JP3919407B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP3919407B2
JP3919407B2 JP32833999A JP32833999A JP3919407B2 JP 3919407 B2 JP3919407 B2 JP 3919407B2 JP 32833999 A JP32833999 A JP 32833999A JP 32833999 A JP32833999 A JP 32833999A JP 3919407 B2 JP3919407 B2 JP 3919407B2
Authority
JP
Japan
Prior art keywords
nox
reduction catalyst
oxygen
reducing agent
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32833999A
Other languages
Japanese (ja)
Other versions
JP2001140635A (en
Inventor
信也 佐藤
浩伸 茂木
浩 平林
正敏 下田
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP32833999A priority Critical patent/JP3919407B2/en
Publication of JP2001140635A publication Critical patent/JP2001140635A/en
Application granted granted Critical
Publication of JP3919407B2 publication Critical patent/JP3919407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンなどの内燃機関に用いる排気浄化装置に関するものである。
【0002】
【従来の技術】
従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中にNOx還元触媒を装備し、該NOx還元触媒の上流側に必要量の還元剤を添加して該還元剤をNOx還元触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させることによりNOxの排出濃度を低減し得るようにしたものがある。
【0003】
他方、理論空燃比より薄い空燃比で希薄燃焼(リーンバーン)を行わせることにより大幅な燃費の向上を図り得ることが広く知られているが、このような希薄燃焼運転を行うことを想定したディーゼルエンジンに関してもNOxの排出濃度を低減することは重要な課題となっている。
【0004】
しかしながら、一般的に、希薄燃焼運転時における酸素過剰存在下では、NOx還元触媒上において、還元剤がNOxと反応するよりも先に酸素と反応してしまうので、希薄燃焼運転時における実用化レベルの高いNOx低減効果を得ることが難しかった。
【0005】
そこで、希薄燃焼運転時においてもNOxを低減し得る触媒として、排気ガス中の酸素濃度が高い希薄燃焼運転時にNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低い理論空燃比運転時に還元剤の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒の実用化が現在検討されている。
【0006】
尚、この種のNOx吸蔵還元触媒としては、白金・バリウム・アルミナ触媒や、イリジウム・白金・バリウム・アルミナ触媒などが前述した如き性質を有するものとして既に知られている。
【0007】
【発明が解決しようとする課題】
しかしながら、NOx吸蔵還元触媒に吸蔵されたNOxを放出させて該NOx吸蔵還元触媒の再生を図るのに際し、いちいち運転状態を希薄燃焼運転から理論空燃比運転に切り替えていたのでは、せっかくの希薄燃焼運転による燃費向上のメリットが損なわれてしまうという不具合がある。
【0008】
このため、希薄燃焼運転としたままでNOx吸蔵還元触媒の良好な再生を図り得るようにすることが望まれているが、希薄燃焼運転時における酸素過剰存在下では、排気ガス中の酸素濃度が高いために、前述したNOx還元触媒の場合と同様に、HCなどの還元剤がNOxと反応するよりも先に酸素と反応して消費されてしまい、これによって、還元剤とNOxの反応選択性が低下してNOx吸蔵還元触媒の良好な再生を図ることができないという問題があった。
【0009】
本発明は、上述の実情に鑑みてなされたものであり、希薄燃焼運転時におけるNOx低減効果の高いNOx吸蔵還元触媒を使用し、該NOx吸蔵還元触媒を希薄燃焼運転状態でも良好に再生し得るようにした実用性の高い排気浄化装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明は、排気ガスが流通する排気管の途中に、排気ガス中の酸素濃度が高い時にNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低い時に還元剤の介在によりNOxを分解放出して還元浄化するNOx吸蔵還元触媒を装備すると共に、該NOx吸蔵還元触媒に対し大気から空気を別途導き得るように再生用ガス流路を設けて該再生用ガス流路の途中に酸素吸収材を装備し、前記NOx吸蔵還元触媒に対し還元剤を適宜に添加し且つ前記酸素吸収材により空気から酸素分を吸収して生成した窒素リッチガスを前記NOx吸蔵還元触媒に対し適宜に導入し得るように構成したことを特徴とする排気浄化装置、に係るものである。
【0011】
従って、このような排気浄化装置によれば、排気ガス中の酸素濃度が高い希薄燃焼運転時に、排気ガスをNOx吸蔵還元触媒に流して排気ガス中のNOxを硝酸塩の状態で吸蔵させることによりNOxの低減化を図り、然る後に、十分な量のNOxを硝酸塩の状態で吸蔵してNOx吸蔵還元触媒の吸蔵能力が低下してきた際には、再生用ガス流路を通し大気から空気を別途導き且つその空気から酸素吸収材により酸素分を吸収して生成した窒素リッチガスをNOx吸蔵還元触媒に導入することにより該NOx吸蔵還元触媒における還元性雰囲気を高め、ここに還元剤を添加することで該還元剤とNOxの反応選択性を向上し、これによりNOx吸蔵還元触媒からNOxを積極的に分解放出させて該NOx吸蔵還元触媒の良好な再生を図り、その放出したNOxをNOx吸蔵還元触媒上で前記還元剤と反応させて還元浄化させることが可能となる。
【0012】
尚、酸素吸収材は、NOx吸蔵還元触媒によるNOxの吸蔵を行わせている間や、十分な量の窒素リッチガスを何らかの貯蔵手段に貯え終えて非使用状態となっている間に、酸素分を放出させて再生させるようにすれば良い。
【0013】
また、本発明においては、酸素吸収材を並列に対で設け、両酸素吸収材を交互に再生し得るように構成しても良く、このようにすれば、一方の酸素吸収材に酸素分の吸収を行わせている間に、他方の酸素吸収材の再生を行うことが可能となるので、常に酸素吸収材の何れかを使用可能な状態に待機させておくことが可能となる。
【0014】
更に、本発明においては、NOx吸蔵還元触媒を並列に対で設け、両NOx吸蔵還元触媒を交互に再生し得るように構成しても良く、このようにすれば、一方のNOx吸蔵還元触媒にNOxの吸蔵を行わせている間に、他方のNOx吸蔵還元触媒の再生を行うことが可能となるので、常にNOx吸蔵還元触媒の何れかを使用可能な状態として連続的にNOxの低減化を図ることが可能となる。
【0015】
また、本発明においては、NOx吸蔵還元触媒より上流側の排気管に、還元剤をNOxと選択的に反応させる選択還元触媒を装備し、該選択還元触媒に対し還元剤を適宜に添加し得るように構成することが好ましく、このようにすれば、排気ガス中のNOxの一部が選択還元触媒により先行して還元浄化されることになるので、その下流側のNOx吸蔵還元触媒におけるNOx吸蔵の負担が大幅に軽減され、該NOx吸蔵還元触媒が吸蔵限界に到達するまでの時間を長くして再生サイクルの長期化を図ることが可能となる。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0017】
図1は本発明を実施する形態の一例を示すもので、図中1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタクーラ6へと送られて冷却され、該インタクーラ6から図示しないインテークマニホールドへと空気4が導かれてエンジン1の各シリンダに導入されるようにしてある。
【0018】
また、このエンジン1の各シリンダには、図示しない燃料タンクからの液体燃料(軽油)がエンジン1の各シリンダ内に噴射されて燃焼されるようにしてあり、エンジン1の各シリンダから排出された排気ガス7がエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス7が排気管9を介し車外へ排出されるようにしてある。
【0019】
そして、排気ガス7が流通する排気管9の途中には、排気ガス7中の酸素濃度が高い時にNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス7中の酸素濃度が低い時に後述する還元剤10(軽油)の介在によりNOxを分解放出して還元浄化するNOx吸蔵還元触媒11が装備されており、該NOx吸蔵還元触媒11を迂回するように排気管9にバイパス流路12が付設されている。
【0020】
ここで、排気管9に対するバイパス流路12の分岐箇所及び合流箇所には、排気管9を流れる排気ガス7を適宜にバイパス流路12に振り分けてNOx吸蔵還元触媒11を通過する排気ガス7の流量を制限し得るよう開度可変弁13,14,15,16が夫々設けられている。
【0021】
また、排気管9におけるNOx吸蔵還元触媒11の入側と、所要場所に設けた還元剤タンク17(燃料タンクと兼用することも可)との間が還元剤供給管18により接続されており、該還元剤供給管18の途中に装備した送給ポンプ19の駆動により還元剤タンク17内の還元剤10を噴射ノズル20を介しNOx吸蔵還元触媒11の入側に添加し得るようにしてある。
【0022】
更に、前記バイパス流路12の途中には、前記NOx吸蔵還元触媒11と対を成す別のNOx吸蔵還元触媒22が並列に設けられており、該NOx吸蔵還元触媒22の入側と還元剤タンク17との間が還元剤供給管23により接続され、該還元剤供給管23の途中に装備した送給ポンプ24の駆動により還元剤タンク17内の還元剤10を噴射ノズル25を介し前記NOx吸蔵還元触媒22の入側に添加し得るようにしてある。
【0023】
しかも、前記排気管9の途中に装備したNOx吸蔵還元触媒11と、前記バイパス流路12の途中に装備したNOx吸蔵還元触媒22との夫々の入側に対し、ターボチャージャ2のコンプレッサ2aとインタクーラ6との間の吸気管5から開度可変弁39を介し空気4を別途導き得るようにした再生用ガス流路40が接続されている。
【0024】
ここで、前記再生用ガス流路40の上流側には、エアコンプレッサ41とリザーバタンク42とが装備されており、吸気管5の途中から開度可変弁39を介して導いた空気4をエアコンプレッサ41により加圧し、その加圧した空気4をリザーバタンク42に貯蔵し得るようにしてある。
【0025】
そして、前記再生用ガス流路40におけるリザーバタンク42の下流側は、三方弁43を介し二つの分岐流路40A,40Bに分岐されてから再び合流するように構成されており、これら分岐流路40A,40Bの夫々には、多孔質カーボンなどの酸素吸収材44,45が並列に装備され、該各酸素吸収材44,45を抱持しているケーシングには、その内部を大気に開放するリリーフ流路46,47が接続されている。
【0026】
ここで、前記各リリーフ流路46,47及び前記各分岐流路40A,40Bにおける酸素吸収材44,45の出側には、流路を適宜に閉塞し得るストップ弁48,49及び50,51が夫々装備されており、更には、各分岐流路40A,40Bの合流箇所にも同様のストップ弁52が装備されている。
【0027】
このストップ弁52の下流側には、減圧弁53と三方弁54とが装備されており、該三方弁54からは二つの分岐流路40C,40Dに分岐されて、排気管9のNOx吸蔵還元触媒11とバイパス流路12のNOx吸蔵還元触媒22との夫々の入側に対し接続されている。
【0028】
また、特に本形態例においては、前記バイパス流路12の分岐箇所より上流側の排気管9に、還元剤10をNOxと選択的に反応させる選択還元触媒26(還元剤10が軽油の場合なら銅・ゼオライト触媒や白金・アルミナ触媒など)が装備されており、この選択還元触媒26の入側と還元剤タンク17との間が還元剤供給管27により接続され、該還元剤供給管27の途中に装備した送給ポンプ28の駆動により還元剤タンク17内の還元剤10を噴射ノズル29を介し前記選択還元触媒26の入側に添加し得るようにしてある。
【0029】
尚、図中21は排気管9の下流側に備えたマフラを示す。
【0030】
而して、このように排気浄化装置を構成した場合には、排気ガス7中の酸素濃度が高い希薄燃焼運転時に、開度可変弁13,14を開け且つ開度可変弁15,16を閉じて排気ガス7をNOx吸蔵還元触媒11に流し、これにより排気ガス7中のNOxを硝酸塩の状態で吸蔵させることによりNOxの低減化を図る。
【0031】
然る後に、十分な量のNOxを硝酸塩の状態で吸蔵してNOx吸蔵還元触媒11の吸蔵能力が低下してきた際には、開度可変弁15,16を開け且つ開度可変弁13,14を閉じて排気ガス7をバイパス流路12側へ迂回させ、これによりバイパス流路12側のNOx吸蔵還元触媒22にNOxの吸蔵を引き継がせる一方、吸蔵能力の低下した前記NOx吸蔵還元触媒11を以下のようにして再生する。
【0032】
即ち、ターボチャージャ2のコンプレッサ2aとインタクーラ6との間の吸気管5から開度可変弁39を介し空気4を再生用ガス流路40に導き、その空気4をエアコンプレッサ41で加圧してリザーバタンク42に貯蔵し、ストップ弁48,49,50,51,52を全て閉じた上で前記リザーバタンク42から圧縮空気4’の使用分を取り出し、これを三方弁43を介し分岐流路40Aの酸素吸収材44に導くようにすると、圧縮空気4’中の酸素分が酸素吸収材44に吸収されて窒素リッチガス4”が生成されるので、この窒素リッチガス4”をストップ弁50,52を開けて減圧弁53により減圧した後、三方弁43を介し分岐流路40Cに導いて前記NOx吸蔵還元触媒11の入側に導入し、これによりNOx吸蔵還元触媒11における還元性雰囲気を高め、ここに還元剤供給管18を通し還元剤10を添加することで該還元剤10とNOxの反応選択性を向上し、NOx吸蔵還元触媒11からNOxを積極的に分解放出させて該NOx吸蔵還元触媒11の良好な再生を図り、その放出したNOxをNOx吸蔵還元触媒11上で前記還元剤10と反応させて還元浄化させる。
【0033】
尚、吸蔵能力の低下したNOx吸蔵還元触媒11に窒素リッチガス4”を導入して前記NOx吸蔵還元触媒11を再生するに際し、該NOx吸蔵還元触媒11の温度が触媒活性温度域から逸脱しないように、開度可変弁13,14を適宜な開度で僅かに開けて排気ガス7の一部を混合するようにしても良い。
【0034】
そして、三方弁43を切り替えてリザーバタンク42から圧縮空気4’を分岐流路40Bの酸素吸収材45に導けば、前述と同様にして窒素リッチガス4”が生成されるが、この間にストップ弁50を閉じた状態でリリーフ流路46のストップ弁48を開け、酸素吸収材44を大気に開放して減圧することにより該酸素吸収材44に吸収されていた酸素分を放出させて前記酸素吸収材44の再生を図る。
【0035】
このように、酸素吸収材44,45のうちの一方に酸素分の吸収を行わせている間に、酸素吸収材44,45の他方の再生を行うようにすれば、常に酸素吸収材44,45の何れかを使用可能な状態に待機させておくことが可能となる。
【0036】
また、十分な量のNOxを硝酸塩の状態で吸蔵してNOx吸蔵還元触媒22の吸蔵能力が低下してきた際には、開度可変弁13,14を開け且つ開度可変弁15,16を閉じて排気ガス7がバイパス流路12側へ迂回しないようにし、これにより再生済みの排気管9側のNOx吸蔵還元触媒11にNOxの吸蔵を引き継がせる一方、吸蔵能力の低下した前記NOx吸蔵還元触媒22を前述と同様にして再生すれば良い。
【0037】
このように、NOx吸蔵還元触媒11,22のうちの一方にNOxの吸蔵を行わせている間に、NOx吸蔵還元触媒11,22のうちの他方の再生を行うようにすれば、常にNOx吸蔵還元触媒11,22の何れかを使用可能な状態として連続的にNOxの低減化を図ることが可能となる。
【0038】
ここで、本形態例においては、空気4をターボチャージャ2のコンプレッサ2aとインタクーラ6との間の吸気管5から導くようにしているが、吸気系統とは全く別の系統として再生用ガス流路を構成し、該再生用ガス流路に大気から空気4を取り込む専用のブロワを装備するようにしても良く、そのようにする場合には、前記のブロワをエンジン動力を利用して駆動させるようにすると良い。
【0039】
従って、本形態例によれば、NOx吸蔵還元触媒11,22を希薄燃焼運転状態でも良好に再生することができるので、希薄燃焼運転時におけるNOx低減効果の高いNOx吸蔵還元触媒11を使用した排気浄化装置の実用化を図ることができ、また、酸素吸収材44,45のうちの一方に酸素分の吸収を行わせている間に、酸素吸収材44,45の他方の再生を行うことができるので、常に酸素吸収材44,45の何れかを使用可能な状態に待機させておくことができ、更には、NOx吸蔵還元触媒11,22のうちの一方にNOxの吸蔵を行わせている間に、NOx吸蔵還元触媒11,22のうちの他方の再生を行うことができるので、常にNOx吸蔵還元触媒11,22の何れかを使用可能な状態として連続的にNOxの低減化を図ることもできる。
【0040】
しかも、特に本形態例においては、選択還元触媒26の入側に還元剤供給管27を通し還元剤10を添加して該還元剤10をNOxと選択的に反応させることができ、これによって、希薄燃焼運転時における酸素過剰存在下でも排気ガス7中のNOxの20〜30%程度を選択還元触媒26により先行して還元浄化することができるので、その下流側のNOx吸蔵還元触媒11におけるNOx吸蔵の負担を大幅に軽減することができ、該NOx吸蔵還元触媒11が吸蔵限界に到達するまでの時間を長くして再生サイクルの長期化を図ることができる。
【0041】
尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、例えば、図示例における対の酸素吸収材やNOx吸蔵還元触媒を夫々単体で設けた構成を採用したり、NOx吸蔵還元触媒の上流側の選択還元触媒を省略した構成を採用したりしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0042】
【発明の効果】
上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。
【0043】
(I)本発明の請求項1に記載の発明によれば、NOx吸蔵還元触媒を希薄燃焼運転状態でも良好に再生することができるので、希薄燃焼運転時におけるNOx低減効果の高いNOx吸蔵還元触媒を使用した排気浄化装置の実用化を図ることができる。
【0044】
(II)本発明の請求項2に記載の発明によれば、一方の酸素吸収材に酸素分の吸収を行わせている間に、他方の酸素吸収材の再生を行うことができるので、常に酸素吸収材の何れかを使用可能な状態に待機させておくことができる。
【0045】
(III)本発明の請求項3に記載の発明によれば、一方のNOx吸蔵還元触媒にNOxの吸蔵を行わせている間に、他方のNOx吸蔵還元触媒の再生を行うことができるので、常にNOx吸蔵還元触媒の何れかを使用可能な状態として連続的にNOxの低減化を図ることができる。
【0046】
(IV)本発明の請求項4に記載の発明によれば、排気ガス中のNOxの一部を選択還元触媒により先行して還元浄化させることができ、その下流側のNOx吸蔵還元触媒におけるNOx吸蔵の負担を大幅に軽減することができるので、該NOx吸蔵還元触媒が吸蔵限界に到達するまでの時間を長くして再生サイクルの長期化を図ることができる。
【図面の簡単な説明】
【図1】 本発明を実施する形態の一例を示す概略図である。
【符号の説明】
4 空気
4” 窒素リッチガス
7 排気ガス
9 排気管
10 還元剤
11 NOx吸蔵還元触媒
22 NOx吸蔵還元触媒
26 選択還元触媒
40 再生用ガス流路
44 酸素吸収材
45 酸素吸収材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust purification device used for an internal combustion engine such as a diesel engine.
[0002]
[Prior art]
Conventionally, in a diesel engine, a NOx reduction catalyst is provided in the middle of an exhaust pipe through which exhaust gas flows, and a necessary amount of a reducing agent is added upstream of the NOx reduction catalyst so that the reducing agent is placed on the NOx reduction catalyst. The exhaust concentration of NOx can be reduced by a reduction reaction with NOx (nitrogen oxide) in the exhaust gas.
[0003]
On the other hand, it is widely known that lean combustion can be performed at an air / fuel ratio thinner than the stoichiometric air / fuel ratio, so that significant improvement in fuel efficiency can be achieved. However, it is assumed that such lean combustion operation is performed. Reducing the NOx emission concentration is also an important issue for diesel engines.
[0004]
However, in general, in the presence of excess oxygen during lean combustion operation, since the reducing agent reacts with oxygen before reacting with NOx on the NOx reduction catalyst, the practical use level during lean combustion operation It was difficult to obtain a high NOx reduction effect.
[0005]
Therefore, as a catalyst capable of reducing NOx even during lean combustion operation, NOx is oxidized during lean combustion operation where the oxygen concentration in exhaust gas is high, and is temporarily stored in the form of nitrate, and the oxygen concentration in exhaust gas is The practical application of a NOx occlusion reduction catalyst having the property of decomposing and releasing NOx through the reduction agent during low stoichiometric air-fuel ratio operation to reduce and purify is currently under investigation.
[0006]
As this type of NOx occlusion reduction catalyst, platinum / barium / alumina catalyst, iridium / platinum / barium / alumina catalyst, etc. are already known as having the above-mentioned properties.
[0007]
[Problems to be solved by the invention]
However, when the NOx occluded by the NOx occlusion reduction catalyst is released to regenerate the NOx occlusion reduction catalyst, the operation state is switched from the lean combustion operation to the stoichiometric air fuel ratio operation every time. There is a problem that the merit of improving fuel efficiency by driving is impaired.
[0008]
For this reason, it is desired that the NOx occlusion reduction catalyst can be favorably regenerated while maintaining the lean combustion operation. However, in the presence of excessive oxygen during the lean combustion operation, the oxygen concentration in the exhaust gas is reduced. Therefore, as in the case of the NOx reduction catalyst described above, a reducing agent such as HC is consumed by reacting with oxygen before reacting with NOx, and thereby the reaction selectivity between the reducing agent and NOx. As a result, the NOx occlusion reduction catalyst cannot be successfully regenerated.
[0009]
The present invention has been made in view of the above circumstances, and uses a NOx occlusion reduction catalyst having a high NOx reduction effect at the time of lean combustion operation, and can successfully regenerate the NOx occlusion reduction catalyst even in a lean combustion operation state. An object of the present invention is to provide a highly practical exhaust gas purification device.
[0010]
[Means for Solving the Problems]
The present invention provides a reducing agent that oxidizes NOx when the oxygen concentration in the exhaust gas is high and temporarily stores it in the form of nitrate in the middle of the exhaust pipe through which the exhaust gas circulates and when the oxygen concentration in the exhaust gas is low Is equipped with a NOx occlusion reduction catalyst that decomposes and releases NOx through reduction and purifies it, and a regeneration gas flow path is provided so that air can be separately guided from the atmosphere to the NOx occlusion reduction catalyst. Equipped with an oxygen absorber in the middle of the path, a reducing agent is appropriately added to the NOx storage reduction catalyst, and nitrogen-rich gas generated by absorbing oxygen from the air by the oxygen absorption material is supplied to the NOx storage reduction catalyst. On the other hand, the present invention relates to an exhaust emission control device characterized in that it can be appropriately introduced.
[0011]
Therefore, according to such an exhaust purification device, during lean combustion operation in which the oxygen concentration in the exhaust gas is high, NOx in the exhaust gas is occluded in the form of nitrate by flowing the exhaust gas through the NOx storage and reduction catalyst. After that, when a sufficient amount of NOx is occluded in the form of nitrate and the storage capacity of the NOx occlusion reduction catalyst is reduced, air is separately supplied from the atmosphere through the regeneration gas flow path. Introducing nitrogen rich gas generated by absorbing oxygen from the air with an oxygen absorber into the NOx storage reduction catalyst to enhance the reducing atmosphere in the NOx storage reduction catalyst, and adding a reducing agent thereto The reaction selectivity between the reducing agent and NOx is improved, whereby NOx is actively decomposed and released from the NOx occlusion reduction catalyst to achieve good regeneration of the NOx occlusion reduction catalyst, and the released NOx On the NOx storing and reducing catalyst is reacted with the reducing agent it is possible to reduce and purify by.
[0012]
Note that the oxygen absorber absorbs oxygen during the NOx occlusion by the NOx occlusion reduction catalyst, or while the nitrogen-rich gas is stored in some storage means and is not in use. It can be released and regenerated.
[0013]
In the present invention, oxygen absorbers may be provided in pairs in parallel so that both oxygen absorbers can be regenerated alternately. In this way, one oxygen absorber has an oxygen content. Since the other oxygen absorbing material can be regenerated while the absorption is performed, any one of the oxygen absorbing materials can always be kept in a usable state.
[0014]
Furthermore, in the present invention, the NOx storage reduction catalyst may be provided in parallel as a pair so that both the NOx storage reduction catalysts can be regenerated alternately. While the NOx occlusion is being performed, the other NOx occlusion reduction catalyst can be regenerated, so that any NOx occlusion reduction catalyst can always be used and NOx can be continuously reduced. It becomes possible to plan.
[0015]
Further, in the present invention, the exhaust pipe upstream of the NOx storage reduction catalyst is equipped with a selective reduction catalyst that selectively reacts the reducing agent with NOx, and the reducing agent can be appropriately added to the selective reduction catalyst. In this way, a part of the NOx in the exhaust gas is reduced and purified in advance by the selective reduction catalyst. Therefore, the NOx occlusion in the NOx occlusion reduction catalyst on the downstream side thereof is performed. Thus, the time required for the NOx occlusion reduction catalyst to reach the occlusion limit can be lengthened to extend the regeneration cycle.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
FIG. 1 shows an example of an embodiment of the present invention. In the figure, reference numeral 1 denotes an engine that is a diesel engine. In the engine 1 shown here, a turbocharger 2 is provided. The guided air 4 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, from the intercooler 6 not shown. Air 4 is guided to the intake manifold and introduced into each cylinder of the engine 1.
[0018]
In each cylinder of the engine 1, liquid fuel (light oil) from a fuel tank (not shown) is injected into each cylinder of the engine 1 and burned, and discharged from each cylinder of the engine 1. Exhaust gas 7 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b is discharged outside the vehicle through the exhaust pipe 9.
[0019]
In the middle of the exhaust pipe 9 through which the exhaust gas 7 circulates, when the oxygen concentration in the exhaust gas 7 is high, NOx is oxidized and temporarily stored in the form of nitrate, and the oxygen concentration in the exhaust gas 7 is low. A NOx occlusion / reduction catalyst 11 that decomposes and releases NOx through reduction agent 10 (light oil), which will be described later, to reduce and purify the exhaust gas is provided. A bypass passage is provided in the exhaust pipe 9 to bypass the NOx occlusion reduction catalyst 11. 12 is attached.
[0020]
Here, the exhaust gas 7 flowing through the exhaust pipe 9 is appropriately distributed to the bypass flow path 12 at the branching point and the joining point of the bypass flow path 12 with respect to the exhaust pipe 9, and the exhaust gas 7 passing through the NOx storage reduction catalyst 11. Opening variable valves 13, 14, 15, and 16 are provided to limit the flow rate, respectively.
[0021]
Further, the inlet side of the NOx occlusion reduction catalyst 11 in the exhaust pipe 9 and a reducing agent tank 17 (which can also be used as a fuel tank) provided at a required place are connected by a reducing agent supply pipe 18. The reducing agent 10 in the reducing agent tank 17 can be added to the inlet side of the NOx occlusion reduction catalyst 11 through the injection nozzle 20 by driving a feed pump 19 provided in the middle of the reducing agent supply pipe 18.
[0022]
Further, another NOx occlusion reduction catalyst 22 that is paired with the NOx occlusion reduction catalyst 11 is provided in the middle of the bypass passage 12, and the inlet side of the NOx occlusion reduction catalyst 22 and the reducing agent tank are provided. 17 is connected by a reducing agent supply pipe 23, and the reducing agent 10 in the reducing agent tank 17 is stored in the NOx occlusion through the injection nozzle 25 by driving a feed pump 24 installed in the middle of the reducing agent supply pipe 23. It can be added to the inlet side of the reduction catalyst 22.
[0023]
In addition, the compressor 2a and the intercooler of the turbocharger 2 are respectively connected to the inlet side of the NOx storage reduction catalyst 11 installed in the middle of the exhaust pipe 9 and the NOx storage reduction catalyst 22 installed in the middle of the bypass passage 12. A regeneration gas flow path 40 is connected so that the air 4 can be separately guided from the intake pipe 5 to 6 via the opening variable valve 39.
[0024]
Here, an air compressor 41 and a reservoir tank 42 are provided on the upstream side of the regeneration gas flow path 40, and the air 4 guided from the middle of the intake pipe 5 through the opening degree variable valve 39 is supplied to the air. The compressor 41 is pressurized and the pressurized air 4 can be stored in the reservoir tank 42.
[0025]
The regeneration gas flow path 40 is configured such that the downstream side of the reservoir tank 42 is branched into two branch flow paths 40A and 40B via a three-way valve 43 and then merges again. Each of 40A and 40B is equipped with oxygen absorbers 44 and 45 such as porous carbon in parallel, and the casing holding each oxygen absorber 44 and 45 is opened to the atmosphere. Relief channels 46 and 47 are connected.
[0026]
Here, stop valves 48, 49 and 50, 51 which can appropriately close the flow paths on the outlet side of the oxygen absorbing materials 44, 45 in the relief flow paths 46, 47 and the branch flow paths 40 A, 40 B, respectively. Are also provided, and furthermore, a similar stop valve 52 is provided at the junction of each branch flow path 40A, 40B.
[0027]
A pressure reducing valve 53 and a three-way valve 54 are provided on the downstream side of the stop valve 52. The three-way valve 54 is branched into two branch passages 40C and 40D, and the NOx occlusion reduction of the exhaust pipe 9 is performed. The catalyst 11 and the bypass passage 12 are connected to the respective inlet sides of the NOx storage reduction catalyst 22.
[0028]
Further, particularly in the present embodiment, the selective reduction catalyst 26 that selectively reacts the reducing agent 10 with NOx in the exhaust pipe 9 upstream from the branch point of the bypass passage 12 (if the reducing agent 10 is light oil). Copper / zeolite catalyst, platinum / alumina catalyst, etc.), and the inlet side of the selective reduction catalyst 26 and the reducing agent tank 17 are connected by a reducing agent supply pipe 27. The reducing agent 10 in the reducing agent tank 17 can be added to the inlet side of the selective reduction catalyst 26 through the injection nozzle 29 by driving the feed pump 28 installed in the middle.
[0029]
In the figure, reference numeral 21 denotes a muffler provided on the downstream side of the exhaust pipe 9.
[0030]
Thus, when the exhaust emission control device is configured in this manner, the opening variable valves 13 and 14 are opened and the opening variable valves 15 and 16 are closed during the lean combustion operation in which the oxygen concentration in the exhaust gas 7 is high. Then, the exhaust gas 7 is caused to flow through the NOx occlusion reduction catalyst 11, whereby NOx in the exhaust gas 7 is occluded in the form of nitrate to reduce NOx.
[0031]
Thereafter, when a sufficient amount of NOx is occluded in the form of nitrate and the occlusion capacity of the NOx occlusion reduction catalyst 11 decreases, the opening variable valves 15 and 16 are opened and the opening variable valves 13 and 14 are opened. Is closed to bypass the exhaust gas 7 to the bypass flow path 12 side, so that the NOx occlusion reduction catalyst 22 on the bypass flow path 12 side can take over the NOx occlusion, while the NOx occlusion reduction catalyst 11 having a reduced occlusion capacity is used. Play as follows.
[0032]
That is, the air 4 is led from the intake pipe 5 between the compressor 2a of the turbocharger 2 and the intercooler 6 through the opening degree variable valve 39 to the regeneration gas flow path 40, and the air 4 is pressurized by the air compressor 41 to be stored in the reservoir. After storing in the tank 42 and closing all the stop valves 48, 49, 50, 51, 52, the used portion of the compressed air 4 ′ is taken out from the reservoir tank 42, and this is taken out through the three-way valve 43 to When the oxygen absorbing material 44 is guided, the oxygen content in the compressed air 4 'is absorbed by the oxygen absorbing material 44 and nitrogen rich gas 4 "is generated. Therefore, the nitrogen rich gas 4" is opened by the stop valves 50 and 52. Then, the pressure is reduced by the pressure reducing valve 53, and then led to the branch flow path 40C via the three-way valve 43 and introduced into the inlet side of the NOx storage reduction catalyst 11, whereby the NOx storage reduction catalyst 11 By increasing the reducing atmosphere and adding the reducing agent 10 through the reducing agent supply pipe 18 here, the reaction selectivity of the reducing agent 10 and NOx is improved, and NOx is actively decomposed and released from the NOx storage reduction catalyst 11. Thus, the NOx occlusion reduction catalyst 11 is favorably regenerated, and the released NOx is reacted with the reducing agent 10 on the NOx occlusion reduction catalyst 11 to be reduced and purified.
[0033]
When the nitrogen rich gas 4 ″ is introduced into the NOx occlusion / reduction catalyst 11 having a reduced occlusion capacity to regenerate the NOx occlusion / reduction catalyst 11, the temperature of the NOx occlusion / reduction catalyst 11 does not deviate from the catalyst activation temperature range. The opening variable valves 13 and 14 may be slightly opened at an appropriate opening so that a part of the exhaust gas 7 is mixed.
[0034]
Then, if the three-way valve 43 is switched and the compressed air 4 ′ is led from the reservoir tank 42 to the oxygen absorbing material 45 of the branch flow path 40B, the nitrogen rich gas 4 ″ is generated in the same manner as described above. In the closed state, the stop valve 48 of the relief flow path 46 is opened, and the oxygen absorbing material 44 is opened to the atmosphere to reduce the pressure, thereby releasing the oxygen component absorbed in the oxygen absorbing material 44 and the oxygen absorbing material. 44 playback is planned.
[0035]
In this way, if one of the oxygen absorbing materials 44 and 45 is made to absorb the oxygen content while the other of the oxygen absorbing materials 44 and 45 is regenerated, the oxygen absorbing material 44, It is possible to wait for any of 45 in a usable state.
[0036]
Further, when the NOx storage / reduction catalyst 22 has reduced its storage capacity by storing a sufficient amount of NOx in the form of nitrate, the opening variable valves 13 and 14 are opened and the opening variable valves 15 and 16 are closed. Thus, the exhaust gas 7 is prevented from detouring to the bypass flow path 12 side, so that the NOx occlusion reduction catalyst 11 on the regenerated exhaust pipe 9 side can take over the NOx occlusion, while the NOx occlusion reduction catalyst having a reduced occlusion capability. 22 may be reproduced in the same manner as described above.
[0037]
Thus, if the other of the NOx storage reduction catalysts 11 and 22 is regenerated while one of the NOx storage reduction catalysts 11 and 22 is storing NOx, the NOx storage and reduction catalyst is always stored. It becomes possible to continuously reduce NOx in a state where any one of the reduction catalysts 11 and 22 can be used.
[0038]
Here, in the present embodiment, the air 4 is guided from the intake pipe 5 between the compressor 2a of the turbocharger 2 and the intercooler 6, but the regeneration gas flow path is completely different from the intake system. And a dedicated blower for taking in air 4 from the atmosphere may be provided in the regeneration gas flow path. In such a case, the blower is driven using engine power. It is good to make it.
[0039]
Therefore, according to the present embodiment, since the NOx storage reduction catalysts 11 and 22 can be regenerated well even in the lean combustion operation state, the exhaust using the NOx storage reduction catalyst 11 having a high NOx reduction effect during the lean combustion operation. The purification device can be put into practical use, and the other of the oxygen absorbing materials 44 and 45 can be regenerated while one of the oxygen absorbing materials 44 and 45 is absorbing oxygen. Therefore, one of the oxygen absorbents 44 and 45 can always be kept in a usable state, and one of the NOx occlusion reduction catalysts 11 and 22 is made to occlude NOx. In the meantime, since the other of the NOx storage reduction catalysts 11 and 22 can be regenerated, it is always possible to use either of the NOx storage reduction catalysts 11 or 22 and continuously reduce NOx. Can also .
[0040]
Moreover, particularly in this embodiment, the reducing agent 10 can be added to the inlet side of the selective reduction catalyst 26 through the reducing agent supply pipe 27 to selectively react the reducing agent 10 with NOx. Even in the presence of excess oxygen during lean combustion operation, about 20 to 30% of NOx in the exhaust gas 7 can be reduced and purified in advance by the selective reduction catalyst 26, so that the NOx in the NOx storage reduction catalyst 11 on the downstream side thereof can be reduced. The burden of occlusion can be greatly reduced, and the time required for the NOx occlusion reduction catalyst 11 to reach the occlusion limit can be lengthened to prolong the regeneration cycle.
[0041]
The exhaust emission control device of the present invention is not limited to the above-described embodiment.For example, a configuration in which a pair of oxygen absorbers and NOx occlusion reduction catalysts in the illustrated example are provided alone, Of course, a configuration in which the selective reduction catalyst on the upstream side of the NOx occlusion reduction catalyst is omitted may be adopted, and various changes may be made without departing from the scope of the present invention.
[0042]
【The invention's effect】
According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.
[0043]
(I) According to the invention described in claim 1 of the present invention, the NOx occlusion reduction catalyst can be regenerated well even in the lean combustion operation state, so the NOx occlusion reduction catalyst having a high NOx reduction effect during the lean combustion operation. Practical application of an exhaust gas purification apparatus using the above can be achieved.
[0044]
(II) According to the invention described in claim 2 of the present invention, while the oxygen content of one oxygen absorber is absorbed, the other oxygen absorber can be regenerated. Any one of the oxygen absorbers can be kept ready for use.
[0045]
(III) According to the invention described in claim 3 of the present invention, while the NOx occlusion reduction catalyst is performing NOx occlusion, the other NOx occlusion reduction catalyst can be regenerated. It is possible to continuously reduce NOx by always using one of the NOx storage reduction catalysts in a usable state.
[0046]
(IV) According to the invention described in claim 4 of the present invention, a part of NOx in the exhaust gas can be reduced and purified in advance by the selective reduction catalyst, and the NOx in the NOx occlusion reduction catalyst downstream thereof Since the burden of occlusion can be greatly reduced, it is possible to lengthen the time required for the NOx occlusion reduction catalyst to reach the occlusion limit and prolong the regeneration cycle.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an embodiment of the present invention.
[Explanation of symbols]
4 Air 4 ”Nitrogen rich gas 7 Exhaust gas 9 Exhaust pipe 10 Reducing agent 11 NOx occlusion reduction catalyst 22 NOx occlusion reduction catalyst 26 Selective reduction catalyst 40 Gas passage for regeneration 44 Oxygen absorber 45 Oxygen absorber

Claims (4)

排気ガスが流通する排気管の途中に、排気ガス中の酸素濃度が高い時にNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス中の酸素濃度が低い時に還元剤の介在によりNOxを分解放出して還元浄化するNOx吸蔵還元触媒を装備すると共に、該NOx吸蔵還元触媒に対し大気から空気を別途導き得るように再生用ガス流路を設けて該再生用ガス流路の途中に酸素吸収材を装備し、前記NOx吸蔵還元触媒に対し還元剤を適宜に添加し且つ前記酸素吸収材により空気から酸素分を吸収して生成した窒素リッチガスを前記NOx吸蔵還元触媒に対し適宜に導入し得るように構成したことを特徴とする排気浄化装置。  In the middle of the exhaust pipe through which the exhaust gas circulates, NOx is oxidized when the oxygen concentration in the exhaust gas is high and temporarily stored in the form of nitrate, and when the oxygen concentration in the exhaust gas is low, the NOx is interposed by the intervening reducing agent. Is equipped with a NOx occlusion reduction catalyst that decomposes and discharges and reduces and purifies, and a regeneration gas passage is provided in the middle of the regeneration gas passage so that air can be separately guided from the atmosphere to the NOx occlusion reduction catalyst. Equipped with an oxygen absorber, a reducing agent is appropriately added to the NOx storage reduction catalyst, and nitrogen-rich gas generated by absorbing oxygen from the air by the oxygen absorption material is appropriately introduced to the NOx storage reduction catalyst. An exhaust emission control device characterized in that it can be configured. 酸素吸収材を並列に対で設け、両酸素吸収材を交互に再生し得るように構成したことを特徴とする請求項1に記載の排気浄化装置。  The exhaust emission control device according to claim 1, wherein the oxygen absorbing material is provided in parallel as a pair so that both oxygen absorbing materials can be regenerated alternately. NOx吸蔵還元触媒を並列に対で設け、両NOx吸蔵還元触媒を交互に再生し得るように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。  The exhaust emission control device according to claim 1 or 2, wherein NOx occlusion reduction catalysts are provided in parallel as a pair so that both NOx occlusion reduction catalysts can be regenerated alternately. NOx吸蔵還元触媒より上流側の排気管に、還元剤をNOxと選択的に反応させる選択還元触媒を装備し、該選択還元触媒に対し還元剤を適宜に添加し得るように構成したことを特徴とする請求項1、2又は3に記載の排気浄化装置。  The exhaust pipe upstream of the NOx storage reduction catalyst is equipped with a selective reduction catalyst that selectively reacts the reducing agent with NOx, and the reducing agent can be appropriately added to the selective reduction catalyst. The exhaust emission control device according to claim 1, 2, or 3.
JP32833999A 1999-11-18 1999-11-18 Exhaust purification device Expired - Fee Related JP3919407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32833999A JP3919407B2 (en) 1999-11-18 1999-11-18 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32833999A JP3919407B2 (en) 1999-11-18 1999-11-18 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2001140635A JP2001140635A (en) 2001-05-22
JP3919407B2 true JP3919407B2 (en) 2007-05-23

Family

ID=18209141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32833999A Expired - Fee Related JP3919407B2 (en) 1999-11-18 1999-11-18 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP3919407B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160832B2 (en) * 2003-06-16 2007-01-09 Umicore Ag & Co. Kg Catalyst system for generating carbon monoxide for use with automotive catalysts
US7963102B2 (en) 2005-03-09 2011-06-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP4148231B2 (en) * 2005-03-09 2008-09-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2008025524A (en) * 2006-07-25 2008-02-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP5321255B2 (en) * 2009-06-05 2013-10-23 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2011528088A (en) * 2009-09-18 2011-11-10 クワン ソン カンパニー リミテッド SCR system with bypass system
US8800271B2 (en) 2009-09-18 2014-08-12 Kwang Sung Co., Ltd. Selective catalyst reduction system with bypass system
WO2019215951A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition device

Also Published As

Publication number Publication date
JP2001140635A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP4710866B2 (en) Exhaust gas purification device for internal combustion engine
US7571602B2 (en) Exhaust aftertreatment system and method of use for lean burn internal combustion engines
JP3237611B2 (en) Exhaust gas purification device for internal combustion engine
KR960004832B1 (en) Engine exhaust gas purification apparatus
JP4678470B2 (en) Device and method for reducing gas components in an exhaust gas flow of a combustion engine
JP3945335B2 (en) Exhaust gas purification device for internal combustion engine
US7900441B2 (en) Precat-NOx adsorber exhaust aftertreatment system for internal combustion engines
JPH10238336A (en) Exhaust gas cleaning device for internal combustion engine
JP2005214159A (en) Exhaust emission control device
JP2004511711A (en) Exhaust gas purification device with catalytic converter and method for purifying exhaust gas
JP3919407B2 (en) Exhaust purification device
JP3545691B2 (en) Operating method of exhaust gas purification device
JP3462445B2 (en) Exhaust gas purification device
US10508578B2 (en) Engine system
JP2845080B2 (en) Exhaust gas purification device for internal combustion engine
JP3552489B2 (en) Exhaust gas purification device for internal combustion engine
JP4934082B2 (en) Exhaust purification device
JP3840815B2 (en) Exhaust gas purification device for internal combustion engine
JP3374780B2 (en) Exhaust gas purification device for internal combustion engine
JP2002081311A (en) Exhaust emission control device for internal combustion engine
JP2722985B2 (en) Exhaust gas purification device for internal combustion engine
JP3324475B2 (en) Exhaust gas purification device for internal combustion engine
JP2004132222A (en) Emission control device
JP2842167B2 (en) Exhaust gas purification device
JP2009216021A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees