JP3919010B2 - Degradation judgment method of semiconductor element constituting power conversion device - Google Patents

Degradation judgment method of semiconductor element constituting power conversion device Download PDF

Info

Publication number
JP3919010B2
JP3919010B2 JP2003111078A JP2003111078A JP3919010B2 JP 3919010 B2 JP3919010 B2 JP 3919010B2 JP 2003111078 A JP2003111078 A JP 2003111078A JP 2003111078 A JP2003111078 A JP 2003111078A JP 3919010 B2 JP3919010 B2 JP 3919010B2
Authority
JP
Japan
Prior art keywords
semiconductor element
voltage
switch
power conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111078A
Other languages
Japanese (ja)
Other versions
JP2004317277A (en
Inventor
壮章 田畑
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003111078A priority Critical patent/JP3919010B2/en
Publication of JP2004317277A publication Critical patent/JP2004317277A/en
Application granted granted Critical
Publication of JP3919010B2 publication Critical patent/JP3919010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力変換装置を構成する半導体素子を装置から取り外すことなく、容易に劣化判定が可能な半導体素子の劣化判定方法に関する。
【0002】
【従来の技術】
電力変換装置を構成する半導体素子の劣化診断を行なう方法として、高圧端子に電圧を印加して漏れ電流を測定する例を図17(a)に示す。なお、ここでは半導体素子としてIGBT(絶縁ゲートバイポーラトランジスタ)の例で説明する。
まず、半導体素子Q(例えば、図17(a)のQ23)を電力変換装置Convから取り外し、半導体素子Q23のゲート端子Gとエミッタ端子Eとを短絡して半導体素子Q23をオフ状態にし、測定器MUを図17(b)のように接続する。
【0003】
測定器MUは、可変電圧VRと電流を制限する抵抗Rr、半導体素子Q23に流れる電流を検出する抵抗Rsと電流計、半導体素子Q23の両端の電圧を測定する電圧計等を備えている。
図17(b)のように接続した状態で可変電圧VRを徐々に上げて行き、半導体素子Q23に印加される電圧が図17(c)に示す基準電圧値Vrefに達したときに、半導体素子Q23に流れる漏れ電流Ileakを測定する。漏れ電流Ileakと基準値Irefとを比較した結果により、劣化可否の判断を行なう。図17(c)の例では▲1▼が正常、▲2▼が劣化したときに測定される特性例をそれぞれ示す。
【0004】
上記の方法は例えば特許文献1に示される、カーブトレーサと呼ばれる測定器を用いる方法である。なお、劣化診断の他の方法として、電力変換装置に取り付けられた半導体素子の電圧と電流を測定して劣化を判定するもの(特許文献2)や、半導体素子に電圧を印加したときに流れる漏れ電流の高周波成分と直流成分とを検出し、その比率に従って耐圧良否を判定するもの(特許文献3)などがある。
【0005】
【特許文献1】
特開平05−157801号公報(第頁2−3、図1)
【特許文献2】
特開平09−257870号公報(第2頁、図1)
【特許文献3】
特開2000−111606号公報(第4−5頁、図3)
【0006】
【発明が解決しようとする課題】
しかし、特許文献1では半導体素子を装置から一端取り外さなければならないと言う問題がある。また、特許文献2,3では電圧測定器,電流測定器およびそれらの測定結果を判定する判定回路を設けるなど、正確な漏れ電流を測定し劣化診断を行なうため回路が複雑化するだけでなく、高性能の測定装置を必要とするため装置に内蔵させようとすると、装置のコストアップにつながる。
したがって、この発明の課題は、半導体素子を装置から一端取り外すことなく、しかも簡単かつ安価に半導体素子の劣化を判定できるようにすることにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、半導体素子で構成された電力変換装置において、
その直流充電部の両端に抵抗の直列回路を接続し、その抵抗の中性点と前記電力変換装置の交流出力端子間にスイッチと、このスイッチに流れる電流を検出する電流検出手段とを設け、直流電圧印加時の半導体素子がオフ状態中に前記スイッチを閉じたときの、そのスイッチに流れる電流の値と方向から劣化判定を行なうことを特徴とする。
この請求項1の発明においては、前記電流検出手段からの検出電流値を用いることにより、劣化の定量的な判定を可能にすることができる(請求項2の発明)。
【0008】
上記請求項1または2の発明においては、前記電力変換装置の交流出力端子電圧を検出する電圧検出手段を付加し、その検出電圧値に応じて前記スイッチをオン,オフさせることができ(請求項3の発明)、請求項1ないし3のいずれかの発明においては、前記スイッチの代わりに双方向スイッチを用いることができ(請求項4の発明)、請求項1ないし4のいずれかの発明においては、前記直流充電部の直流電圧値と前記電流検出手段からの検出電流値とを監視する監視手段を設け、前記電力変換装置停止後の直流電圧が下降する期間に、前記監視手段により直流電圧値と検出電流値とを複数回監視し、その関係から劣化判定を行なうことができる(請求項5の発明)。
【0009】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す回路図である。
図示のように、直流充電部としてのコンデンサCdと並列に抵抗R1,R2の直列接続回路を接続し、その抵抗R1とR2の接続点にそれぞれスイッチS1,S2,S3を介して半導体素子の出力端子U,V,Wに接続する。また、スイッチS1,S2,S3に流れる電流を検出する電流検出器CTを接続する。図1の機能,作用について図2〜図7を参照して説明する。
【0010】
図2には、電力変換装置の1相分を示す。スイッチおよび半導体素子に「n」を付して3相のうちの任意の1つであることを示し、以下同様とする。
まず、電力変換装置すべての半導体素子にオフ信号を与える。これにより、電力変換装置が停止し、半導体素子Q1n,Q2nの素子電圧はそれぞれの素子の寄生容量比で分圧し、半導体素子Q1n,Q2nが同じ特性であれば、それぞれEd/2に収束する。その様子を図3に示す。VCE1は信号ON/OFF1で駆動される半導体素子Q1nの素子電圧(コレクタ−エミッタ間電圧)であり、VCE2は信号ON/OFF2で駆動される半導体素子Q2nの素子電圧である。
【0011】
半導体素子Q1n,Q2nのオフ状態での漏れ電流成分は、図4(b)のような抵抗Rce1,Rce2で示すことができる。
ここで、半導体素子の電圧電流特性を図5に示す。同図では、半導体素子の特性を▲1▼,▲1▼’なる曲線で示している。すなわち、半導体素子に電圧Ed/2が印加されたときに、▲1▼,▲1▼’の曲線で示される特性がI1<I1’とすれば、1/Rce1<1/Rce1’である。ゆえに、Rce1>Rce1’であり、▲1▼’は▲1▼に比べて抵抗値が減少したことになる。
【0012】
いま、半導体素子Q1nが劣化し漏れ電流が増加した状態とすると、Rce1の抵抗値は減少したことになる。これにより、抵抗Rce1とRce2との接続点の電位Vacは、抵抗R1とR2との接続点の電位Ed/2に対して、Vac>Ed/2となることから、スイッチSnを閉じると電流iの流れる方向は図6のようになる。
これに対し、半導体素子Q2nが劣化した場合はRce2が減少するため、Vac<Ed/2となり電流iの流れる方向は、図7のように図6とは逆になる。
【0013】
よって、図6,図7の関係から、スイッチSn(電流検出器CT)に流れる電流の方向を判別することにより、半導体素子Q1n,Q2nで漏れ電流の大きい素子を判別することができる。
さらに、図5に示した特性曲線に対応する半導体素子の漏れ電流特性と、装置に適用する場合の抵抗値を事前に測定しておけば、スイッチSnを流れる電流値を測定することにより、半導体素子の漏れ電流値が定量化でき、劣化判定が可能となる。
【0014】
図8はこの発明の第2の実施の形態を示す回路図である。
これは交流端子電圧Vacを検出する電圧検出器Vsを付加した点が特徴である。スイッチSnはその出力によりオン,オフされる。
電力変換装置を制御信号によりすべてオフすると、交流端子電圧Vacは半導体素子Q1n,Q2nの寄生容量比で分圧した値になるのは図2,図3の場合と同様である。ここで、図9に示すように交流端子電圧Vacの検出電圧、すなわちVCE2がEd/2±αの範囲内に上昇または下降したときに、電圧検出器VsはスイッチSnを投入する信号を出力する。そこで、スイッチSnが投入されたときに、スイッチSnに流れる電流値を電流検出器CTで測定すれば、図1と同様にして半導体素子の劣化判定が可能となる。この場合、制御装置からの制御信号が必要無くなるので、構成が簡単になる。
【0015】
図10はこの発明の第3の実施の形態を示す回路図である。
これは、スイッチSnをスイッチS11とS12の逆直列回路としたものである。その動作について、図11を参照して説明する。
スイッチS11をオンさせたときは図11(a)のように、Rce1>Rce2のときのみSnに電流が流れ、Rce1<Rce2のときにはS12のダイオードで阻止されてSnには電流は流れない。
【0016】
また、スイッチS12をオンさせたときは図11(b)のように、Rce1<Rce2のときのみSnに電流が流れ、Rce1>Rce2のときにはS11のダイオードで阻止されてSnには電流は流れない。
以上のことから、スイッチSnに与えたオン,オフ信号とそのときの電流の有無や電流値を検出することで、図1と同様にして半導体素子の劣化判定が可能となる。
【0017】
図12はこの発明の第4の実施の形態を示す回路図である。
これは、電力変換装置が運転停止後、コンデンサCdに充電された電圧Edを放電させるために、抵抗RdとスイッチSdとの直列回路を直流充電部と並列に接続するとともに、直流電圧検出値Vdと電流検出器CTの検出電流値Isを記憶する記憶部Mを付加したものである。その動作について、図13〜16を参照して説明する。
【0018】
まず、図13の時刻t1において、半導体素子Q1n,Q2nに対しオフ信号が与えられると、半導体素子Q1n,Q2nが劣化していない場合は、各半導体素子の両端電圧はEd/2に収束する。その後、図14に示すように、直流電圧Edを放電させるためにスイッチSdを閉じると、コンデンサCdに蓄えられた電圧Edは、抵抗Rdを通して点線で示すような経路で放電される。
【0019】
このとき、図15に示すように、スイッチSdを閉じた時刻t20からt21,t22,t23,t24のように一定間隔で、直流電圧VdとスイッチSnに流れる電流値Isを記憶部Mで記憶する。ここで、半導体素子Q1n,Q2nが劣化していない場合は、スイッチSnに流れる電流Isは図16の▲1▼で示されるように、ほぼ0になる。また、半導体素子Q1nが劣化していれば、スイッチSnには図14に矢印で示す向きに電流が流れ、図16の▲2▼のような特性が得られ、さらに半導体素子Q2nが劣化している場合は、スイッチSnには図14とは逆向きの電流が流れ、図16の▲3▼のような特性が得られることになる。
【0020】
以上のことから、スイッチSnに流れる電流の方向を判別して劣化している半導体素子を特定することに加え、劣化している半導体素子の電圧と電流の関係を記憶部で把握でき、詳細な劣化特性を確認することができる。なお、半導体素子の電圧と電流を一定間隔で記憶したが、不等間隔または連続的に記憶しても同等の結果が得られることは言うまでもない。また、直流電圧が放電で変化する例を説明したが、直流電圧が垂下する状態、たとえば制御電源などによる直流電圧垂下時に測定するようにしても良い。
【0021】
なお、この発明は半導体素子としてIGBTだけでなく、各種トランジスタ,各種サイリスタまたは各種ダイオードの劣化判定等に適用することができる。
【0022】
【発明の効果】
この発明によれば、電力変換装置を構成する半導体素子を、装置から取り外すことなく劣化を判定することが可能となる。また、特に高性能の測定器を必要としないため、装置に内蔵できる利点がもたらされる。スイッチに流れる電流を検出するための電流検出器を、電力変換装置の主電流とは別位置に配置したため、測定範囲が微小電流範囲のみで十分となる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す回路図
【図2】図1の任意の1相分を示す回路図
【図3】図2のオン,オフ信号と素子電圧の推移説明図
【図4】素子の漏れ電流説明図
【図5】素子の電圧電流特性図
【図6】素子の劣化による電流方向説明図
【図7】素子の劣化による逆電流方向説明図
【図8】この発明の第2の実施の形態を示す回路図
【図9】図8のオン,オフ信号と素子電圧の推移説明図
【図10】この発明の第3の実施の形態を示す回路図
【図11】図10の動作説明図
【図12】この発明の第4の実施の形態を示す回路図
【図13】図12のオン,オフ信号と素子電圧の推移説明図
【図14】図12における放電時の動作説明図
【図15】図14での記憶タイミング説明図
【図16】図12,14に示す記憶部の動作説明図
【図17】従来例を説明する説明図
【符号の説明】
S1,S2,S3,S11,S12,Sn,Sd…スイッチ、CT…電流検出器、Vs…電圧検出器、Q11〜Q23,Q1n,Q2n…半導体素子、M…記憶部、R1,R2,Rr,Rs…抵抗、Cd…コンデンサ、MU…測定器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a degradation determination method for a semiconductor element that can be easily determined without removing a semiconductor element constituting a power conversion apparatus from the apparatus.
[0002]
[Prior art]
FIG. 17A shows an example in which a leakage current is measured by applying a voltage to a high voltage terminal as a method for diagnosing deterioration of a semiconductor element constituting the power converter. Here, an example of an IGBT (insulated gate bipolar transistor) will be described as a semiconductor element.
First, the semiconductor element Q (for example, Q23 in FIG. 17A) is removed from the power converter Conv, the gate terminal G and the emitter terminal E of the semiconductor element Q23 are short-circuited to turn off the semiconductor element Q23, and the measuring instrument The MUs are connected as shown in FIG.
[0003]
The measuring device MU includes a variable voltage VR and a resistor Rr for limiting current, a resistor Rs for detecting a current flowing through the semiconductor element Q23 and an ammeter, a voltmeter for measuring a voltage at both ends of the semiconductor element Q23, and the like.
When the variable voltage VR is gradually increased in the connected state as shown in FIG. 17B and the voltage applied to the semiconductor element Q23 reaches the reference voltage value Vref shown in FIG. The leakage current Ileak flowing through Q23 is measured. Whether or not deterioration is possible is determined based on the result of comparing leakage current Ileak with reference value Iref. In the example of FIG. 17C, characteristic examples measured when (1) is normal and (2) is deteriorated are shown.
[0004]
The method described above is a method using a measuring instrument called a curve tracer disclosed in Patent Document 1, for example. As another method for diagnosing deterioration, a method for determining deterioration by measuring the voltage and current of a semiconductor element attached to a power converter (Patent Document 2), or leakage that flows when a voltage is applied to a semiconductor element. There is one that detects a high-frequency component and a direct-current component of a current and determines whether the withstand voltage is good or bad according to the ratio (Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 05-157801 (page 2-3, FIG. 1)
[Patent Document 2]
Japanese Unexamined Patent Publication No. 09-257870 (second page, FIG. 1)
[Patent Document 3]
JP 2000-111606 (page 4-5, FIG. 3)
[0006]
[Problems to be solved by the invention]
However, Patent Document 1 has a problem that the semiconductor element must be removed from the device. Further, in Patent Documents 2 and 3, a voltage measuring device, a current measuring device, and a determination circuit for determining those measurement results are provided, so that not only the circuit is complicated to accurately measure leakage current and perform deterioration diagnosis, If a high-performance measuring device is required, an attempt to incorporate it into the device will increase the cost of the device.
Accordingly, an object of the present invention is to make it possible to determine deterioration of a semiconductor element easily and inexpensively without removing the semiconductor element from the apparatus.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, in the invention of claim 1, in a power conversion device constituted by a semiconductor element,
A series circuit of resistors is connected to both ends of the DC charging unit, a switch is provided between the neutral point of the resistor and the AC output terminal of the power conversion device, and a current detection means for detecting a current flowing through the switch is provided. When the switch is closed while the semiconductor element is turned off when a DC voltage is applied, the deterioration is determined from the value and direction of the current flowing through the switch.
In the first aspect of the invention, it is possible to quantitatively determine the deterioration by using the detected current value from the current detecting means (the second aspect of the invention).
[0008]
In the first or second aspect of the invention, voltage detection means for detecting the AC output terminal voltage of the power converter can be added, and the switch can be turned on and off in accordance with the detected voltage value. In the invention of any one of claims 1 to 3, a bidirectional switch can be used instead of the switch (invention of claim 4). Includes a monitoring unit that monitors a DC voltage value of the DC charging unit and a detected current value from the current detection unit, and the DC voltage is monitored by the monitoring unit during a period in which the DC voltage drops after the power converter is stopped. The value and the detected current value can be monitored a plurality of times, and deterioration can be determined from the relationship.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
As shown in the figure, a series connection circuit of resistors R1 and R2 is connected in parallel with a capacitor Cd as a DC charging unit, and the output of the semiconductor element is connected to the connection point of the resistors R1 and R2 via switches S1, S2, and S3, respectively. Connect to terminals U, V, W. Further, a current detector CT for detecting a current flowing through the switches S1, S2, S3 is connected. The function and operation of FIG. 1 will be described with reference to FIGS.
[0010]
FIG. 2 shows one phase of the power conversion device. “N” is attached to the switch and the semiconductor element to indicate any one of the three phases, and so on.
First, an off signal is given to all the semiconductor elements of the power converter. As a result, the power conversion device stops, the element voltages of the semiconductor elements Q1n and Q2n are divided by the parasitic capacitance ratio of the respective elements, and if the semiconductor elements Q1n and Q2n have the same characteristics, they converge to Ed / 2. This is shown in FIG. VCE1 is an element voltage (collector-emitter voltage) of the semiconductor element Q1n driven by the signal ON / OFF1, and VCE2 is an element voltage of the semiconductor element Q2n driven by the signal ON / OFF2.
[0011]
The leakage current component in the off state of the semiconductor elements Q1n and Q2n can be represented by resistors Rce1 and Rce2 as shown in FIG.
Here, the voltage-current characteristics of the semiconductor element are shown in FIG. In the figure, the characteristics of the semiconductor element are indicated by curves {circle around (1)} and {circle around (1)}. That is, when the voltage Ed / 2 is applied to the semiconductor element, if the characteristics indicated by the curves {circle around (1)} and {circle around (1)} are I1 <I1 ′, 1 / Rce1 <1 / Rce1 ′. Therefore, Rce1> Rce1 ', and the resistance value of (1)' is smaller than that of (1).
[0012]
If the semiconductor element Q1n is deteriorated and the leakage current is increased, the resistance value of Rce1 is decreased. As a result, the potential Vac at the connection point between the resistors Rce1 and Rce2 is Vac> Ed / 2 with respect to the potential Ed / 2 at the connection point between the resistors R1 and R2. Therefore, when the switch Sn is closed, the current i The direction of flow is as shown in FIG.
On the other hand, when the semiconductor element Q2n deteriorates, Rce2 decreases, so that Vac <Ed / 2, and the direction in which the current i flows is opposite to that in FIG. 6 as shown in FIG.
[0013]
Therefore, by determining the direction of the current flowing through the switch Sn (current detector CT) from the relationship of FIGS. 6 and 7, it is possible to determine the element having a large leakage current among the semiconductor elements Q1n and Q2n.
Furthermore, if the leakage current characteristic of the semiconductor element corresponding to the characteristic curve shown in FIG. 5 and the resistance value when applied to the device are measured in advance, the value of the current flowing through the switch Sn can be measured to The leakage current value of the element can be quantified, and deterioration can be determined.
[0014]
FIG. 8 is a circuit diagram showing a second embodiment of the present invention.
This is characterized in that a voltage detector Vs for detecting the AC terminal voltage Vac is added. The switch Sn is turned on / off by its output.
When all the power conversion devices are turned off by the control signal, the AC terminal voltage Vac becomes a value divided by the parasitic capacitance ratio of the semiconductor elements Q1n and Q2n, as in the case of FIGS. Here, as shown in FIG. 9, when the detection voltage of the AC terminal voltage Vac, that is, VCE2 rises or falls within the range of Ed / 2 ± α, the voltage detector Vs outputs a signal for turning on the switch Sn. . Therefore, if the value of the current flowing through the switch Sn is measured by the current detector CT when the switch Sn is turned on, the deterioration of the semiconductor element can be determined in the same manner as in FIG. In this case, since the control signal from the control device is not necessary, the configuration is simplified.
[0015]
FIG. 10 is a circuit diagram showing a third embodiment of the present invention.
In this case, the switch Sn is an anti-series circuit of the switches S11 and S12. The operation will be described with reference to FIG.
When the switch S11 is turned on, as shown in FIG. 11 (a), current flows through Sn only when Rce1> Rce2, and when Rce1 <Rce2, it is blocked by the diode of S12 and no current flows through Sn.
[0016]
When switch S12 is turned on, current flows through Sn only when Rce1 <Rce2, as shown in FIG. 11B. When Rce1> Rce2, current is blocked by the diode of S11 and no current flows through Sn. .
From the above, by detecting the ON / OFF signal given to the switch Sn, the presence / absence of the current and the current value, it is possible to determine the deterioration of the semiconductor element in the same manner as in FIG.
[0017]
FIG. 12 is a circuit diagram showing a fourth embodiment of the present invention.
This is because, in order to discharge the voltage Ed charged in the capacitor Cd after the operation of the power converter is stopped, a series circuit of the resistor Rd and the switch Sd is connected in parallel with the DC charging unit, and the detected DC voltage Vd. And a storage unit M for storing the detected current value Is of the current detector CT. The operation will be described with reference to FIGS.
[0018]
First, when an off signal is given to the semiconductor elements Q1n and Q2n at time t1 in FIG. 13, when the semiconductor elements Q1n and Q2n are not deteriorated, the voltages across the semiconductor elements converge to Ed / 2. Thereafter, as shown in FIG. 14, when the switch Sd is closed in order to discharge the DC voltage Ed, the voltage Ed stored in the capacitor Cd is discharged through the resistor Rd along a path indicated by a dotted line.
[0019]
At this time, as shown in FIG. 15, the storage unit M stores the DC voltage Vd and the current value Is flowing through the switch Sn at regular intervals from the time t20 when the switch Sd is closed to t21, t22, t23, and t24. . Here, when the semiconductor elements Q1n and Q2n are not deteriorated, the current Is flowing through the switch Sn becomes substantially 0 as shown by (1) in FIG. Further, if the semiconductor element Q1n has deteriorated, a current flows through the switch Sn in the direction indicated by the arrow in FIG. 14, and the characteristics shown in (2) of FIG. 16 are obtained. Further, the semiconductor element Q2n deteriorates. If so, a current in the direction opposite to that of FIG. 14 flows through the switch Sn, and the characteristic as shown in (3) of FIG. 16 is obtained.
[0020]
From the above, in addition to determining the direction of the current flowing through the switch Sn and identifying the deteriorated semiconductor element, the relationship between the voltage and current of the deteriorated semiconductor element can be grasped in the storage unit, Deterioration characteristics can be confirmed. Although the voltages and currents of the semiconductor elements are stored at regular intervals, it goes without saying that equivalent results can be obtained even when stored at unequal intervals or continuously. Further, although an example in which the DC voltage changes due to discharge has been described, the measurement may be performed when the DC voltage drops, for example, when the DC voltage drops by a control power supply or the like.
[0021]
The present invention can be applied to deterioration determination of various transistors, various thyristors, or various diodes as well as an IGBT as a semiconductor element.
[0022]
【The invention's effect】
According to this invention, it becomes possible to determine deterioration without removing the semiconductor elements constituting the power conversion device from the device. In addition, since a high-performance measuring instrument is not required, there is an advantage that it can be built in the apparatus. Since the current detector for detecting the current flowing through the switch is arranged at a position different from the main current of the power converter, it is sufficient that the measurement range is only a minute current range.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing an arbitrary phase of FIG. 1. FIG. FIG. 4 is an explanatory diagram of leakage current of an element. FIG. 5 is an illustration of voltage-current characteristics of an element. FIG. 6 is an explanatory diagram of a current direction due to deterioration of the element. FIG. 9 is a circuit diagram showing a second embodiment of the present invention. FIG. 9 is a transition explanatory diagram of on / off signals and element voltages in FIG. 8. FIG. 10 is a circuit diagram showing a third embodiment of the invention. 11 is an operation explanatory diagram of FIG. 10. FIG. 12 is a circuit diagram showing a fourth embodiment of the present invention. FIG. 13 is a transition explanatory diagram of an on / off signal and an element voltage of FIG. FIG. 15 is an explanatory diagram of the operation at the time of discharging. FIG. 15 is an explanatory diagram of the storage timing in FIG. 14. FIG. 16 is an explanatory diagram of the operation of the storage unit shown in FIGS. Figure 17 is an explanatory view of a conventional example will be described EXPLANATION OF REFERENCE NUMERALS
S1, S2, S3, S11, S12, Sn, Sd ... switch, CT ... current detector, Vs ... voltage detector, Q11-Q23, Q1n, Q2n ... semiconductor element, M ... storage unit, R1, R2, Rr, Rs ... resistance, Cd ... capacitor, MU ... measuring instrument.

Claims (5)

半導体素子で構成された電力変換装置において、
その直流充電部の両端に抵抗の直列回路を接続し、その抵抗の中性点と前記電力変換装置の交流出力端子間にスイッチと、このスイッチに流れる電流を検出する電流検出手段とを設け、直流電圧印加時の半導体素子がオフ状態中に前記スイッチを閉じたときの、そのスイッチに流れる電流の値と方向から劣化判定を行なうことを特徴とする電力変換装置を構成する半導体素子の劣化判定方法。
In a power conversion device composed of semiconductor elements,
A series circuit of resistors is connected to both ends of the DC charging unit, a switch is provided between the neutral point of the resistor and the AC output terminal of the power conversion device, and a current detection means for detecting a current flowing through the switch is provided. Deterioration determination of a semiconductor element constituting a power conversion device, wherein deterioration determination is performed from a value and a direction of a current flowing through the switch when the switch is closed while the semiconductor element is turned off when a DC voltage is applied Method.
前記電流検出手段からの検出電流値を用いることにより、劣化の定量的な判定を可能にしたことを特徴とする請求項1に記載の電力変換装置を構成する半導体素子の劣化判定方法。The method for determining deterioration of a semiconductor element constituting a power conversion device according to claim 1, wherein quantitative determination of deterioration is enabled by using a detected current value from the current detection means. 前記電力変換装置の交流出力端子電圧を検出する電圧検出手段を付加し、その検出電圧値に応じて前記スイッチをオン,オフさせることを特徴とする請求項1または2に記載の電力変換装置を構成する半導体素子の劣化判定方法。3. The power conversion device according to claim 1, further comprising a voltage detection unit configured to detect an AC output terminal voltage of the power conversion device, wherein the switch is turned on / off according to the detected voltage value. A method for determining deterioration of a semiconductor element to be configured. 前記スイッチの代わりに双方向スイッチを用いることを特徴とする請求項1ないし3のいずれかに記載の電力変換装置を構成する半導体素子の劣化判定方法。4. A method for determining deterioration of a semiconductor element constituting a power conversion device according to claim 1, wherein a bidirectional switch is used instead of the switch. 前記直流充電部の直流電圧値と前記電流検出手段からの検出電流値とを監視する監視手段を設け、前記電力変換装置停止後の直流電圧が下降する期間に、前記監視手段により直流電圧値と検出電流値とを複数回監視し、その関係から劣化判定を行なうことを特徴とする請求項1ないし4のいずれかに記載の電力変換装置を構成する半導体素子の劣化判定方法。Monitoring means for monitoring the DC voltage value of the DC charging unit and the detected current value from the current detection means is provided, and during the period when the DC voltage drops after the power converter is stopped, the monitoring voltage means 5. The method of determining deterioration of a semiconductor element constituting a power converter according to claim 1, wherein the detected current value is monitored a plurality of times and deterioration is determined from the relationship.
JP2003111078A 2003-04-16 2003-04-16 Degradation judgment method of semiconductor element constituting power conversion device Expired - Fee Related JP3919010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111078A JP3919010B2 (en) 2003-04-16 2003-04-16 Degradation judgment method of semiconductor element constituting power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111078A JP3919010B2 (en) 2003-04-16 2003-04-16 Degradation judgment method of semiconductor element constituting power conversion device

Publications (2)

Publication Number Publication Date
JP2004317277A JP2004317277A (en) 2004-11-11
JP3919010B2 true JP3919010B2 (en) 2007-05-23

Family

ID=33471730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111078A Expired - Fee Related JP3919010B2 (en) 2003-04-16 2003-04-16 Degradation judgment method of semiconductor element constituting power conversion device

Country Status (1)

Country Link
JP (1) JP3919010B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565579B (en) * 2011-12-16 2014-03-12 中电普瑞科技有限公司 Testing device for operation of current changing chain and control method
CN103439642B (en) * 2013-09-10 2015-09-16 北京英博新能源有限公司 A kind of AC chopping bridge IGBT on-line checkingi circuit
CN104166083B (en) * 2014-08-14 2017-04-05 北京天诚同创电气有限公司 Fault detection method and device for IGBT (insulated gate bipolar transistor) reverse parallel diode
CN115280663A (en) * 2020-04-03 2022-11-01 学校法人长崎综合科学大学 Deterioration estimation device and deterioration estimation program for power conversion device
WO2022153520A1 (en) * 2021-01-18 2022-07-21 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP2004317277A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US9874614B2 (en) Semiconductor apparatus and power conversion apparatus
US10416224B2 (en) Insulation detector and electric apparatus
US9404974B2 (en) Motor drive device including insulation deterioration detection function and insulation resistance detection method of motor
US5497095A (en) Apparatus for inspecting electric component for inverter circuit
US9291678B2 (en) Method and controller for an electric motor with switch testing
US11874339B2 (en) Insulation resistance determination apparatus
KR101921765B1 (en) Current sensor
US9535107B2 (en) Apparatus for diagnosing DC link capacitor of inverter
JP6973899B2 (en) Failure determination method for battery management system, battery pack including it, and current measurement circuit
US20120153966A1 (en) Apparatus for detecting fault of flying capacitor of insulated condition detecting unit
US7064516B2 (en) Motor driver
KR102637200B1 (en) Sensor defect detection using paired sample correlation
US10641817B2 (en) Motor driving device and measuring method
EP3116129B1 (en) Preventive apparatus
Lu et al. A survey of IGBT fault diagnostic methods for three-phase power inverters
JP3919010B2 (en) Degradation judgment method of semiconductor element constituting power conversion device
JP2023516832A (en) Open circuit fault self-diagnosis method, computerized probing system, and modular inverter
CN108631686B (en) Brushless direct current motor control system and bus voltage detection method and device thereof
WO2019203080A1 (en) Charger having failure detection function and failure detection method
US7005882B2 (en) Method and apparatus for determining the switching state of a transistor
JPH05215800A (en) Method for diagnosing deterioration of capacitor
JPWO2018225235A1 (en) Control device for DC / DC converter
JP2962654B2 (en) Inspection method for electrolytic capacitors
JP7241590B2 (en) Condition Diagnosis Device, Condition Diagnosis Method, and Condition Diagnosis Program
JP3402357B2 (en) Battery life diagnosis method for uninterruptible power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Ref document number: 3919010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees