
JP4772434B2 (en) * 2005-09-09 2011-09-14 住友化学株式会社 Process for producing optically active 2-hydroxy-5- (4-methoxyphenyl) -pentanoic acid ester
WO2007099764A1 (en) * 2006-02-28 2007-09-07 Kaneka Corporation Novel carbonyl reductase, gene for the reductase, and method for production of optically active alcohol using the reductase or the gene

Also Published As

Publication number Publication date
JPH11215995A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP5090910B2 (en) Process for producing optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters
JP2008517612A (en) Method for producing chiral alcohol
EP1791965A1 (en) Enantioselective biotransformation for preparation of protein tyrosine kinase inhibitor intermediates
JP3919918B2 (en) Process for producing optically active 2-halo-1- (substituted phenyl) ethanol
US11802299B2 (en) Enzyme-catalyzed method for synthesizing (2S, 3R)-2-substituted aminomethyl-3-hydroxybutyrate
TWI287579B (en) Stereoselective reduction of substituted oxo-butanes
JP4272231B2 (en) Method for producing chiral hydroxyaldehyde compound
Xie et al. NAD+-dependent (S)-specific secondary alcohol dehydrogenase involved in stereoinversion of 3-pentyn-2-ol catalyzed by Nocardia fusca AKU 2123
JP2009514542A (en) Process for producing 1,1,1-trifluoroisopropanol mainly comprising one enantiomer
JP4753273B2 (en) Method for producing optically active pyridine ethanol derivative
WO1999063103A1 (en) Yeast-based process for production of l-pac
EP1240347B1 (en) Yeast-based process for production of l-pac
US6168935B1 (en) Preparation of optically active alcohol substituted with one or more halogen atoms
KR20040010202A (en) α-Keto acid reductase, method for producing the same, and method for producing optically active α-hydroxy acids using the same
JPWO2003031636A1 (en) Process for producing optically active 3-hydroxypentanenitrile
US20020160398A1 (en) Chlorohydroxyacetone derivative and process for producing optically active chloropropanediol derivative from the same
KR20000057221A (en) Process for the preparation of optically active n-benzyl-3-pyrrolidinol
JP4160417B2 (en) Secondary alcohol dehydrogenase and production method thereof
JP4898129B2 (en) Process for producing optically active vinyl alcohols
JP5474280B2 (en) Process for producing optically active trans-form nitrogen-containing cyclic β-hydroxyester
JPH10502531A (en) Chiral synthesis of 2-hydroxycarboxylic acid using dehydrogenase
JP4536484B2 (en) Process for producing optically active 2-hydroxy-5- (4-methoxyphenyl) -pentanoic acid ester
JPH0147159B2 (en)
JP4000263B2 (en) Preparation of (3R, 5S)-(E) -7- [2-cyclopropyl-4- (4-fluorophenyl) -quinolin-3-yl] -3,5-dihydroxyhept-6-enoic acid esters Method
JPH10234363A (en) New enzyme and production of para-hydroxybenzaldehyde derivative, etc., using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees