JP3919050B2 - Commutator, fuel pump using the commutator, and commutator manufacturing method - Google Patents

Commutator, fuel pump using the commutator, and commutator manufacturing method Download PDF

Info

Publication number
JP3919050B2
JP3919050B2 JP31468898A JP31468898A JP3919050B2 JP 3919050 B2 JP3919050 B2 JP 3919050B2 JP 31468898 A JP31468898 A JP 31468898A JP 31468898 A JP31468898 A JP 31468898A JP 3919050 B2 JP3919050 B2 JP 3919050B2
Authority
JP
Japan
Prior art keywords
peripheral side
outer peripheral
inner peripheral
commutator
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31468898A
Other languages
Japanese (ja)
Other versions
JPH11346460A (en
Inventor
顕三 清瀬
嘉男 海老原
慶一 山下
睦 吉野
善次 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31468898A priority Critical patent/JP3919050B2/en
Priority to KR1019990002711A priority patent/KR100332318B1/en
Priority to DE19903921.6A priority patent/DE19903921B4/en
Priority to US09/241,291 priority patent/US6242838B1/en
Publication of JPH11346460A publication Critical patent/JPH11346460A/en
Application granted granted Critical
Publication of JP3919050B2 publication Critical patent/JP3919050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Current Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ブラシと接触する接触部材をカーボンで形成している整流子、それを用いた燃料ポンプおよび整流子の製造方法に関する。
【0002】
【従来の技術】
従来より、米国特許番号第5175463号に開示されているように、ブラシと摺動する接触部材をカーボンで形成することにより、接触部の耐腐食性および耐摩耗性を向上する整流子が知られている。整流子は複数のセグメントから例えば円板状に構成されており、隣接するセグメントの間は溝により互いに電気的に絶縁されている。各セグメントは、接触部材と、ろう材等の接続材により接触部材と電気的に接続される金属製の端子部材とにより構成されている。カーボンは接続材とのぬれ性が悪いので、端子部材との接続面に予め金属めっきを施しておく。端子部材に形成した爪に電機子のコイルの端部をフュージング等により電気的に接続することにより、ブラシから接触部材、端子部材を経て電機子のコイルに電力を供給する。
【0003】
【発明が解決しようとする課題】
しかしながら、接触部材と端子部材とはブラシと摺動する接触部材の摺動平面と平行な平面で対向しているので、接触部材と端子部材との対向面全体が接続材でろう付けされる。したがって、各セグメントの端子部材とコイルとを電気的に接続する位置と接続材との位置が近いので、フュージング等の熱を発生する方法で各セグメントの端子部材とコイルとを電気的に接続すると接続材が溶出することがある。各セグメントを絶縁している溝に溶出した接続材が流れ込むとセグメント同士が電気的に導通する恐れがある。
【0004】
そこで、端子部材とコイルとの接続位置から離れた位置において、接触部材の摺動平面と交差する面で接触部材と端子部材とを対向させ、対向面同士の間に接続材を充填して接触部材と端子部材とを電気的に接続することが考えられる。接続材の位置が端子部材とコイルとの電気的接続位置から離れているので、端子部材とコイルとを電気的に接続する際に熱が発生しても、接続材が溶出することを防止することができる。
【0005】
しかし、接触部材と端子部材との位置がずれると対向面同士の間に形成される隙間がばらつく。隙間が小さいと接続材が充填できない箇所が発生し、隙間が大きいと接続材の中に空隙が生じるので、接触部材と端子部材とが電気的接続不良を起こす恐れがある。
【0006】
本発明の目的は、接触部材と端子部材とを確実に電気的に接続するとともに、接触部材と端子部材との位置決めが容易な整流子、それを用いた燃料ポンプおよび整流子の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1記載の整流子の製造方法によると、一方の母材に形成した突部の外周側面と他方の母材に形成した内周側面との間に形成されている隙間に接続材を充填して両母材を電気的に接続する。したがって、整流子を取付ける電機子のコイルと端子部材とを電気的に接続する接続位置から接続材の位置を離すことができるので、電機子のコイルと端子部材とをフュージング等で電気的に接続する際に発生する熱により接続材が溶けることを抑制できる。これにより、溶けた接続材がセグメント間に形成されセグメントを電気的に絶縁している溝に流れ込むことを防止し各セグメントの絶縁を確保することができるので、整流子の歩留りが向上し、製造コストを低減できる。
【0008】
さらに、接続材を充填する前の両母材を組付けた状態において、外周側面は内周側面に対し、移動不可か、あるいは移動しても外周側面と内周側面との間に形成される隙間の形状が変化しないように外周側面と内周側面とは複数箇所で接している。したがって、隙間調整をすることなく両母材を組付け両母材を位置決めすることができるので、製造工数が低減する。さらに、外周側面と内周側面との間に形成される隙間の形状が変化しないので、両母材を確実に電気的に接続することができる。
【0009】
本発明の請求項2記載の整流子の製造方法によると、両母材を形成する工程において、外周側面および内周側面の少なくともいずれか一方に接続材充填用の凹部を形成している。凹部の形成位置以外において両側面が形成する隙間が小さくても、両母材を組付けた状態で凹部に確実に接続材を充填できるので、凹部に充填された接続材が外周側面と内周側面との間に形成される隙間に進入し、両母材を確実に電気的に接続できる。
【0010】
本発明の請求項3記載の整流子の製造方法によると、両母材を形成する工程において、外周側面および内周側面の両方に接続材充填用の凹部を形成しているので、接続材の充填量が増加する。これにより、両母材を確実に電気的に接続できる。
【0011】
本発明の請求項記載の整流子によると、複数の接触部材が構成する接触部、および複数の端子部材が構成する端子部の一方は他方に向けて整流子の回転軸方向に突出する突部を有し、接触部および端子部の他方は突部の外周側面を取り囲む内周側面を有し、接続材は外周側面と内周側面との間に形成されている隙間に充填され、接触部材と端子部材とを電気的に接続している。したがって、整流子を取付ける電機子のコイルと端子部材とを電気的に接続する接続位置から接続材の位置を離すことができるので、電機子のコイルと端子部材とをフュージング等で電気的に接続する際に発生する熱により接続材が溶けることを抑制できる。これにより、溶けた接続材がセグメント間に形成されセグメントを電気的に絶縁している溝に流れ込むことを防止し各セグメントの絶縁を確保することができるので、整流子の歩留りが向上し、製造コストを低減できる。
【0012】
さらに、外周側面を含む第1仮想面と内周側面を含む第2仮想面とは、第1仮想面が第2仮想面に対し移動不可か、あるいは移動しても第1仮想面と第2仮想面との間に形成される隙間の形状が変化しないように複数箇所で接している。したがって、溝を形成して分割する前の接触部材および端子部材の両母材を隙間を調整することなく組付けることができるので、製造工数が低減する。さらに、外周側面と内周側面との間に形成される隙間の形状が変化しないので、接触部材と端子部材とを確実に電気的に接続することができる。
また、接触部材がカーボンで形成されているので、接触部材の耐腐食性および耐摩耗性が向上する。したがって、整流子の寿命が長くなる。
【0013】
本発明の請求項記載の整流子によると、第1仮想面と第2仮想面との間に形成される隙間は、隙間を形成する各接触部材と各端子部材との間において周方向に連続して増減している。したがって、接触部材および端子部材の両母材の加工誤差が生じても、接続材が確実に充填される隙間が接触部材と端子部材との間に存在する。したがって、接触部材と端子部材とを確実に電気的に接続することができる。
【0017】
本発明の請求項8記載の燃料ポンプによると、整流子の接触部材がカーボンで形成されているので、燃料中の水分、酸または硫黄等に対する耐腐食性が向上するともに耐摩耗性も向上するので、燃料ポンプの寿命が長くなる。さらに、整流子の歩留りが向上するので、燃料ポンプの製造コストを低減できる。
さらに、整流子の接触部材および端子部材の組付けが容易であるから、燃料ポンプの製造工数が低減する。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例を図に基づいて説明する。
(第1実施例)
本発明の燃料ポンプを示す第1実施例を図4に示す。図4に示す燃料ポンプ10は、例えば電子式燃料噴射システムの燃料供給システムにおいて車両等の燃料タンク内に収容されており、燃料タンクから吸入した燃料をエンジン側に供給するものである。
【0019】
燃料ポンプ10はポンプ部20とこのポンプ部20を駆動する電磁駆動部としてのモータ部30とから構成されている。モータ部30はブラシ付の直流モータであり、円筒状のハウジング11内に永久磁石を環状に配置し、この永久磁石の内周側に同心円上に電機子32を配置した構成となっている。
【0020】
ポンプ部20は、ケーシング本体21、ケーシングカバー22およびインペラ23等から構成されている。ケーシング本体21およびケーシングカバー22により一つのケーシング部材が構成され、その内部に回転体としてのインペラ23が回転自在に収容されている。ケーシング本体21およびケーシングカバー22は、例えばアルミのダイカスト成形により形成されている。ケーシング本体21はハウジング11の一方の端部内側に圧入固定されており、その中心に軸受25が嵌着されている。ケーシングカバー22は、ケーシング本体21に被せられた状態でハウジング11の一端にかしめ等により固定されている。ケーシングカバー22の中心にはスラスト軸受26が圧入固定されている。電機子32の回転シャフト35の一方の端部は、軸受25により回転自在に径方向に支持されているとともに、スラスト軸受26によりスラスト方向の荷重を支持されている。回転シャフト35の他方の端部は軸受27により回転自在に径方向に支持されている。
【0021】
ケーシングカバー22に燃料吸入口40が形成されており、周縁部に羽根片を形成したインペラ23が回転することにより図示しない燃料タンク内の燃料が燃料吸入口40からポンプ流路41に吸入される。ポンプ流路41は、インペラ23の外周に沿いケーシング本体21とケーシングカバー22との間にC字状に形成されている。ポンプ流路41に吸入された燃料はインペラ23の回転により加圧され、モータ部30の燃料室31に圧送される。
【0022】
電機子32はモータ部30内に回転自在に収容され、コイルがコア32aの外周に巻回されている。整流子50は円板状に形成されており、電機子32の図3の上部に配設されている。図示しない電源から、コネクタ45に埋設されたターミナル46、図示しないブラシ、整流子50を介してコイルに電力が供給される。供給された電力により電機子32が回転すると、電機子32の回転シャフト35とともにインペラ23が回転する。インペラ23が回転すると、燃料吸入口40からポンプ流路41に燃料が吸入され、この燃料がインペラ23の各羽根片から運動エネルギーを受けてポンプ流路41から燃料室31に圧送される。燃料室31に圧送された燃料は、電機子32の周囲を通過し燃料吐出口43から燃料ポンプ外に吐出される。燃料吐出口43には逆止弁44が収容されており、この逆止弁44が燃料吐出口43から吐出された燃料の逆流を防止している。
【0023】
次に整流子50の構成を詳細に説明する。
図1および図2に示すように、整流子50は、等角度間隔に形成された8個のセグメント60、およびセグメント60を固定する支持部材としての固定部56を有している。各セグメント60は接触部材51および端子部材53を有し、放射状の溝61により互いに電気的に絶縁されている。
【0024】
図1および図2に示す接触部材51はカーボンで形成されており、ブラシと摺動する摺動平面51bを有している。端子部材53は黄銅等の導電性の良い金属で形成されており、外周側に突出する爪55を有している。この爪55に電機子32のコイルがフュージングにより電気的に接続される。固定部56は熱硬化性樹脂で形成されており、接触部材51および端子部材53を固定している。溝61は接触部材51から端子部材53を通過し固定部56にまで達しているので、各セグメント60は互いに電気的に絶縁されている。図1において、51a、53aおよび56aは、溝61に面する接触部材51、端子部材53および固定部56の端面を表している。
【0025】
各セグメントを構成する接触部材51は端子部材53との対向側に突出する断面扇状の突部52を設けている。突部52の外周側面52aの外周側に外周側面52aと径方向に対向する端子部材53の内周側面54が形成されている。外周側面52aと内周側面54とはブラシと摺動する接触部材51の摺動平面51bと直交しており、はんだ等のろう材からなる接続材57により電気的に接続されている。
【0026】
次に、整流子50の製造工程について説明する。
(1) 接触部材51の図3に示す接触母材100は、8個の接触部材51が構成する接触部の溝61を埋めた円形状をしている。接触母材100の内周側に整流子の回転軸方向に突出する円環状の突部101が形成されている。
【0027】
端子部材53の銅製の端子母材102は、突部101を取り囲むように円環状に形成されている。
突部101の第1仮想面としての外周側面101aは円状に形成されており、外周側面101aを取り囲む第2仮想面としての内周側面102aは正八角形の各頂点にめっき材充填用の凹部54aが形成されている。
外周側面101aおよび内周側面102aにろう付け処理を施しておく。
【0028】
(2) 図3に示すように、接触母材100と端子母材102とを組付けた状態で外周側面101aが内周側面102aに内接しているので、接触母材100と端子母材102とは互いに回転可能であるが、中心位置がずれない。したがって、接触母材100と端子母材102とが互いに回転しても外周側面101aと内周側面102aとの間に形成される隙間の大きさおよび形状が変化しない。したがって、隙間を調整することなく接触母材100と端子母材102とを組付け両母材を位置決めすることができるので、製造工数が低減する。
【0029】
(3) 外周側面101aと内周側面102aとの間にはんだ等の接続材57を充填し、接続材57を加熱後冷却することにより外周側面101aと内周側面102aとをろう付けする。内周側面102aに凹部54aが形成されているので、凹部54aに確実に接続材57を充填することができる。したがって、外周側面101aと内周側面102aとの間に形成される隙間に凹部54aから接続材57が進入し、接触母材100と端子母材102とを確実に電気的に接続することができる。
【0030】
外周側面101aと内周側面102aとが形成する隙間は、小さすぎると接続材57が進入しにくく、大きすぎると接続材57の内部に空隙が生じることがある。したがって、隙間の位置によって、外周側面101aと内周側面102aとに電気的接続不良が発生する恐れがある。しかし、次工程で形成される接触部材51と端子部材53とに対応する位置の隙間は、図3に示すように周方向両側が狭く中央部が大きくなるように周方向に連続して増減しているので、接触部材51と端子部材53との間に形成される隙間に接続材57が確実に進入し、接触部材51と端子部材53とを確実に電気的に接続することができる。
【0031】
(4) ろう付け後樹脂を充填して固定部56を形成する。接触母材100側から端子母材102を通過し固定部56に達するまで図3の二点鎖線に示す位置に溝61を形成し、等間隔に8個のセグメント60を形成することにより、図1および図2に示す整流子50を形成する。
【0032】
このように形成した整流子50を電機子32の上部に組付け、各爪55に電機子32のコイルの端部を引っかけてフュージングする。フュージングの熱により端子部材53が加熱されるが、接続材57は爪55から離れているので、融点温度まで接続材57の温度が上昇しにくい。したがって、接続材57が溶け、溝61に達することを防止できるので、セグメント60同士の絶縁を確保できる。
【0033】
(第2実施例)
本発明の第2実施例を図5に示す。
接触母材105は、八角の環状星型に形成した突部106を有している。端子母材107の第2仮想面としての内周側面107aは正八角形状に形成され、突部106の第1仮想面としての外周側面106aを取り囲んでいる。
【0034】
図5に示すように、接触母材105と端子母材107とを組付けた状態で突部106の星型の頂点が内周側面107aの各頂点と接しているので、接触母材105と端子母材107とは互いに移動不可であり、中心位置がずれない。したがって、外周側面106aと内周側面107aとの間に形成される隙間の大きさおよび形状が変化しない。これにより、隙間を調整することなく接触母材105と端子母材107とを組付けることができるので、製造工数が低減する。
【0035】
(変形例)
第2実施例の変形例を図6に示す。変形例では、内周側面107aに凹部107bを形成している。したがって、外周側面106aと内周側面107aとの間に充填される接続材57の量が増え、外周側面106aと内周側面107aとを確実にろう付けすることができる。
【0036】
(第3実施例)
本発明の第3実施例を図7に示す。
突部101の形状は第1実施例と同一である。端子部材の端子母材110の第2仮想面としての内周側面110aに等角度間隔に八箇所凹部110bが形成されている。
【0037】
接触母材100と端子母材110とを組付けた状態で外周側面101aが内周側面110aに内接しているので、接触母材100と端子母材110とは互いに回転可能であるが、中心位置がずれない。したがって、接触母材100と端子母材110とが互いに回転しても外周側面101aと内周側面110aとの間に形成される隙間の大きさおよび形状が変化しない。これにより、隙間を調整することなく接触母材100と端子母材110とを組付けることができるので、製造工数が低減する。
【0038】
以上説明した本発明の実施の形態を示す第1、第2および第3実施例では、接続材を充填する前の接触母材と端子母材とを組付けた状態において、接触部材に形成した突部の外周側面と、外周側面の外周を取り囲む端子母材の内周側面とが複数箇所で接しており、内周側面に対し外周側面が移動不可か、回転移動だけを許容されており、外周側面と内周側面との間に形成される隙間の大きさおよび形状が変化しない。したがって、外周側面と内周側面との間に形成される隙間を調整することなく接触母材と端子母材とを組付け両母材を位置決めすることができるので、製造工数が低減する。
【0039】
さらに、接触部材と端子部材との間に形成される隙間の大きさが周方向に連続して増減しているので、加工誤差によりこれら隙間の大きさまたは形状が変動しても、接続材が充填される位置が確実に存在する。したがって、接触部材と端子部材とを確実に電気的に接続することができる。
【0040】
(第4実施例)
本発明の第4実施例を図8および図9に示す。第1実施例と実質的に同一構成部分に同一符号を付し、説明を省略する。
図8に示すように、整流子120の各セグメントは接触部材121および端子部材123を有し、各セグメントの周方向両側に放射状に形成された溝61により互いに電気的に絶縁されている。接触部材121はカーボンで形成されており、端子部材123は銅等の導電性の良い金属で形成されている。図8に示す57a、121a、123aは、溝61に面する接続材57、接触部材121および端子部材123の端面を表している。
【0041】
各セグメントを構成する接触部材121は、端子部材123との対向側である整流子120の一方の回転軸方向に突出する断面扇状の突部122を設けている。図9に示すように、突部122の外周側面122aの外周側に外周側面122aと径方向に対向する端子部材123の内周側面124が形成されている。つまり、外周側面122aおよび内周側面124はブラシと摺動する接触部材121の摺動平面121bと交差するように形成されている。図9は接続材57を除去した状態を示し、図8と上下が反転している。外周側面122aと内周側面124との間に、図9に示す形状の隙間125が周方向両側の溝61に達するまで形成されている。隙間125に充填されている接続材57により接触部材121と端子部材123とは電気的に接続されている。
【0042】
内周側面124は接触部材121の摺動平面121bと直交している。外周側面122aの一部はテーパ状に形成されており、図9に示すように内周側面124に対し突部122の突出方向、つまり回転軸129の一方向に向かうに従い回転軸129側に傾斜している。したがって、図9に示す接続材57を除いた状態で、隙間125の大きさは回転軸129の一方向に向かうに従い連続して増加している。また、接続材57と接触する外周側面122aの面積は内周側面124よりも大きい。
【0043】
第4実施例では、隙間125の大きさが整流子120の回転軸129の一方向に向かうに従い連続して増加している。したがって、接触部材121および端子部材123をそれぞれ形成する母材に加工誤差等があったり、母材の組付け位置がずれることにより外周側面と内周側面との間に形成される隙間の大きさが変化しても、母材の加工誤差量や組付け時の母材の位置ずれ量が隙間125の吸収範囲内であれば、回転軸方向のいずれかの位置において隙間125に接続材57が充填され、外周側面122aと内周側面124とを確実に電気的に接続することができる。さらに、母材の位置決めを高精度に行う必要がないので、母材の組付けが容易になる。
【0044】
また、外周側面122aの方が内周側面124よりも接続材57との接触面積が大きいので、図9に示す状態で両側面に接続材57を塗布するかまたは隙間125に固体の接続材を配設すると、接触部材121側から受ける熱により外周側面122aから接続材57の溶融が始まる。そして、外周側面122aが接続材57で十分にぬれてから外周側面122aを接続材が流れ落ち、接続材57とのぬれ性に優れる端子部材123の内周側面124を接続材57がぬらす。したがって、ぬれ性に劣る外周側面122aとぬれ性に優れる内周側面124とを接続材により確実に電気的に接続できる。
【0045】
(変形例1)
第4実施例の変形例1を図10に示す。図10は第4実施例を示す図9と同様に接続材を除去した状態を示している。変形例1は、接触部材130に形成された突部131の外周側面131aではなく、端子部材132の内周側面133の一部が外周側面131aに対し傾斜している例である。
【0046】
外周側面131aは接触部材130の摺動平面130aと直交している。内周側面133の一部はテーパ状に形成されており、外周側面131aに対し突部122の突出方向、つまり整流子の回転軸の一方向に向かうに従い回転軸から離れる方向に傾斜している。したがって、図10に示す接続材57を除いた状態で、隙間134の大きさは回転軸の一方向に向かうに従い連続して増加している。
【0047】
したがって第4実施例と同様に、接触部材130および端子部材132を形成する母材の加工誤差量や組付け時の母材の位置ずれ量が隙間134の吸収範囲内であれば、回転軸方向のいずれかの位置において隙間134に接続材が充填され、外周側面131aと内周側面133とを確実に電気的に接続することができる。さらに、母材の位置決めを高精度に行う必要がないので、母材の組付けが容易になる。
【0048】
(変形例2)
第4実施例の変形例2を図11に示す。図11は変形例1を示す図10と同様に接続材を除去した状態を示している。変形例2は、接触部材135に形成された突部136の外周側面131aを凸曲面状に形成している例である。
【0049】
外周側面136aは凸曲面状に形成されている。端子部材137の内周側面138は、ブラシと摺動する接触部材135の摺動平面135aと直交している。図11に示す接続材を除いた状態で、隙間139の大きさは、突部136の突出方向、つまり回転軸の一方向に向かうに従い連続して増加している。
【0050】
したがって第4実施例と同様に、接触部材135および端子部材137を形成する母材の加工誤差量や組付け時の母材の位置ずれ量が隙間139の吸収範囲内であれば、回転軸方向のいずれかの位置において隙間139に接続材が充填され、外周側面136aと内周側面138とを確実に電気的に接続することができる。さらに、母材の位置決めを高精度に行う必要がないので、母材の組付けが容易になる。
【0051】
以上説明した第4実施例およびその変形例では、外周側面および内周側面の一方の側面をテーパ面または凸曲面にすることにより、両側面の間に形成される隙間の大きさを接触部材に形成する突部の突出方向に向かうに従い連続して増加させている。これに対し、糸状または環状に形成した接続材を両部材を形成する母材の外周側面と内周側面との間に配設し、接続材を溶融して接触部材と端子部材とを電気的に接続するのであれば、隙間の増加方向を第4実施例およびその変形例と逆方向にしてもよいし、回転軸方向の両側よりも中央部の隙間を大きくしてもよい。
【0052】
また、外周側面および内周側面の一方の側面を例えば多段の階段状にすることにより両側面の間に形成される隙間の大きさを整流子の回転軸方向に増減させることによっても、外周側面と内周側面との間に形成される隙間に接続材を充填し、両部材を電気的に接続することができる。
【0053】
以上説明した本発明の実施の形態を示す上記複数の実施例では、接触部材に形成した突部と、この突部の外周側面を覆う端子部材の内周側面とを接続材57で電気的に接続している。つまり、ブラシと摺動する接触部材の摺動平面と直交するかまたは交差する両側面により接触部材と端子部材とは電気的に接続しているので、端子部材の爪55と電機子のコイルとをフュージング等で電気的に接続する位置と、接触部材と端子部材との電気的接続位置の距離を離すことができる。したがって、フュージングする際に発生する熱により端子部材が加熱されても接続材57の温度が融点にまで達することを防止できる。したがって、接続材57が溶出して溝61に流れ込み隣接するセグメントを導通することを防止できる。これにより整流子の歩留りが向上するので、整流子および整流子を用いた燃料ポンプの製造コストを低減することができる。
【0054】
上記複数の実施例では、接触部材に突部を設け、端子部材の内周側面により突部の外周側面を覆ったが、端子部材に突部を設け、接触部材の内周側面により突部を覆ってもよい。また、セグメントの数は8個以外でもよい。
【0055】
本発明の整流子を燃料ポンプの電機子だけではなく他の装置の電機子に用いることにより、該当装置の寿命が延びるとともに製造コストを減少することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例による整流子を示す図2のI−I線断面図である。
【図2】本発明の第1実施例による整流子を示す平面図である。
【図3】分割前における接触母材と端子母材との電気的接続状態を示す断面図である。
【図4】第1実施例の整流子を用いた燃料ポンプを示す断面図である。
【図5】本発明の第2実施例による分割前における接触母材と端子母材との電気的接続状態を示す断面図である。
【図6】第2実施例の変形例を示す断面図である。
【図7】本発明の第3実施例による分割前における接触母材と端子母材との電気的接続状態を示す断面図である。
【図8】図1と同一断面における本発明の第4実施例の整流子を示す断面図である。
【図9】接続材を除去した状態における第9実施例の隙間の形状を示す模式的断面図である。
【図10】第4実施例の変形例1において、接続材を除去した状態における隙間の形状を示す模式的断面図である。
【図11】第4実施例の変形例2において、接続材を除去した状態における隙間の形状を示す模式的断面図である。
【符号の説明】
10 燃料ポンプ
50 整流子
51 接触部材
51b 摺動平面
52 突部
52a 外周側面
53 端子部材
54 内周側面
54a 凹部
56 固定部(支持部材)
57 接続材
60 セグメント
61 溝
100 接触母材
101 突部
101a 外周側面(第1仮想面)
102 端子母材
102a 内周側面(第2仮想面)
105 接触母材
106 突部
106a 外周側面(第1仮想面)
107 端子母材
107a 内周側面(第2仮想面)
107b 凹部
110 端子母材
110a 内周側面(第2仮想面)
110b 凹部
120 整流子
121、130、135 接触部材
122、131、136 突部
122a、131a、136a 外周側面
123、132、137 端子部材
124、133、138 内周側面
125、134、139 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a commutator in which a contact member in contact with a brush is made of carbon, a fuel pump using the commutator, and a method of manufacturing the commutator.
[0002]
[Prior art]
Conventionally, as disclosed in U.S. Pat. No. 5,175,463, a commutator that improves the corrosion resistance and wear resistance of a contact portion by forming a contact member that slides on a brush with carbon is known. ing. The commutator is composed of a plurality of segments, for example, in a disk shape, and adjacent segments are electrically insulated from each other by grooves. Each segment includes a contact member and a metal terminal member electrically connected to the contact member by a connecting material such as a brazing material. Since carbon is poor in wettability with the connection material, metal plating is performed in advance on the connection surface with the terminal member. By electrically connecting the end of the armature coil to the claws formed on the terminal member by fusing or the like, electric power is supplied from the brush to the armature coil via the contact member and the terminal member.
[0003]
[Problems to be solved by the invention]
However, since the contact member and the terminal member are opposed to each other in a plane parallel to the sliding plane of the contact member that slides on the brush, the entire facing surfaces of the contact member and the terminal member are brazed with the connecting material. Therefore, since the position where the terminal member and the coil of each segment are electrically connected is close to the position of the connecting material, the terminal member and the coil of each segment are electrically connected by a method of generating heat such as fusing. The connecting material may elute. If the connecting material eluted into the groove that insulates each segment flows, the segments may be electrically connected.
[0004]
Therefore, at a position away from the connection position between the terminal member and the coil, the contact member and the terminal member are opposed to each other at a surface intersecting the sliding plane of the contact member, and the connection material is filled between the facing surfaces to contact each other. It is conceivable to electrically connect the member and the terminal member. Since the position of the connecting material is away from the electrical connection position between the terminal member and the coil, even if heat is generated when the terminal member and the coil are electrically connected, the connecting material is prevented from being eluted. be able to.
[0005]
However, when the positions of the contact member and the terminal member are shifted, the gap formed between the opposing surfaces varies. If the gap is small, there are places where the connecting material cannot be filled, and if the gap is large, a gap is generated in the connecting material, which may cause a poor electrical connection between the contact member and the terminal member.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a commutator in which a contact member and a terminal member are securely electrically connected and the contact member and the terminal member are easily positioned, a fuel pump using the commutator, and a commutator manufacturing method. There is to do.
[0007]
[Means for Solving the Problems]
According to the method for manufacturing a commutator according to claim 1 of the present invention, the gap is formed between the outer peripheral side surface of the protrusion formed on one base material and the inner peripheral side surface formed on the other base material. The base material is filled and both base materials are electrically connected. Therefore, since the position of the connecting material can be separated from the connection position where the coil of the armature to which the commutator is attached and the terminal member are electrically connected, the armature coil and the terminal member are electrically connected by fusing or the like. It is possible to prevent the connecting material from being melted by the heat generated during the process. This prevents melted connecting material from flowing into the grooves that are formed between the segments and electrically insulate the segments, ensuring the insulation of each segment, thus improving the commutator yield and manufacturing. Cost can be reduced.
[0008]
Further, in a state where both the base materials before filling with the connecting material are assembled, the outer peripheral side surface is not movable relative to the inner peripheral side surface, or is formed between the outer peripheral side surface and the inner peripheral side surface even if moved. The outer peripheral side surface and the inner peripheral side surface are in contact at a plurality of locations so that the shape of the gap does not change. Therefore, both the base materials can be assembled and the both base materials can be positioned without adjusting the gap, thereby reducing the number of manufacturing steps. Furthermore, since the shape of the gap formed between the outer peripheral side surface and the inner peripheral side surface does not change, both the base materials can be reliably electrically connected.
[0009]
According to the commutator manufacturing method of the second aspect of the present invention, in the step of forming both the base materials, the concave portions for filling the connecting material are formed on at least one of the outer peripheral side surface and the inner peripheral side surface. Even if the gap formed on both side surfaces is small except at the position where the recess is formed, the connection material can be reliably filled in the recess with both base materials assembled. It enters into the gap formed between the side surfaces, and both base materials can be reliably electrically connected.
[0010]
According to the method for manufacturing a commutator according to claim 3 of the present invention, in the step of forming both the base materials, the concave portions for filling the connecting material are formed on both the outer peripheral side surface and the inner peripheral side surface. The filling amount increases. Thereby, both base materials can be reliably electrically connected.
[0011]
Claims of the invention 5 According to the described commutator, one of the contact portion formed by the plurality of contact members and the terminal portion formed by the plurality of terminal members has a protrusion protruding in the rotation axis direction of the commutator toward the other, and the contact The other of the contact portion and the terminal portion has an inner peripheral side surface that surrounds the outer peripheral side surface of the protrusion, and the connecting material is filled in a gap formed between the outer peripheral side surface and the inner peripheral side surface, and the contact member and the terminal member are Electrically connected. Therefore, since the position of the connecting material can be separated from the connection position where the coil of the armature to which the commutator is attached and the terminal member are electrically connected, the armature coil and the terminal member are electrically connected by fusing or the like. It is possible to prevent the connecting material from being melted by the heat generated during the process. This prevents melted connecting material from flowing into the grooves that are formed between the segments and electrically insulate the segments, ensuring the insulation of each segment, thus improving the commutator yield and manufacturing. Cost can be reduced.
[0012]
Furthermore, the first virtual surface including the outer peripheral side surface and the second virtual surface including the inner peripheral side surface are not movable with respect to the second virtual surface, or even if the first virtual surface and the second virtual surface move, It contacts at a plurality of locations so that the shape of the gap formed with the virtual surface does not change. Therefore, since both the base materials of the contact member and the terminal member before forming and dividing the groove can be assembled without adjusting the gap, the number of manufacturing steps can be reduced. Furthermore, since the shape of the gap formed between the outer peripheral side surface and the inner peripheral side surface does not change, the contact member and the terminal member can be reliably electrically connected.
Further, since the contact member is made of carbon, the corrosion resistance and wear resistance of the contact member are improved. Accordingly, the life of the commutator is extended.
[0013]
Claims of the invention 6 According to the described commutator, the gap formed between the first virtual surface and the second virtual surface is between each contact member and each terminal member forming the gap. In the circumferential direction It is increasing or decreasing continuously. Therefore, even when a processing error occurs in both the base materials of the contact member and the terminal member, a gap in which the connecting material is reliably filled exists between the contact member and the terminal member. Therefore, the contact member and the terminal member can be reliably electrically connected.
[0017]
According to the fuel pump of claim 8 of the present invention, the contact member of the commutator is formed of carbon, so that the corrosion resistance against moisture, acid or sulfur in the fuel is improved and the wear resistance is also improved. Therefore, the life of the fuel pump is extended. Further, since the yield of the commutator is improved, the manufacturing cost of the fuel pump can be reduced.
Furthermore, since the assembly of the contact member and the terminal member of the commutator is easy, the number of manufacturing steps of the fuel pump is reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A first embodiment showing the fuel pump of the present invention is shown in FIG. A fuel pump 10 shown in FIG. 4 is housed in a fuel tank of a vehicle or the like in a fuel supply system of an electronic fuel injection system, for example, and supplies fuel sucked from the fuel tank to the engine side.
[0019]
The fuel pump 10 includes a pump unit 20 and a motor unit 30 as an electromagnetic drive unit that drives the pump unit 20. The motor unit 30 is a DC motor with a brush, and has a configuration in which a permanent magnet is annularly arranged in a cylindrical housing 11 and an armature 32 is arranged concentrically on the inner peripheral side of the permanent magnet.
[0020]
The pump unit 20 includes a casing body 21, a casing cover 22, an impeller 23, and the like. The casing body 21 and the casing cover 22 constitute one casing member, and an impeller 23 as a rotating body is rotatably accommodated therein. The casing main body 21 and the casing cover 22 are formed by die-casting aluminum, for example. The casing body 21 is press-fitted and fixed inside one end of the housing 11, and a bearing 25 is fitted in the center thereof. The casing cover 22 is fixed to one end of the housing 11 by caulking or the like while being covered with the casing body 21. A thrust bearing 26 is press-fitted and fixed at the center of the casing cover 22. One end of the rotary shaft 35 of the armature 32 is supported in a radial direction by a bearing 25 so as to be rotatable, and a thrust load is supported by a thrust bearing 26. The other end of the rotary shaft 35 is supported by a bearing 27 in the radial direction so as to be rotatable.
[0021]
A fuel suction port 40 is formed in the casing cover 22, and the fuel in the fuel tank (not shown) is sucked into the pump flow path 41 from the fuel suction port 40 by rotating the impeller 23 having blade pieces formed on the peripheral edge. . The pump flow path 41 is formed in a C shape between the casing body 21 and the casing cover 22 along the outer periphery of the impeller 23. The fuel sucked into the pump passage 41 is pressurized by the rotation of the impeller 23 and is pumped to the fuel chamber 31 of the motor unit 30.
[0022]
The armature 32 is rotatably accommodated in the motor unit 30, and a coil is wound around the outer periphery of the core 32a. The commutator 50 is formed in a disk shape, and is disposed on the upper part of the armature 32 in FIG. Electric power is supplied to the coil from a power source (not shown) through a terminal 46 embedded in the connector 45, a brush (not shown), and a commutator 50. When the armature 32 rotates by the supplied electric power, the impeller 23 rotates together with the rotating shaft 35 of the armature 32. When the impeller 23 rotates, fuel is sucked into the pump passage 41 from the fuel suction port 40, and this fuel receives kinetic energy from each blade piece of the impeller 23 and is pumped from the pump passage 41 to the fuel chamber 31. The fuel pumped to the fuel chamber 31 passes around the armature 32 and is discharged from the fuel discharge port 43 to the outside of the fuel pump. A check valve 44 is accommodated in the fuel discharge port 43, and the check valve 44 prevents the backflow of fuel discharged from the fuel discharge port 43.
[0023]
Next, the configuration of the commutator 50 will be described in detail.
As shown in FIGS. 1 and 2, the commutator 50 includes eight segments 60 formed at equal angular intervals, and a fixing portion 56 as a support member that fixes the segments 60. Each segment 60 includes a contact member 51 and a terminal member 53 and is electrically insulated from each other by a radial groove 61.
[0024]
The contact member 51 shown in FIGS. 1 and 2 is made of carbon and has a sliding plane 51b that slides with the brush. The terminal member 53 is made of a metal having good conductivity such as brass and has a claw 55 protruding to the outer peripheral side. The coil of the armature 32 is electrically connected to the claw 55 by fusing. The fixing portion 56 is formed of a thermosetting resin, and fixes the contact member 51 and the terminal member 53. Since the groove 61 passes from the contact member 51 through the terminal member 53 to reach the fixing portion 56, the segments 60 are electrically insulated from each other. In FIG. 1, 51 a, 53 a, and 56 a represent end surfaces of the contact member 51, the terminal member 53, and the fixing portion 56 that face the groove 61.
[0025]
The contact member 51 constituting each segment is provided with a fan-shaped protrusion 52 that protrudes on the side facing the terminal member 53. On the outer peripheral side of the outer peripheral side surface 52a of the protrusion 52, an inner peripheral side surface 54 of the terminal member 53 that is opposed to the outer peripheral side surface 52a in the radial direction is formed. The outer peripheral side surface 52a and the inner peripheral side surface 54 are orthogonal to the sliding plane 51b of the contact member 51 that slides on the brush, and are electrically connected by a connecting material 57 made of a brazing material such as solder.
[0026]
Next, the manufacturing process of the commutator 50 will be described.
(1) The contact base material 100 shown in FIG. 3 of the contact member 51 has a circular shape in which the groove 61 of the contact portion formed by the eight contact members 51 is filled. An annular protrusion 101 that protrudes in the direction of the rotation axis of the commutator is formed on the inner peripheral side of the contact base material 100.
[0027]
The copper terminal base material 102 of the terminal member 53 is formed in an annular shape so as to surround the protrusion 101.
The outer peripheral side surface 101a as the first virtual surface of the protrusion 101 is formed in a circular shape, and the inner peripheral side surface 102a as the second virtual surface surrounding the outer peripheral side surface 101a is a concave portion for filling a plating material at each apex of the regular octagon. 54a is formed.
The outer peripheral side surface 101a and the inner peripheral side surface 102a are brazed.
[0028]
(2) As shown in FIG. 3, since the outer peripheral side surface 101a is inscribed in the inner peripheral side surface 102a in the state where the contact base material 100 and the terminal base material 102 are assembled, the contact base material 100 and the terminal base material 102 Can rotate with each other, but the center position does not shift. Therefore, even if the contact base material 100 and the terminal base material 102 rotate with each other, the size and shape of the gap formed between the outer peripheral side surface 101a and the inner peripheral side surface 102a do not change. Therefore, since the contact base material 100 and the terminal base material 102 can be assembled and the base materials can be positioned without adjusting the gap, the number of manufacturing steps can be reduced.
[0029]
(3) The connecting material 57 such as solder is filled between the outer peripheral side surface 101a and the inner peripheral side surface 102a, and the connecting material 57 is heated and cooled to braze the outer peripheral side surface 101a and the inner peripheral side surface 102a. Since the concave portion 54a is formed on the inner peripheral side surface 102a, the concave portion 54a can be reliably filled with the connecting material 57. Therefore, the connecting member 57 enters the gap formed between the outer peripheral side surface 101a and the inner peripheral side surface 102a from the recess 54a, and the contact base material 100 and the terminal base material 102 can be reliably electrically connected. .
[0030]
If the gap formed by the outer peripheral side surface 101a and the inner peripheral side surface 102a is too small, the connecting material 57 is difficult to enter, and if it is too large, a gap may be generated inside the connecting material 57. Therefore, depending on the position of the gap, there is a risk of poor electrical connection between the outer peripheral side surface 101a and the inner peripheral side surface 102a. However, the gap in the position corresponding to the contact member 51 and the terminal member 53 formed in the next process continuously increases and decreases in the circumferential direction so that both sides in the circumferential direction are narrow and the central portion is large as shown in FIG. As a result, the connecting member 57 reliably enters the gap formed between the contact member 51 and the terminal member 53, and the contact member 51 and the terminal member 53 can be reliably electrically connected.
[0031]
(4) After the brazing, the fixing portion 56 is formed by filling the resin. A groove 61 is formed at a position indicated by a two-dot chain line in FIG. 3 from the contact base material 100 side through the terminal base material 102 to reach the fixing portion 56, and eight segments 60 are formed at equal intervals. 1 and the commutator 50 shown in FIG. 2 are formed.
[0032]
The commutator 50 formed in this way is assembled to the upper part of the armature 32, and the end of the coil of the armature 32 is hooked on each claw 55 for fusing. Although the terminal member 53 is heated by the heat of fusing, since the connecting material 57 is separated from the claw 55, the temperature of the connecting material 57 hardly rises to the melting point temperature. Therefore, it is possible to prevent the connecting material 57 from melting and reaching the groove 61, so that the insulation between the segments 60 can be ensured.
[0033]
(Second embodiment)
A second embodiment of the present invention is shown in FIG.
The contact base material 105 has a protrusion 106 formed in an octagonal annular star shape. The inner peripheral side surface 107a as the second virtual surface of the terminal base material 107 is formed in a regular octagonal shape, and surrounds the outer peripheral side surface 106a as the first virtual surface of the protrusion 106.
[0034]
As shown in FIG. 5, since the star-shaped apex of the protrusion 106 is in contact with each apex of the inner peripheral side surface 107a in a state where the contact base material 105 and the terminal base material 107 are assembled, the contact base material 105 and The terminal base material 107 cannot move with respect to each other, and the center position does not shift. Therefore, the size and shape of the gap formed between the outer peripheral side surface 106a and the inner peripheral side surface 107a do not change. As a result, the contact base material 105 and the terminal base material 107 can be assembled without adjusting the gap, thereby reducing the number of manufacturing steps.
[0035]
(Modification)
A modification of the second embodiment is shown in FIG. In the modification, the recess 107b is formed on the inner peripheral side surface 107a. Therefore, the amount of the connecting material 57 filled between the outer peripheral side surface 106a and the inner peripheral side surface 107a is increased, and the outer peripheral side surface 106a and the inner peripheral side surface 107a can be brazed reliably.
[0036]
(Third embodiment)
A third embodiment of the present invention is shown in FIG.
The shape of the protrusion 101 is the same as in the first embodiment. Eight concave portions 110b are formed at equiangular intervals on the inner peripheral side surface 110a as the second virtual surface of the terminal base material 110 of the terminal member.
[0037]
Since the outer peripheral side surface 101a is inscribed in the inner peripheral side surface 110a in the state where the contact base material 100 and the terminal base material 110 are assembled, the contact base material 100 and the terminal base material 110 can rotate with respect to each other. The position does not shift. Therefore, even if the contact base material 100 and the terminal base material 110 rotate with each other, the size and shape of the gap formed between the outer peripheral side surface 101a and the inner peripheral side surface 110a do not change. Thereby, since the contact base material 100 and the terminal base material 110 can be assembled | attached, without adjusting a clearance gap, a manufacturing man-hour reduces.
[0038]
In the first, second, and third examples showing the embodiment of the present invention described above, the contact base material and the terminal base material before being filled with the connection material are assembled to the contact member. The outer peripheral side surface of the protrusion and the inner peripheral side surface of the terminal base material surrounding the outer periphery of the outer peripheral side surface are in contact with each other at a plurality of locations, and the outer peripheral side surface is not movable with respect to the inner peripheral side surface, or only rotational movement is allowed. The size and shape of the gap formed between the outer peripheral side surface and the inner peripheral side surface do not change. Therefore, since the contact base material and the terminal base material can be assembled and the base materials can be positioned without adjusting the gap formed between the outer peripheral side surface and the inner peripheral side surface, the number of manufacturing steps can be reduced.
[0039]
Furthermore, since the size of the gap formed between the contact member and the terminal member continuously increases and decreases in the circumferential direction, even if the size or shape of these gaps fluctuates due to processing errors, the connecting material There is definitely a position to be filled. Therefore, the contact member and the terminal member can be reliably electrically connected.
[0040]
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIGS. Components that are substantially the same as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 8, each segment of the commutator 120 has a contact member 121 and a terminal member 123, and is electrically insulated from each other by grooves 61 that are radially formed on both sides in the circumferential direction of each segment. The contact member 121 is made of carbon, and the terminal member 123 is made of a metal having good conductivity such as copper. Reference numerals 57 a, 121 a, and 123 a shown in FIG. 8 represent end surfaces of the connection member 57, the contact member 121, and the terminal member 123 that face the groove 61.
[0041]
The contact member 121 constituting each segment is provided with a fan-shaped protrusion 122 that protrudes in the direction of one rotational axis of the commutator 120 on the side facing the terminal member 123. As shown in FIG. 9, an inner peripheral side surface 124 of the terminal member 123 that is radially opposed to the outer peripheral side surface 122 a is formed on the outer peripheral side of the outer peripheral side surface 122 a of the protrusion 122. That is, the outer peripheral side surface 122a and the inner peripheral side surface 124 are formed so as to intersect the sliding plane 121b of the contact member 121 that slides with the brush. FIG. 9 shows a state in which the connecting material 57 has been removed, and is upside down from FIG. A gap 125 having the shape shown in FIG. 9 is formed between the outer peripheral side surface 122a and the inner peripheral side surface 124 until reaching the grooves 61 on both sides in the circumferential direction. The contact member 121 and the terminal member 123 are electrically connected by the connecting material 57 filled in the gap 125.
[0042]
The inner peripheral side surface 124 is orthogonal to the sliding plane 121 b of the contact member 121. A part of the outer peripheral side surface 122a is formed in a taper shape, and as shown in FIG. 9, it inclines toward the rotating shaft 129 side toward the protruding direction of the projection 122, that is, one direction of the rotating shaft 129, with respect to the inner peripheral side surface 124. is doing. Therefore, the size of the gap 125 continuously increases in one direction of the rotating shaft 129 without the connecting member 57 shown in FIG. Further, the area of the outer peripheral side surface 122 a that contacts the connecting member 57 is larger than that of the inner peripheral side surface 124.
[0043]
In the fourth embodiment, the size of the gap 125 continuously increases toward one direction of the rotation shaft 129 of the commutator 120. Therefore, the size of the gap formed between the outer peripheral side surface and the inner peripheral side surface due to a processing error or the like in the base material that forms the contact member 121 and the terminal member 123, respectively, or because the assembly position of the base material is shifted. However, if the amount of processing error of the base material and the amount of positional deviation of the base material during assembly are within the absorption range of the gap 125, the connecting material 57 is placed in the gap 125 at any position in the rotational axis direction. Filled, the outer peripheral side surface 122a and the inner peripheral side surface 124 can be reliably electrically connected. Furthermore, since it is not necessary to position the base material with high accuracy, the base material can be easily assembled.
[0044]
Further, since the outer peripheral side surface 122a has a larger contact area with the connecting material 57 than the inner peripheral side surface 124, the connecting material 57 is applied on both side surfaces in the state shown in FIG. When arranged, the connection material 57 starts to melt from the outer peripheral side surface 122a by heat received from the contact member 121 side. Then, after the outer peripheral side surface 122a is sufficiently wetted by the connecting material 57, the connecting material flows down the outer peripheral side surface 122a, and the connecting material 57 wets the inner peripheral side surface 124 of the terminal member 123 having excellent wettability with the connecting material 57. Therefore, the outer peripheral side surface 122a having poor wettability and the inner peripheral side surface 124 having excellent wettability can be reliably electrically connected by the connecting material.
[0045]
(Modification 1)
Modification 1 of the fourth embodiment is shown in FIG. FIG. 10 shows a state in which the connecting material is removed as in FIG. 9 showing the fourth embodiment. Modification 1 is an example in which a part of the inner peripheral side surface 133 of the terminal member 132 is inclined with respect to the outer peripheral side surface 131a, not the outer peripheral side surface 131a of the protrusion 131 formed on the contact member 130.
[0046]
The outer peripheral side surface 131 a is orthogonal to the sliding plane 130 a of the contact member 130. A part of the inner peripheral side surface 133 is formed in a tapered shape, and is inclined with respect to the outer peripheral side surface 131a in the protruding direction of the protrusion 122, that is, in a direction away from the rotating shaft as it goes in one direction of the rotating shaft of the commutator. . Therefore, the size of the gap 134 continuously increases in one direction of the rotation axis, excluding the connecting material 57 shown in FIG.
[0047]
Therefore, as in the fourth embodiment, if the amount of processing error of the base material forming the contact member 130 and the terminal member 132 and the amount of positional deviation of the base material at the time of assembly are within the absorption range of the gap 134, the rotational axis direction In any of the positions, the gap 134 is filled with the connecting material, and the outer peripheral side surface 131a and the inner peripheral side surface 133 can be reliably electrically connected. Furthermore, since it is not necessary to position the base material with high accuracy, the base material can be easily assembled.
[0048]
(Modification 2)
FIG. 11 shows a second modification of the fourth embodiment. FIG. 11 shows a state in which the connecting material is removed as in FIG. Modification 2 is an example in which the outer peripheral side surface 131a of the protrusion 136 formed on the contact member 135 is formed in a convex curved surface shape.
[0049]
The outer peripheral side surface 136a is formed in a convex curved surface shape. The inner peripheral side surface 138 of the terminal member 137 is orthogonal to the sliding plane 135a of the contact member 135 that slides with the brush. In the state excluding the connecting material shown in FIG. 11, the size of the gap 139 continuously increases in the protruding direction of the protrusion 136, that is, in one direction of the rotation axis.
[0050]
Accordingly, as in the fourth embodiment, if the amount of processing error of the base material forming the contact member 135 and the terminal member 137 and the amount of positional deviation of the base material at the time of assembly are within the absorption range of the gap 139, the rotational axis direction In any of these positions, the gap 139 is filled with the connecting material, and the outer peripheral side surface 136a and the inner peripheral side surface 138 can be reliably electrically connected. Furthermore, since it is not necessary to position the base material with high accuracy, the base material can be easily assembled.
[0051]
In the above-described fourth embodiment and its modifications, one of the outer peripheral side surface and the inner peripheral side surface is formed into a tapered surface or a convex curved surface, so that the size of the gap formed between both side surfaces can be used as a contact member. It increases continuously as it goes in the protruding direction of the protrusion to be formed. On the other hand, a connecting material formed in a thread or ring shape is arranged between the outer peripheral side surface and the inner peripheral side surface of the base material forming both members, and the connecting material is melted to electrically connect the contact member and the terminal member. In this case, the gap increasing direction may be opposite to that in the fourth embodiment and its modification, or the central gap may be made larger than both sides in the rotation axis direction.
[0052]
Also, the outer peripheral side surface can be increased or decreased in the direction of the rotation axis of the commutator by making one side of the outer peripheral side surface and the inner peripheral side surface into, for example, a multi-stepped shape. A gap formed between the inner peripheral side surface and the inner peripheral side surface is filled with a connecting material, so that both members can be electrically connected.
[0053]
In the above-described plurality of examples showing the embodiment of the present invention described above, the protrusion formed on the contact member and the inner peripheral side surface of the terminal member covering the outer peripheral side surface of the protrusion are electrically connected by the connecting material 57. Connected. That is, since the contact member and the terminal member are electrically connected to each other by the side surfaces orthogonal to or intersecting with the sliding plane of the contact member sliding with the brush, the terminal member claw 55 and the armature coil The distance between the electrical connection position of the contact member and the terminal member can be separated from the position where the contact member is electrically connected by fusing or the like. Therefore, even if the terminal member is heated by the heat generated during fusing, the temperature of the connecting member 57 can be prevented from reaching the melting point. Therefore, it is possible to prevent the connecting material 57 from eluting and flowing into the groove 61 and conducting adjacent segments. Thereby, since the yield of the commutator is improved, the manufacturing cost of the fuel pump using the commutator and the commutator can be reduced.
[0054]
In the above embodiments, the protrusion is provided on the contact member, and the outer peripheral side surface of the protrusion is covered with the inner peripheral side surface of the terminal member, but the protrusion is provided on the terminal member and the protrusion is provided on the inner peripheral side surface of the contact member. It may be covered. The number of segments may be other than eight.
[0055]
By using the commutator of the present invention not only for the armature of the fuel pump but also for the armature of another device, the life of the device can be extended and the manufacturing cost can be reduced.
[Brief description of the drawings]
1 is a cross-sectional view taken along line II of FIG. 2, showing a commutator according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a commutator according to a first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing an electrical connection state between a contact base material and a terminal base material before division.
FIG. 4 is a sectional view showing a fuel pump using the commutator of the first embodiment.
FIG. 5 is a cross-sectional view showing an electrical connection state between a contact base material and a terminal base material before division according to a second embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a modification of the second embodiment.
FIG. 7 is a cross-sectional view showing an electrical connection state between a contact base material and a terminal base material before division according to a third embodiment of the present invention.
8 is a cross-sectional view showing a commutator according to a fourth embodiment of the present invention in the same cross section as FIG. 1. FIG.
FIG. 9 is a schematic cross-sectional view showing the shape of the gap in the ninth embodiment in a state where the connecting material is removed.
FIG. 10 is a schematic cross-sectional view showing a shape of a gap in a state where a connecting material is removed in Modification 1 of the fourth embodiment.
FIG. 11 is a schematic cross-sectional view showing a shape of a gap in a state where a connection material is removed in Modification 2 of the fourth embodiment.
[Explanation of symbols]
10 Fuel pump
50 commutator
51 Contact member
51b Sliding plane
52 Projection
52a outer peripheral side
53 Terminal material
54 Inner side
54a recess
56 Fixing part (supporting member)
57 Connecting material
60 segments
61 groove
100 contact matrix
101 Projection
101a Outer peripheral side surface (first virtual surface)
102 Terminal matrix
102a Inner peripheral side surface (second virtual surface)
105 Contact matrix
106 Projection
106a outer peripheral side surface (first virtual surface)
107 Terminal matrix
107a Inner peripheral side surface (second virtual surface)
107b recess
110 Terminal matrix
110a Inner peripheral side surface (second virtual surface)
110b recess
120 commutator
121, 130, 135 Contact member
122, 131, 136 protrusion
122a, 131a, 136a outer peripheral side
123, 132, 137 Terminal member
124, 133, 138 inner peripheral side
125, 134, 139 gap

Claims (8)

隣接するセグメント間に形成されている溝により互いに電気的に絶縁されている複数のセグメントを備える整流子の製造方法であって、
ブラシと摺動する摺動平面を有するカーボン製の接触母材と、前記接触母材の前記摺動平面と反対側に配設され、後工程において接続材により前記接触母材と電気的に接続される端子母材との内、他方の母材に向けて整流子の回転軸方向に突出し、かつ整流子の回転軸を取り囲む突部を有する一方の母材を形成する工程と、
前記突部の外周側面を取り囲む内周側面を有する他方の母材を形成する工程と、
前記内周側面が前記外周側面を取り囲むように両母材を組付ける工程と、
前記外周側面と前記内周側面との間に形成されている隙間に両母材を電気的に接続する接続材を充填する工程と、
前記接続材により電気的に接続された両母材を支持部材に装着する工程と、
溝を形成することにより、互いに電気的に絶縁され、回転方向に配設される複数のセグメントに両母材を分割する工程とを有し、
前記接続材を充填する前の両母材を組付けた状態において、前記外周側面は前記内周側面に対し移動不可か、あるいは移動しても前記外周側面と前記内周側面との間に形成される隙間の形状が変化しないように、前記外周側面と前記内周側面とは周方向の複数箇所で接しており、前記外周側面と前記内周側面とが接している周方向の複数箇所の間に前記隙間が形成されていることを特徴とする整流子の製造方法。
A method of manufacturing a commutator comprising a plurality of segments that are electrically insulated from each other by grooves formed between adjacent segments,
A contact base material made of carbon having a sliding plane that slides with the brush, and disposed on the side opposite to the sliding plane of the contact base material, and electrically connected to the contact base material by a connecting material in a later process A step of forming one base material having a protrusion protruding in the direction of the rotation axis of the commutator toward the other base material and having a protrusion surrounding the rotation axis of the commutator;
Forming the other base material having an inner peripheral side surface surrounding the outer peripheral side surface of the protrusion;
Assembling both base materials so that the inner peripheral side surrounds the outer peripheral side;
Filling a connecting material for electrically connecting both base materials into a gap formed between the outer peripheral side surface and the inner peripheral side surface;
Attaching both base materials electrically connected by the connecting material to a support member;
Dividing the base material into a plurality of segments that are electrically insulated from each other and arranged in the rotational direction by forming grooves,
In a state in which both the base materials before filling with the connecting material are assembled, the outer peripheral side surface is not movable relative to the inner peripheral side surface, or is formed between the outer peripheral side surface and the inner peripheral side surface even if it moves. The outer peripheral side surface and the inner peripheral side surface are in contact with each other at a plurality of locations in the circumferential direction so that the shape of the gap is not changed, and a plurality of circumferential locations where the outer peripheral side surface and the inner peripheral side surface are in contact with each other A method of manufacturing a commutator , wherein the gap is formed therebetween .
両母材を形成する工程において、前記外周側面および前記内周側面の少なくともいずれか一方に、接続材充填用の凹部を形成することを特徴とする請求項1記載の整流子の製造方法。  2. The method of manufacturing a commutator according to claim 1, wherein, in the step of forming both the base materials, a recess for filling a connecting material is formed on at least one of the outer peripheral side surface and the inner peripheral side surface. 両母材を形成する工程において、前記外周側面および前記内周側面の両方に接続材充填用の凹部を形成することを特徴とする請求項2記載の整流子の製造方法。  3. The method of manufacturing a commutator according to claim 2, wherein, in the step of forming both the base materials, concave portions for filling the connection material are formed on both the outer peripheral side surface and the inner peripheral side surface. 前記外周側面は円状に形成されており、前記内周側面は、前記外周側面が周方向の複数箇所で前記内周側面に内接する多角形状に形成されていることを特徴とする請求項1から3のいずれか一項記載の整流子の製造方法。2. The outer peripheral side surface is formed in a circular shape, and the inner peripheral side surface is formed in a polygonal shape in which the outer peripheral side surface is inscribed in the inner peripheral side surface at a plurality of locations in a circumferential direction. The method for manufacturing a commutator according to any one of claims 1 to 3. 隣接するセグメント間に形成されている溝により互いに電気的に絶縁されている複数のセグメントを備える整流子であって、A commutator comprising a plurality of segments that are electrically isolated from each other by grooves formed between adjacent segments,
各セグメントは、カーボンで形成されブラシと摺動する接触部材と、前記接触部材の前記ブラシとの摺動側と反対側に配設されている端子部材と、前記接触部材と前記端子部材とを電気的に接続している接続材とを有し、Each segment includes a contact member formed of carbon and sliding with a brush, a terminal member disposed on a side opposite to the sliding side of the contact member with the brush, and the contact member and the terminal member. A connecting material electrically connected,
複数の前記接触部材が構成し前記ブラシと摺動する摺動平面を有する接触部、および複数の前記端子部材が構成する端子部の一方は、他方に向けて整流子の回転軸方向に突出し、かつ整流子の回転軸を取り囲む突部を有し、前記接触部および前記端子部の他方は前記突部の外周側面を取り囲む内周側面を有し、前記接続材は前記外周側面と前記内周側面との間に形成されている隙間に充填され、前記接触部材と前記端子部材とを電気的に接続しており、One of the contact part that the plurality of contact members constitute and have a sliding plane that slides with the brush, and the terminal part that the plurality of terminal members form, protrudes in the rotation axis direction of the commutator toward the other, And the other of the contact portion and the terminal portion has an inner peripheral side surface that surrounds an outer peripheral side surface of the protrusion, and the connecting material includes the outer peripheral side surface and the inner peripheral side. The gap formed between the side surface is filled, and the contact member and the terminal member are electrically connected,
前記外周側面、ならびに隣接する前記外周側面をそれぞれ延長して前記溝を埋める連結面により構成される第1仮想面と、前記内周側面、ならびに隣接する前記内周側面をそれぞれ延長して前記溝を埋める連結面により構成される第2仮想面とは、前記第1仮想面が前記第2仮想面に対し、移動不可か、あるいは移動しても前記第1仮想面と前記第2仮想面との間に形成される隙間の形状が変化しないように周方向の複数箇所で接しており、前記第1仮想面と前記第2仮想面とが接している周方向の複数箇所の間に前記隙間が形成されていることを特徴とする整流子。A first imaginary surface constituted by a connection surface that extends the outer peripheral side surface and the adjacent outer peripheral side surface to fill the groove, and extends the inner peripheral side surface and the adjacent inner peripheral side surface, respectively, to form the groove. The second virtual surface constituted by the connecting surface that fills the first virtual surface is not movable with respect to the second virtual surface, or the first virtual surface and the second virtual surface even if the first virtual surface is moved. So that the shape of the gap formed between them does not change, and is in contact at a plurality of locations in the circumferential direction, and the gap between the plurality of locations in the circumferential direction where the first virtual surface and the second virtual surface are in contact A commutator characterized in that is formed.
前記第1仮想面と前記第2仮想面との間に形成される隙間は、前記隙間を形成する各接触部材と各端子部材との間において周方向に連続して増減していることを特徴とする請求項5記載の整流子。The gap formed between the first imaginary plane and the second imaginary plane is increased or decreased continuously in the circumferential direction between each contact member and each terminal member forming the gap. The commutator according to claim 5. 前第1仮想面は円状であり、前記第2仮想面面は、前記第1仮想面がThe front first virtual surface is circular, and the second virtual surface is 周方向の複数箇所で前記第2仮想面に内接する多角形状に形成されていることを特徴とする請求項5または6記載の整流子。The commutator according to claim 5, wherein the commutator is formed in a polygonal shape inscribed in the second imaginary plane at a plurality of locations in a circumferential direction. 請求項5から7のいずれか一項記載の整流子を用いることを特徴とする燃料ポンプ。A fuel pump using the commutator according to any one of claims 5 to 7 .
JP31468898A 1998-02-02 1998-11-05 Commutator, fuel pump using the commutator, and commutator manufacturing method Expired - Lifetime JP3919050B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31468898A JP3919050B2 (en) 1998-03-30 1998-11-05 Commutator, fuel pump using the commutator, and commutator manufacturing method
KR1019990002711A KR100332318B1 (en) 1998-02-02 1999-01-28 Commutator and method of manufacturing the same
DE19903921.6A DE19903921B4 (en) 1998-02-02 1999-02-01 Collector and related manufacturing process
US09/241,291 US6242838B1 (en) 1998-02-02 1999-02-01 Commutator and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-83781 1998-03-30
JP8378198 1998-03-30
JP31468898A JP3919050B2 (en) 1998-03-30 1998-11-05 Commutator, fuel pump using the commutator, and commutator manufacturing method

Publications (2)

Publication Number Publication Date
JPH11346460A JPH11346460A (en) 1999-12-14
JP3919050B2 true JP3919050B2 (en) 2007-05-23

Family

ID=26424822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31468898A Expired - Lifetime JP3919050B2 (en) 1998-02-02 1998-11-05 Commutator, fuel pump using the commutator, and commutator manufacturing method

Country Status (1)

Country Link
JP (1) JP3919050B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569796B2 (en) * 2000-04-13 2010-10-27 株式会社デンソー Commutator
WO2002073776A1 (en) * 2001-03-13 2002-09-19 Aupac Co., Ltd. Flat commutator and method of producing the same
JP5498141B2 (en) * 2009-12-04 2014-05-21 株式会社杉山製作所 Commutator

Also Published As

Publication number Publication date
JPH11346460A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
JP4912752B2 (en) motor
US8690547B2 (en) Fan
US20080054735A1 (en) Fan and motor used thereto
JPH07298560A (en) Commutator
CN100338831C (en) Commutator, and electrical motor and fluid pump using the same
US6242838B1 (en) Commutator and method of manufacturing the same
JP3919050B2 (en) Commutator, fuel pump using the commutator, and commutator manufacturing method
EP0935331B1 (en) Commutator of improved segment joinability
CN110383644A (en) Motor and pump installation
US11677300B2 (en) Motor and blower
JP3972352B2 (en) Commutator and fuel pump using the same
JP3613872B2 (en) Fuel supply apparatus and manufacturing method thereof
KR20000048240A (en) Armature with plane commutator for a electric motor
WO2020195391A1 (en) Bearing holder
WO2020195396A1 (en) Motor
JP7081160B2 (en) motor
JP4132114B2 (en) Commutator and fuel pump using the same
JP4221752B2 (en) Commutator and manufacturing method thereof
JP3508322B2 (en) Rotating electric machine
US20020101127A1 (en) Apparatus and method for securing wires of a rotor
JP3262418B2 (en) Brushless motor
JPH10174375A (en) Commutator and its manufacture
KR100963978B1 (en) Alternator for a Vehicle
JP7493404B2 (en) Pumping equipment
US20210095687A1 (en) Motor and blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term