JP3918168B2 - Polyester resin laminated container and molding method thereof - Google Patents

Polyester resin laminated container and molding method thereof Download PDF

Info

Publication number
JP3918168B2
JP3918168B2 JP2000361320A JP2000361320A JP3918168B2 JP 3918168 B2 JP3918168 B2 JP 3918168B2 JP 2000361320 A JP2000361320 A JP 2000361320A JP 2000361320 A JP2000361320 A JP 2000361320A JP 3918168 B2 JP3918168 B2 JP 3918168B2
Authority
JP
Japan
Prior art keywords
layer
resin
container
preform
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000361320A
Other languages
Japanese (ja)
Other versions
JP2001206336A (en
Inventor
顕穂 太田
大輔 上杉
正人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000361320A priority Critical patent/JP3918168B2/en
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to CNB008032254A priority patent/CN1202944C/en
Priority to KR1020067024748A priority patent/KR100742077B1/en
Priority to CA 2360792 priority patent/CA2360792C/en
Priority to AU15540/01A priority patent/AU758920B2/en
Priority to EP20000977994 priority patent/EP1155807B1/en
Priority to PCT/JP2000/008388 priority patent/WO2001039956A1/en
Priority to KR1020017009473A priority patent/KR100742076B1/en
Priority to DE2000618042 priority patent/DE60018042T2/en
Priority to CNB2004100883805A priority patent/CN1299953C/en
Priority to TW89125506A priority patent/TW505597B/en
Publication of JP2001206336A publication Critical patent/JP2001206336A/en
Priority to US10/463,545 priority patent/US7459119B2/en
Application granted granted Critical
Publication of JP3918168B2 publication Critical patent/JP3918168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • B29C2949/3009Preforms or parisons made of several components at neck portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル樹脂積層容器とその成形方法に関し、詳しくは、ポリエチレンテレフタレートを主体とする熱可塑性ポリエステルからなる2軸配向容器にあって、当該ポリエステル樹脂層中にガスバリヤー性に富んだ透明薄膜層を積層してガスバリヤー性を付与したポリエステル樹脂積層容器とその成形方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート樹脂(以下、PET樹脂と記す)で代表される熱可塑性ポリエステル樹脂は、安定した物性、無公害性、優れた透明性、そして高い機械的強度等の性質を備えていることから、2軸延伸ブロー成形された壜体その他の形をした中空容器として各方面で多量に使用されている。
【0003】
特に、これらの容器は可塑剤や安定剤等の添加物を含んでいないので、人体に無害でかつ衛生的であることから、医療用や食品用の容器として極めて有用なものとして注目されており、一般に広く使用されている。
【0004】
PET樹脂製の容器は、このような非常に優れた数多くの特性を備えたものではあるが、しかし、特に、充填する内容物が、空気の遮断性に対して高度な性能を要求するような食品である場合には、これらの食品を収容する容器がたとえPET樹脂製の容器であったとしても、空気中の酸素に対するガスバリヤー性が不足するので、内容物の風味が損なわれたり、変質したりすることからまだ不満足な点が残されている。
【0005】
この問題点を解決するための手段としては、ポリエチレンテレフタレート樹脂の外側に空気遮断性に優れた性質の異なる樹脂等を積層せしめた多層プリフォームを成形してから、該プリフォームをブロー成形して2軸延伸成形して多層容器とする方法が考えられている。
【0006】
しかし、異種の樹脂層を積層した多層プリフォームを成形するのに、従来のような逐次射出法により積層して成形されたプリフォームは、内層と外層との間で結晶化や白濁現象等が発生して、該プリフォームはブロー成形性が悪くなったり、樹脂層間の界面接着性が低下したりするので、得られた中空容器は歓迎されるほどの製品にはなり得ないものであった。
【0007】
そこで、このような点を改良して、PET樹脂に他の樹脂を同時積層して多層プリフォームを成形するようにしたものとして、特開昭57−128516号や特開平2−258310号公報に記載されているように、ポリエチレンテレフタレート樹脂を成形金型に射出して、すぐにガスバリヤー性に優れるメタキシレン基含有ポリアミド樹脂等の各種ナイロン樹脂(例えばMXD−6ナイロン樹脂)を射出成形して、同一成形型内において内外層がポリエチレンテレフタレート樹脂で、中間層がナイロン樹脂で形成されてなる3層構造をしたプリフォームを成形しておいてから、該プリフォームをブロー成形することにより多層容器となす方法の発明が広く知られている。
【0008】
しかし、ガスバリヤー性に優れたMXD−6ナイロンやエチレンビニルアルコール共重合樹脂等は、機械的物性において著しく劣り、かつ、透明性において劣ることから層厚はできるだけ薄くして透明を確保することが求められるが、かかる制約のもとで多層プリフォームをブロー成形したとしても、得られた中空容器のガスバリヤー性は不充分なものとなり易い。機械的物性に劣るガスバリヤー性に優れる樹脂層に破断を生ずるからである。
【0009】
一方、叙上3層構造におけるガスバリヤー性樹脂層の薄層化の困難性と熱可塑性ポリエステル樹脂層を通過しガスバリヤー性樹脂層により遮られたガスが時間の経過とともに熱可塑性ポリエステル樹脂とガスバリヤー性樹脂層との間に溜まり、層剥離を起こすという欠点を指摘して、特開昭60−240409号や特公平5−79494号公報にあっては、プリフォームを成形するに際して、PET樹脂、MXナイロン樹脂、さらにPET樹脂の順に同一成形型内に射出成形することにより、内外層と中心層の3層を形成するPET樹脂と、内側層の2層を形成するMXDナイロン樹脂とが、交互に重なるようにして積層した5層構造をした多層容器を提案している。
【0010】
すなわち、「熱可塑性ポリエステル樹脂(樹脂A)の射出シリンダーと、メタキシレン基含有ポリアミド樹脂(樹脂B)の射出シリンダーとの2個の射出シリンダーを備えた1台の射出成形機を用い、単一の金型に、溶融した樹脂Aと樹脂Bとを樹脂A、樹脂B、樹脂Aの順に、下記の式(1)〜(4)を満足する条件下にて順次射出することにより、パリソンの胴部(ブロー成形後のボトル胴に相当する部分)が中央層と2つの最外層とが樹脂Aにより、中央層と2つの最外層で挟まれた2つの中間層が樹脂Bにより形成された5層構造を有し、少なくとも口部開口端部が単一構造を有するパリソンを成形し、該パリソンを2軸延伸ブロー成形することによって得られる多層容器である。
V1≧V2 (1)
8cc/sec≦V2≦35cc/sec (2)
0.7≦A1/A2≦1.6 (3)
B1/(A1+A2+B1)≦0.25 (4)
(但し、V1:最初に射出する樹脂Aの射出速度、V2:最後に射出する樹脂Aの射出速度、A1:最初に射出する樹脂Aの射出容量、A2:最後に射出する樹脂Aの射出容量、B1:樹脂Bの射出量)」として、「ガスバリヤー性樹脂からなる層を2層設け、層と層との間に溜まるガスを分散させることにより、層剥離を防止できる。」としている。
【0011】
【発明が解決しようとする課題】
叙上の3層、5層構造のいずれの多層プリフォームも通常の2軸延伸吹込成形機を用い、延伸可能な湿度範囲に加熱した後、吹込金型内で膨張延伸させて2軸配向した容器にされるのであるが、既述の3層構造におけるガスバリヤー層の破断は5層構造においても阻止し得ていない等の事情から全面的な信頼は得られず実用化に完全に至っていないのが実情である。
【0012】
本発明は叙上の事情に鑑みなされたもので、その目的とするところは、多層構造で熱可塑性ポリエステル樹脂層中にガスバリヤーの透明薄厚層を内在させる2軸配向容器における当該ガスバリヤーの透明薄厚層の不十分な信頼性を容器壁のガスバリヤー性付与でもって補完して所定のガスバリヤー性を確実なものにするとしたポリエステル樹脂積層容器とその成形方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明のポリエステル樹脂積層容器は、口頸部がポリエステル樹脂の単層構造で、口頸部を除く胴部及び底部が、ポリエステル樹脂とガスバリヤー性樹脂との少なくとも二種類の熱可塑性合成樹脂からなる3層以上の多層構造をしたブロー成形中空容器であって、口頸部は白化処理されていて、口頸部を除いた底部を含む薄肉胴部は、最内外層部がポリエステル樹脂で形成されると共に、中間内層部は少なくとも一層の透明薄厚のガスバリヤー性樹脂層を有したものである。
【0014】
また、口頸部並びに胴部及び底部が、ポリエステル樹脂とガスバリヤー性樹脂との少なくとも二種類の熱可塑性合成樹脂からなる3層以上の多層構造をしたガスバリヤー性樹脂層が口頸部上端近くまで延設のブロー成形中空容器であって、口頸部は白化処理されていて、口頸部並びに底部を含む薄肉胴部は、最内外層部がポリエステル樹脂層で形成されると共に、中間内層部は少なくとも一層の透明薄厚のガスバリヤー性樹脂層を有したものである。
【0015】
本発明のポリエステル樹脂積層容器の成形方法は、口頸部をポリエステル樹脂単層で形成して、口頸部を除いた胴部及び底部を含む本体部分は、最内外層をポリエステル樹脂層で形成すると共に、中間内層を少なくとも一層のガスバリヤー性樹脂で形成した多層プリフォームを、最終成形品の形状に対応した所定形状に予め射出成形して、該プリフォームの口頸部のみを白化処理した後、本体部分をブロー成形可能な温度に加熱してから一次ブロー成形金型により2軸延伸ブロー成形して一次中間成形品となし、該一次中間成形品を一次ブロー金型から開放した状態で加熱して二次中間成形品に強制的に熱収縮変形させて、該収縮変形した二次中間成形品を二次ブロー成形金型により再び二次ブロー成形して最終成形品に2軸延伸成形するとしたものである。
【0016】
また、口頸部並びに胴部及び底部を含む本体部分を最内外層をポリエステル樹脂層で形成すると共に、中間内層を少なくとも一層のガスバリヤー性樹脂で形成した多層プリフォームを、最終成形品の形状に対応した所定形状に予め射出成形して、該プリフォームの口頸部のみを白化処理した後、本体部分をブロー成形可能な温度に加熱してから一次ブロー成形金型により2軸延伸ブロー成形して一次中間成形品となし、該一次中間成形品を一次ブロー金型から開放した状態で加熱して二次中間成形品に強制的に熱収縮変形させて、該収縮変形した二次中間成形品を二次ブロー成形金型により再び二次ブロー成形して最終成形品に2軸延伸成形するとしたものである。
【0017】
【作用】
多層プリフォームにおける中間層の透明確保のために薄厚の機械的物性において劣るガスバリヤー性樹脂層を含む積層容器は、2段階の2軸延伸ブロー成形を経ることで、PET樹脂の結晶化度が高くなり、より高いガスバリヤー性が付与される。
【0018】
一方、叙上2段階の2軸延伸ブロー成形途中で熱処理を受けることとなるので、容器は耐熱性をも具備することとなる。
【0019】
【発明の実施の形態】
本発明の具体的な実施の形態を説明する。
【0020】
PET樹脂とメタキシレン基含有ポリアミド樹脂やエチレンビニールアルコール共重合樹脂等のガスバリヤー性に優れた熱可塑性樹脂とを同一成形金型内に順次射出成形して3層以上に積層せしめて、この際、不変形部分である口頸部分はPET樹脂の単層構造となすか、若しくはガスバリヤー性樹脂層を口頸部上端近くまで延設し、2軸延伸膨張変形される本体部分は共に複層構造となした所定形状をした積層プリフォームを成形する。
【0021】
当該多層プリフォームは、好ましくは口頸部のみを結晶化せしめて強化した後に、プリフォームの本体部をブロー成形可能な温度である70℃〜130℃好ましくは90℃〜120℃に加熱してから、50℃〜230℃好ましくは70℃〜180℃に加熱した一次ブロー成形金型により通常の2軸延伸ブロー成形操作を行って一次中間成形品に成形する。
【0022】
続いて、前記一次ブロー金型を開放してから、2軸延伸ブロー成形された前記一次中間成形品を、周知の加熱装置により一次成形金型の温度よりも高い温度である110℃〜255℃好ましくは130℃〜200℃に加熱することにより強制的に熱収縮変形させて、一次中間成形品内部に生じた残留応力を短時間内に消滅させた二次中間成形品に成形する。
【0023】
然る後、当該収縮変形せしめて加熱された前記二次中間成形品を60℃〜170℃好ましくは80℃〜150℃に加熱した二次成形用ブロー金型により二次ブロー成形するに際しては、残溜応力低減のため、一次ブローに比して小さい延伸倍率で延伸変形させた壜体その他の最終形状をした容器へと二次の2軸延伸ブロー成形を行うと共に、成形された容器を、加熱充填処理される温度よりも高い温度に保たれた状態の二次成形用ブロー金型内で熱固定を行なうことにより、PET樹脂に熱履歴が与えられることによる高結晶化度が生じ、PET樹脂層にもガスバリヤー性が期待できるところのガス遮断性を有したPET樹脂積層中空容器を成形する。
【0024】
【実施例】
本願発明による多層容器の2軸延伸ブロー成形方法について、発明完成に至る実施例を図面を参照しつつ説明する。
【0025】
実施例1.
本願発明の2軸延伸ブロー成形方法により多層容器を成形するにあたっては、先ず、図1a、bに示すように、最内層と外層とを形成するためのPET樹脂を射出成形機Aに、中間内層のガスバリヤー層を形成するためのMXD−6ナイロン樹脂を射出成形機Bに、それぞれ供給した後、溶融、混練してから、射出成形機Aにより溶融したPET樹脂を射出成形金型11内に射出すると共に、これにより僅かに遅れて射出成形機BによりMXD−6ナイロン樹脂を所定量だけ射出した後、射出成形機BからのMXD−6ナイロン樹脂の射出を途中で止めることにより、内外層1、1がPET樹脂により形成されると共に中間層2がMXD−6ナイロン樹脂により形成された、最終成形品の形状に対応するように予め決められた形状をした、図2a、bに示すような3層構造のプリフォームPが成形される。
【0026】
図1、2中各b図は中間層2が口頸部上端近くまで延設して、口頸部にもガスバリヤー性を付与した例を示す。
【0027】
このようにして成形した積層プリフォームPは、最終成形品となる壜体等の口部を形成するプリフォームの口頸部3のみを、熱変形しないように結晶化温度に加熱して結晶化させることにより白化処理を施すを良しとする。
【0028】
続いて、口頸部3のみに白化処理が施されたまたは施さない前記プリフォームPを、熱結晶化温度に近いブロー成形が可能な温度(90℃〜120℃)に加熱した後、図3(a)に示したように、プリフォームPを70℃〜180℃に加熱された一次ブロー成形金型12、12内にセットしてから、一次の2軸延伸ブロー成形を行って一次中間成形品5に成形する。
【0029】
しかして、上記のように一次ブロー成形した一次中間成形品5を一次成形金型から開放した後、図3(b)に示すように、遠赤外線等の加熱装置を備えた加熱領域Hにおいて、一次ブロー成形金型の温度よりも高い温度である130℃〜200℃で加熱処理を施すことにより強制的に熱収縮変形をさせて二次中間成形品6に成形する。
【0030】
このようにして成形された二次中間成形品6を、図3(c)に示すように、加熱充填処理温度よりも高く加熱(80℃〜150℃)された二次ブロー金型13、13により壜体等の最終形状をした容器7に二次ブロー成形すると共に熱固定することにより、図4に示したように、本願発明の成形方法により2軸延伸ブロー成形したPET樹脂からなる3層構造をした積層容器4を得ることができた。
【0031】
図4には、円筒形をした積層容器4が示されているが、本願発明は、このような容器に限られたものではなくて、角形その他の形状をした中空容器を成形することも可能である。
【0032】
しかし、上記のような3層若しくは5層構造をした積層容器4を成形するのに、ガスバリヤー層となる中間層4bを透明確保のため均一な薄い層に形成することが非常に困難であり、薄くしようとすれば中間層に破れた部分が発生し易いことが分かった。
【0033】
このような問題点をなくして積層容器を成形する方法としては、上記に述べたように一応特開昭60−240409号や特公平5−79494号公報に見るように、5層構造をしたプリフォームを用いて成形するものが知られている。
【0034】
実施例2.
本願発明において、上記発明のような5層構造をしたプリフォームを用いて、実施例1と同様にして積層容器を形成するには、実施例1で用いたPET樹脂を射出する射出成形機Aと、ガスバリヤー層を射出する射出成形機Bとを協働せしめて、以下のようにして射出成形を行って5層構造をしたプリフォームを成形することが必要である。
【0035】
先ず、射出成形機Aから溶融したPET樹脂を射出成形金型内に射出すると、すぐに射出操作を一旦停止して、直ちに射出成形機Bから溶融したMXD−6ナイロン樹脂を射出した後、すぐに射出を停止して、再び射出成形機AからPET樹脂を射出して、圧力を保持したまま冷却することにより、図5に示すように、最内外層8a、8b、中心層8cの3層を形成するPET樹脂層と中間内層9a、9bの2層を形成するMXD−6ナイロン樹脂とを交互に積層して5層構造にした所定形状プリフォームP′を成形する。
【0036】
そして、このようにして5層構造のプリフォームを成形するに際して、MXD−6ナイロン樹脂層9a、9b部分をやや厚めに形成したプリフォームP′を成形してから、実施例1と同様にして、壜体等の容器口部となるプリフォームP′の口頸部3のみを、熱変形しないように結晶化温度に加熱して熱結晶化させる(通常、耐熱性を向上させるために口頸部内にホットコアを挿入しておく)ことにより白化処理した後またはせずに、該プリフォームP′の本体部分を、熱結晶化温度に近いブロー成形可能な温度に加熱する。(この時、必要に応じてプリフォームP′の表面温度が120℃以上になって白化しないように空気流を吹付ける。)
続いて、実施例1と同様にして図3に示すように、加熱したプリフォームP′を、金型の胴部が160℃、底部が23℃に加熱されている一次ブロー成形金型12、12にセットして、圧力26kg/cmで2.63秒間一次の2軸延伸ブロー操作を行って一次中間成形品5′に成形した。
【0037】
なお、口頸部の白化処理を行うには、プリフォームの口頸部分のみを結晶化温度になるまで充分に加熱した状態から徐冷すればよいが、この白化処理に際して注意すべきことは、白化処理によって口頸部が不都合な形に変形しないように行なうことが必要である。
【0038】
特に、口頸部が変形して真円度が損なわれたものは、最終成形品である容器としての機能を大幅に低下させることになるので、通常は、プリフォームの口頸部内に治具を挿入して、ブロー成形時にプリフォーム支持することにより口頸部の変形を厳重に防止している。
【0039】
次に、上記のように一次ブロー成形した一次中間成形品5′を一次成形金型から開放した後、遠赤外線等の加熱装置を備えた加熱領域Hにおいて、一次ブロー成形金型の温度よりも高い温度である160℃以上200℃以下で5.5秒間加熱処理(アニーリング)を行なうことにより、強制的に熱収縮変形させて二次中間成形品6′に成形した。
【0040】
このようにして成形された二次中間成形品6′を、160℃に二次加熱した状態で、加熱充填処理温度よりも高い、胴部が105℃、底部が85℃に加熱された二次ブロー成形金型にセットしてから、圧力36kg/cmで2.63秒間一次の2軸延伸ブロー操作を行って、壜体等の最終形状をした容器に二次ブロー成形すると共に、熱固定することにより、2軸延伸成形されたPET樹脂からなる5層構造をした耐熱性の積層容器を得ることができた。
【0041】
そしてブロー成形性についても、PET樹脂単体の場合とあまり変わりなくて、比較的に良好にできて、また、肉厚調整についても、PET樹脂単体と同等の肉厚分布で成形できた。但し、実用には支障はないもののプリフォームの口頸部下の部分の伸びがやや不安定で伸び易く、底部に肉が付き易い傾向があり、容器の座り具合が若干悪いものが発生して、容器胴部がやや曇っていた。
【0042】
その原因は、MXD−6ナイロン樹脂を配合したことによるものであって、MDX−6ナイロン樹脂の配合量が多くなればなるほど、透明性が失われることが分かった。
【0043】
実施例3.
次に、実施例2と同様にして積層プリフォームを成形するに際して、図5に示す5層構造のプリフォームのMXD−6ナイロン樹脂層9a、9bを実施例2の場合よりも若干薄めに形成したプリフォームP′を成形した。
そして、前記プリフォームP′を実施例2と同じ方法により、壜体等の容器口部となるプリフォームの口頸部3を、熱変形しないようにして熱結晶化させた白化処理を行ってからまたは行わず、該プリフォーム2が2軸延伸される本体部分を、熱結晶化温度に近いブロー成形可能な温度に加熱してから、金型の胴部が160℃、底部が23℃に加熱された一次ブロー成形金型にセットしてから、圧力26kg/cmで2.63秒間一次の2軸延伸ブロー操作を行って一次中間成形品に成形した。
【0044】
また、一次ブロー成形金型の加熱温度として、胴部が70℃〜180℃の範囲で、底部が20℃〜40℃の範囲において、ブロー圧力を20〜30kg/cmで2.0〜7.0秒間一次ブロー成形することにより、良好な所定の一次中間成形品を得ることが可能であることが分かった。
【0045】
続いて、上記のように一次ブロー成形した一次中間成形品を一次成形金型から開放した後、遠赤外線等を備えた加熱領域において一次ブロー成形金型の温度よりも高い温度である130℃以上200℃以下で5.5秒間加熱処理を行なうことにより、強制的に熱収縮変形をさせて二次中間成形品に成形した。
【0046】
このように成形された二次中間成形品を、加熱充填処理される温度よりも高い105℃に加熱された二次ブロー成形金型にセットしてから、圧力36kg/cmで2.63秒間一次の2軸延伸ブロー操作を行って、壜体等の最終形状をした容器に二次ブロー成形すると共に、熱固定することにより、2軸延伸成形したPET樹脂からなる5層構造をした耐熱性の積層容器を得ることができた。
【0047】
また、二次ブロー成形金型の加熱温度として、胴部が80℃〜150℃の範囲で、底部が75℃〜100℃の範囲において、ブロー圧力を30〜40kg/cmで2.0〜7.0秒間二次ブロー成形することにより、目的とする良好な成形品を得ることが可能であることが分かった。
【0048】
なお、ブロー成形性に関しては、実施例2に比べて実施例3の場合の方がPET樹脂単体のものに非常に近くて、良好なものが得られて、また、肉厚の調整も、実施例3の方が実施例2の場合よりも調整し易くて、かつ安定したPET樹脂単体と同等の肉厚分布に成形することができた。
【0049】
そして、出来上がった容器の座り具合も実施例3の方が良好であって、さらには、容器胴部の曇り具合についても実施例2の場合よりも良好であり、PET樹脂単体のものと同程度のレベルのものであった。
【0050】
上記した実施例2および実施例3において成形した各積層容器について、各層間の剥離現象の有無について調べてみたところ次の表1に示す通りであった。
【0051】
【表1】

Figure 0003918168
この表を見た結果からも分かるように、一次ブロー成形した一次中間成形品、および二次加熱して熱収縮した二次中間形成品、二次ブロー成形した完成品等のいずれにおいても、各積層樹脂間には剥離現象が全く認められず、また完成品を指で押圧した圧力では、容器の層間には剥離が発生せず、外観上からは満足できるものであった。
【0052】
さらに、上記実施例2及び実施例3において2段階ブロー(いわゆるダブルブロー)成形したそれぞれの積層容器について、酸素の透過性について測定した結果は次の表2に示す通りであった。
【0053】
【表2】
Figure 0003918168
この表に示す結果から、積層容器はPET樹脂単体の容器と比較して、非常に酸素遮断性に優れていることが確認された。
【0054】
更に、上記したダブルブロー成形した積層容器が酸素遮断性にいかに優れているかを示すために、従来のPET樹脂単体のシングルブロー容器(350ml)とMXD−6(5.5wt%)を積層したシングルブロー容器(350ml)について、上記容器と同様に酸素透過量を測定し結果を示すと、
PET樹脂単体 :0.031
MXD−6(5.5wt%):0.012
であった。
【0055】
したがって、透過比率はPET樹脂単体が1.47、MXD−6(5.5wt%)が0.57となり、酸素透過率を比較してみると、ダブルブロー成形したものが、シングルブロー成形したものより非酸素透過率がPET樹脂単体においては32%、MXD−6(5.5wt%)においては41%、それぞれ良くなっており、同じ積層容器であっても、ダブルブロー成形した容器の方がガスバリヤー性が良好であることが分かる。
【0056】
これは、シングルブロー成形容器と比べてダブルブロー成形容器の方が、熱履歴を与えられた結果、PET樹脂の結晶化度が高くなってガスバリヤー性が付与されていることに起因する。
【0057】
続いて、容量が500ml以上の各種中空容器についても、上記したMXD−6ナイロン樹脂を用いて、上記実施例2および3と同様なPET樹脂積層容器をダブルブロー法により2軸延伸ブロー成形を行ってみた結果、上記した350mlの場合と同じようにガスバリヤー性に優れた良好な積層中空容器を2軸延伸ブロー成形することができた。
【0058】
そして、この時の成形条件として、一次ブロー成形工程においては、成形金型の温度が、胴部:70℃〜180℃、底部:20℃〜40℃、ブロー圧力:20〜30kg/cm、ブロー時間:2.0〜7.0秒、
また、二次ブロー成形工程においては、二次中間成形品の二次加熱温度:130℃〜200℃、成形金型の温度が、胴部:80℃〜150℃、底部:75℃〜100℃、ブロー圧力:30〜40kg/cm、ブロー時間:2.0〜7.0秒の範囲で2軸延伸ブロー成形した場合には、目的とする良好な品物を得られることが分かった。
【0059】
また、上記実施例2および実施例3において成形した各積層容器について、耐熱性の試験を行ってみたところ、いずれの容器においても加熱充填温度が93℃までは全く変化が認められず、95℃の加熱充填温度に対しては、PET樹脂単体のものと比較すると、肩部がやや引けが見られたが、実用に耐える程度のものであった。
【0060】
したがって、本願発明の方法により積層容器をダブルブロー成形して故意に熱履歴を与えた場合には、高ガスバリヤー性を有する中空容器を確実に得ることが可能であることが分かる。
【0061】
【発明の効果】
以上説明したことから明らかなように、本願発明の方法により成形したPET樹脂を用いた積層容器は、口頸部白化やガスバリヤー層の口頸部までの延長及びダブルブロー成形に基づく器壁の密度の上昇により、容器としてのガスバリヤー性は一層完璧となり、厳しい性能を要求する内容物にも対応し得るものである。同時に熱収縮に対する高い耐熱性を有する。
【0062】
さらに、本願発明の成形方法によれば、一次ブロー成形金型を開放した状態で、一次中間成形品を強制加熱して収縮処理するので、一次ブロー成形金型内で加熱処理したり、成形金型外で自然収縮させるものに比べて、一次ブロー成形金型を常時一定温度に維持しておけるので、成形金型の構造を簡単にすることができると共に、成形サイクルを高速にして製品を製造することができる利点がある。
【図面の簡単な説明】
【図1】a、bは多層プリフォームの射出成形の操作状態を示す縦断面図である。
【図2】a、bは本願発明で用いる3層構造のプリフォームを示す縦断面図である。
【図3】a〜cは本願発明の積層中空容器をブロー成形する工程図である。
【図4】a、bは本願発明により成形した積層中空容器を示す部分断面図である。
【図5】a、bは本願発明で用いる5層構造のプリフォームを示す縦断面図である。
【符号の説明】
1 ; 外側樹脂層
2 ; 中間樹脂層
3、3′ ; 口頸部
4、4′ ; 積層容器
4a : 内側層
4b : 中間層
4c : 外側層
5、5′ ; 一次中間成形品
6、6′ ; 二次中間成形品
11 ; 射出成形金型
12 ; 一次ブロー成形金型
13 ; 二次ブロー成形金型
A ; 第1射出成形機
B ; 第2射出成形機
P、P′ ; 積層プリフォーム
H ; 加熱領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester resin laminated container and a molding method thereof, and more specifically, in a biaxially oriented container made of thermoplastic polyester mainly composed of polyethylene terephthalate, and a transparent thin film rich in gas barrier properties in the polyester resin layer The present invention relates to a polyester resin laminated container provided with gas barrier properties by laminating layers and a molding method thereof.
[0002]
[Prior art]
The thermoplastic polyester resin represented by polyethylene terephthalate resin (hereinafter referred to as PET resin) has properties such as stable physical properties, pollution-free property, excellent transparency, and high mechanical strength. It is used in a large amount in various directions as a hollow container having a casing or other shape formed by axial stretch blow molding.
[0003]
In particular, since these containers do not contain additives such as plasticizers and stabilizers, they are not harmful to the human body and are hygienic, so they are attracting attention as extremely useful as medical and food containers. Widely used in general.
[0004]
A container made of PET resin has such a great number of characteristics. However, in particular, the contents to be filled require high performance with respect to air blocking properties. In the case of food, even if the container for containing these foods is a container made of PET resin, the gas barrier property against oxygen in the air is insufficient, so the flavor of the contents may be impaired or altered. There are still unsatisfied points from doing so.
[0005]
As a means for solving this problem, after forming a multilayer preform in which resins having different properties with excellent air barrier properties are laminated on the outside of the polyethylene terephthalate resin, the preform is blow-molded. A method of forming a multilayer container by biaxial stretching is considered.
[0006]
However, a preform formed by laminating by a conventional sequential injection method to form a multi-layer preform in which different types of resin layers are laminated has a crystallization or clouding phenomenon between the inner layer and the outer layer. Occurred and the preform deteriorated in blow moldability or the interfacial adhesion between the resin layers was lowered, so that the obtained hollow container could not be a welcome product. .
[0007]
In view of this, such a point has been improved, and a multilayer preform is formed by simultaneously laminating other resins to a PET resin, as disclosed in JP-A-57-128516 and JP-A-2-258310. As described, a polyethylene terephthalate resin is injected into a mold, and various nylon resins such as a meta-xylene group-containing polyamide resin (ex. MXD-6 nylon resin) having excellent gas barrier properties are immediately injection-molded. In the same mold, a multi-layer container is formed by molding a preform having a three-layer structure in which the inner and outer layers are made of polyethylene terephthalate resin and the intermediate layer is made of nylon resin, and then the preform is blow-molded. The invention of the false method is widely known.
[0008]
However, MXD-6 nylon and ethylene vinyl alcohol copolymer resin having excellent gas barrier properties are remarkably inferior in mechanical properties and inferior in transparency, so that the layer thickness can be made as thin as possible to ensure transparency. Although required, even if the multilayer preform is blow-molded under such restrictions, the gas barrier property of the obtained hollow container tends to be insufficient. This is because the resin layer that is inferior in mechanical properties and excellent in gas barrier properties is broken.
[0009]
On the other hand, it is difficult to make the gas barrier resin layer thin in the above three-layer structure, and the gas that has passed through the thermoplastic polyester resin layer and is blocked by the gas barrier resin layer is changed over time with the thermoplastic polyester resin and the gas. JP-A-60-240409 and JP-B-5-79494 point out the disadvantage of collecting between the barrier resin layers and causing delamination, and in forming a preform, , MX nylon resin, and then PET resin in the same mold in the order of injection, PET resin forming three layers of inner and outer layers and a central layer, and MXD nylon resin forming two layers of an inner layer, A multilayer container having a five-layer structure in which layers are stacked alternately is proposed.
[0010]
That is, “using one injection molding machine equipped with two injection cylinders, an injection cylinder of thermoplastic polyester resin (resin A) and an injection cylinder of metaxylene group-containing polyamide resin (resin B), By sequentially injecting molten resin A and resin B in the order of resin A, resin B and resin A under the conditions satisfying the following formulas (1) to (4), The body part (corresponding to the bottle body after blow molding) is formed of the central layer and the two outermost layers with resin A, and the two intermediate layers sandwiched between the central layer and the two outermost layers are formed of resin B. It is a multilayer container obtained by molding a parison having a five-layer structure and at least a mouth opening end portion having a single structure, and biaxially stretching blow-molding the parison.
V1 ≧ V2 (1)
8cc / sec ≦ V2 ≦ 35cc / sec (2)
0.7 ≦ A1 / A2 ≦ 1.6 (3)
B1 / (A1 + A2 + B1) ≦ 0.25 (4)
(However, V1: injection speed of resin A injected first, V2: injection speed of resin A injected last, A1: injection capacity of resin A injected first, A2: injection capacity of resin A injected last) , B1: injection amount of resin B) ”is provided as“ two layers made of a gas barrier resin are provided, and the gas accumulated between the layers is dispersed to prevent delamination. ”
[0011]
[Problems to be solved by the invention]
All the multilayer preforms of the above three-layer structure and five-layer structure were heated to a stretchable humidity range using a normal biaxial stretch blow molding machine, and then expanded and stretched in a blow mold to be biaxially oriented. Although it is made into a container, full reliability cannot be obtained due to the fact that the breakage of the gas barrier layer in the three-layer structure described above cannot be prevented even in the five-layer structure, and it has not been fully put into practical use. Is the actual situation.
[0012]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transparent gas barrier in a biaxially oriented container having a multilayer structure and a transparent thin gas barrier layer in a thermoplastic polyester resin layer. It is an object of the present invention to provide a polyester resin laminated container and a molding method thereof which complement the insufficient reliability of the thin layer by providing the gas barrier property of the container wall to ensure the predetermined gas barrier property.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the polyester resin laminated container of the present invention has a single-layer structure in which the mouth and neck portion is a polyester resin, and the body portion and the bottom portion other than the mouth and neck portion are at least a polyester resin and a gas barrier resin. A blow-molded hollow container having a multilayer structure of three or more layers made of two types of thermoplastic synthetic resins, where the mouth and neck are whitened, and the thin body including the bottom excluding the mouth and neck is the The inner and outer layer portions are formed of a polyester resin, and the intermediate inner layer portion has at least one transparent thin gas barrier resin layer.
[0014]
In addition, a gas barrier resin layer having a multilayer structure of three or more layers made of at least two types of thermoplastic synthetic resins of a polyester resin and a gas barrier resin is provided near the upper end of the mouth neck. A blow molded hollow container extending to the mouth and neck, the mouth and neck are whitened, and the thin barrel including the mouth and neck and the bottom is formed with a polyester resin layer as the innermost and outer layers, and an intermediate inner layer The portion has at least one transparent thin gas barrier resin layer.
[0015]
The method for molding a polyester resin laminated container according to the present invention is such that the mouth and neck are formed of a single layer of polyester resin, and the main body portion including the body and the bottom excluding the mouth and neck is formed of the polyester resin layer as the innermost and outer layers. In addition, a multilayer preform in which the intermediate inner layer is formed of at least one gas barrier resin is pre-injected into a predetermined shape corresponding to the shape of the final molded product, and only the mouth and neck of the preform is whitened. Then, after heating the main body part to a temperature at which blow molding is possible, biaxially stretched blow molding is performed with a primary blow molding die to form a primary intermediate molded product, and the primary intermediate molded product is released from the primary blow mold. The secondary intermediate molded product is forcibly deformed by heat shrinkage by heating, and the secondary intermediate molded product that has undergone shrinkage deformation is subjected to secondary blow molding again by a secondary blow molding die, and biaxially stretched into the final molded product. Then Those were.
[0016]
In addition, a multilayer preform in which the inner and outer layers are formed of a polyester resin layer and the intermediate inner layer is formed of at least one gas barrier resin is formed into the shape of the final molded product. After injection molding into a predetermined shape corresponding to the above, whitening only the neck and neck of the preform, the body part is heated to a temperature at which blow molding can be performed, and then biaxially stretched blow molding using a primary blow molding die The intermediate intermediate product is formed, and the primary intermediate product is heated in a state where it is released from the primary blow mold so that the secondary intermediate product is forcibly subjected to heat shrinkage deformation, and the shrinkage deformed secondary intermediate molding. The product is subjected to secondary blow molding again by a secondary blow molding die and biaxially stretched into a final molded product.
[0017]
[Action]
A laminated container including a gas barrier resin layer that is inferior in mechanical properties in order to ensure the transparency of an intermediate layer in a multilayer preform undergoes two-stage biaxial stretch blow molding, so that the crystallinity of the PET resin can be increased. Higher and higher gas barrier properties are imparted.
[0018]
On the other hand, since the container is subjected to heat treatment in the middle of the two-stage biaxial stretch blow molding, the container also has heat resistance.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment of the present invention will be described.
[0020]
A PET resin and a thermoplastic resin excellent in gas barrier properties such as a metaxylene group-containing polyamide resin and an ethylene vinyl alcohol copolymer resin are sequentially injection-molded in the same molding die and laminated in three or more layers. The mouth-and-neck part, which is an undeformable part, has a single layer structure of PET resin, or the gas barrier resin layer is extended to the vicinity of the upper end of the mouth-neck part, and the body parts that are biaxially expanded and deformed are both multi-layered. A laminated preform having a predetermined shape and having a structure is formed.
[0021]
The multilayer preform is preferably heated to 70 ° C. to 130 ° C., preferably 90 ° C. to 120 ° C., which is a temperature at which the body portion of the preform can be blow-molded, after strengthening by crystallizing only the neck and neck. Then, a normal biaxial stretch blow molding operation is performed by a primary blow molding die heated to 50 ° C. to 230 ° C., preferably 70 ° C. to 180 ° C., to form a primary intermediate molded product.
[0022]
Subsequently, the primary blow mold is opened and then the biaxial stretch blow-molded primary intermediate molded product is heated at a temperature higher than the temperature of the primary mold by a known heating device. Preferably, it is subjected to heat shrinkage deformation by heating to 130 ° C. to 200 ° C. to form a secondary intermediate molded product in which the residual stress generated in the primary intermediate molded product is eliminated within a short time.
[0023]
Thereafter, when the secondary intermediate molded product heated by being contracted and deformed is subjected to secondary blow molding by a secondary molding blow mold heated to 60 ° C. to 170 ° C., preferably 80 ° C. to 150 ° C., In order to reduce residual stress, secondary biaxial stretch blow molding is performed on a container or other final shaped container stretched and deformed at a stretch ratio smaller than that of the primary blow, and the molded container is By performing heat fixation in a secondary molding blow mold that is maintained at a temperature higher than the temperature at which the heat filling process is performed, high crystallinity occurs due to the heat history imparted to the PET resin, and PET A PET resin laminated hollow container having a gas barrier property where gas barrier properties can be expected also for the resin layer is formed.
[0024]
【Example】
A biaxial stretch blow molding method for a multilayer container according to the present invention will be described with reference to the drawings.
[0025]
Example 1.
In forming a multi-layer container by the biaxial stretch blow molding method of the present invention, first, as shown in FIGS. 1a and 1b, a PET resin for forming the innermost layer and the outer layer is placed in the injection molding machine A and the intermediate inner layer. After supplying MXD-6 nylon resin for forming the gas barrier layer to the injection molding machine B, melting and kneading, the PET resin melted by the injection molding machine A is put into the injection mold 11. After the injection, a small amount of MXD-6 nylon resin is injected by the injection molding machine B with a slight delay, and then the injection of the MXD-6 nylon resin from the injection molding machine B is stopped halfway, so that the inner and outer layers 1 and 1 are formed of PET resin and the intermediate layer 2 is formed of MXD-6 nylon resin, and has a predetermined shape corresponding to the shape of the final molded product. a, the preform P of a three-layer structure as shown in b are molded.
[0026]
1 and 2 show examples in which the intermediate layer 2 extends to the vicinity of the upper end of the mouth-and-neck portion, and gas barrier properties are imparted to the mouth-and-neck portion.
[0027]
The laminated preform P formed in this way is crystallized by heating only the mouth / neck portion 3 of the preform forming the mouth portion of the casing or the like to be the final molded product to the crystallization temperature so as not to be thermally deformed. It is good to apply a whitening process.
[0028]
Subsequently, after heating the preform P, in which only the mouth and neck portion 3 is whitened or not, heated to a temperature (90 ° C. to 120 ° C.) at which blow molding close to the thermal crystallization temperature is possible, FIG. As shown in (a), after the preform P is set in the primary blow molding dies 12 and 12 heated to 70 ° C. to 180 ° C., primary biaxial stretch blow molding is performed to perform primary intermediate molding. The product 5 is molded.
[0029]
Then, after releasing the primary intermediate molded product 5 subjected to the primary blow molding as described above from the primary molding die, as shown in FIG. 3B, in the heating region H provided with a heating device such as far infrared rays, By performing heat treatment at 130 ° C. to 200 ° C., which is higher than the temperature of the primary blow molding die, it is forcibly deformed by heat shrinkage to form a secondary intermediate molded product 6.
[0030]
As shown in FIG. 3 (c), the secondary blow molds 13 and 13 in which the secondary intermediate molded product 6 thus molded is heated to a temperature higher than the heat filling temperature (80 ° C. to 150 ° C.) are formed. As shown in FIG. 4, three layers made of PET resin biaxially stretch blow molded by the molding method of the present invention by performing secondary blow molding and heat setting on a container 7 having a final shape such as a casing by A laminated container 4 having a structure could be obtained.
[0031]
FIG. 4 shows a cylindrical laminated container 4, but the present invention is not limited to such a container, and a hollow container having a square shape or other shapes can be formed. It is.
[0032]
However, it is very difficult to form the intermediate layer 4b serving as a gas barrier layer in a uniform thin layer for forming the laminated container 4 having the three-layer or five-layer structure as described above. It was found that a torn part was likely to occur in the intermediate layer when trying to make it thin.
[0033]
As a method of forming a laminated container without such problems, as described above, as shown in Japanese Patent Application Laid-Open No. 60-240409 and Japanese Patent Publication No. 5-79494, a five-layer structure is used. What is molded using reform is known.
[0034]
Example 2
In the present invention, in order to form a laminated container in the same manner as in Example 1 using a preform having a five-layer structure as in the above invention, an injection molding machine A for injecting the PET resin used in Example 1 It is necessary to cooperate with the injection molding machine B for injecting the gas barrier layer and perform injection molding as follows to form a preform having a five-layer structure.
[0035]
First, when the molten PET resin from the injection molding machine A is injected into the injection mold, the injection operation is immediately stopped, and immediately after the molten MXD-6 nylon resin is injected from the injection molding machine B, The injection is stopped again, PET resin is injected again from the injection molding machine A, and cooled while maintaining the pressure. As shown in FIG. 5, three layers of innermost and outermost layers 8a and 8b and a central layer 8c are formed. A preform P 'having a five-layer structure is formed by alternately laminating a PET resin layer that forms a layer and MXD-6 nylon resin that forms two layers of intermediate inner layers 9a and 9b.
[0036]
When forming a preform having a five-layer structure in this way, after forming a preform P ′ in which the MXD-6 nylon resin layers 9a and 9b are formed slightly thicker, the same as in Example 1 was performed. Only the mouth / neck portion 3 of the preform P ′, which becomes the container mouth portion of the housing, is heated to the crystallization temperature so as not to be thermally deformed (usually, the mouth / neck portion is improved in order to improve heat resistance). The body portion of the preform P ′ is heated to a temperature capable of blow molding close to the thermal crystallization temperature after or without whitening treatment by inserting a hot core in the part. (At this time, if necessary, an air flow is blown so that the surface temperature of the preform P ′ becomes 120 ° C. or higher and does not whiten.)
Subsequently, as shown in FIG. 3 in the same manner as in Example 1, the heated preform P ′ was molded into a primary blow molding die 12 in which the mold body was heated to 160 ° C. and the bottom was heated to 23 ° C., Set to 12, pressure 26kg / cm 2 Then, a primary biaxial stretch blow operation was performed for 2.63 seconds to form a primary intermediate molded product 5 ′.
[0037]
In addition, in order to perform the whitening treatment of the mouth and neck, it is only necessary to slowly cool the preform from only the mouth and neck of the preform until the crystallization temperature is reached. It is necessary to perform the whitening process so that the mouth and neck do not deform into an inconvenient shape.
[0038]
In particular, if the roundness of the mouth and neck is deformed and the roundness is impaired, the function of the final molded product as a container will be greatly reduced, so it is usually cured within the mouth and neck of the preform. By inserting a tool and supporting the preform at the time of blow molding, deformation of the mouth and neck is strictly prevented.
[0039]
Next, after releasing the primary intermediate molded product 5 ′ subjected to primary blow molding as described above from the primary mold, in the heating region H equipped with a heating device such as far infrared rays, the temperature is higher than the temperature of the primary blow mold. Heat treatment (annealing) was performed at a high temperature of 160 ° C. or higher and 200 ° C. or lower for 5.5 seconds to forcibly deform by heat shrinkage, and formed into a secondary intermediate molded product 6 ′.
[0040]
The secondary intermediate molded product 6 ′ thus molded is secondarily heated to 160 ° C. and is higher than the heat filling temperature, and the secondary is heated to 105 ° C. and 85 ° C. at the bottom. After setting in the blow mold, the pressure is 36kg / cm 2 In the above, the first biaxial stretch blow operation for 2.63 seconds is performed, and the secondary blow molding is performed on a container having a final shape such as a casing, and the resin is heat-fixed to form a biaxial stretch molded PET resin 5. A heat-resistant laminated container having a layer structure was obtained.
[0041]
The blow moldability was not so different from the case of the PET resin alone, and it was relatively good, and the thickness adjustment was also possible with a thickness distribution equivalent to that of the PET resin alone. However, although there is no hindrance to practical use, the stretch under the mouth and neck of the preform is somewhat unstable and easy to stretch, and the bottom tends to be fluffy, and the container sits slightly worse. The body of the container was slightly cloudy.
[0042]
The cause is that MXD-6 nylon resin was blended, and it was found that as the blending amount of MDX-6 nylon resin increases, the transparency is lost.
[0043]
Example 3
Next, when molding a laminated preform in the same manner as in Example 2, the MXD-6 nylon resin layers 9a and 9b of the five-layer structure preform shown in FIG. 5 were formed slightly thinner than in Example 2. The preform P ′ thus formed was molded.
Then, the preform P ′ is subjected to a whitening process in which the neck portion 3 of the preform, which becomes a container mouth portion of a casing or the like, is thermally crystallized so as not to be thermally deformed by the same method as in Example 2. Without heating, the main body portion on which the preform 2 is biaxially stretched is heated to a temperature capable of blow molding close to the thermal crystallization temperature, and then the mold body is heated to 160 ° C. and the bottom is heated to 23 ° C. After setting in a heated primary blow mold, pressure is 26 kg / cm 2 Then, a primary biaxial stretching blow operation was performed for 2.63 seconds to form a primary intermediate molded product.
[0044]
Moreover, as the heating temperature of the primary blow molding die, the blow pressure is 20 to 30 kg / cm in the range where the body portion is in the range of 70 ° C. to 180 ° C. and the bottom portion is in the range of 20 ° C. to 40 ° C. 2 It was found that a good predetermined intermediate intermediate product can be obtained by performing primary blow molding for 2.0 to 7.0 seconds.
[0045]
Subsequently, after releasing the primary intermediate molded product subjected to primary blow molding as described above from the primary molding die, 130 ° C. or higher, which is a temperature higher than the temperature of the primary blow molding die in a heating region equipped with far infrared rays or the like. By performing heat treatment at 200 ° C. or lower for 5.5 seconds, the film was forcibly deformed by heat shrinkage to form a secondary intermediate molded product.
[0046]
The secondary intermediate molded product thus molded is set in a secondary blow molding die heated to 105 ° C., which is higher than the temperature at which the heat filling process is performed, and then the pressure is set to 36 kg / cm. 2 5 layers comprising a PET resin biaxially stretch-molded by performing a primary biaxial stretch blow operation for 2.63 seconds and performing secondary blow molding on a final shaped container such as a casing and heat fixing. A heat-resistant laminated container having a structure could be obtained.
[0047]
Further, as the heating temperature of the secondary blow molding die, the blow pressure is 30 to 40 kg / cm in the range where the body portion is in the range of 80 ° C. to 150 ° C. and the bottom portion is in the range of 75 ° C. to 100 ° C. 2 It was found that the desired good molded article can be obtained by secondary blow molding at 2.0 to 7.0 seconds.
[0048]
As for blow moldability, the case of Example 3 is much closer to that of the PET resin alone than Example 2, and a good one is obtained, and the thickness is also adjusted. Example 3 was easier to adjust than the case of Example 2, and could be molded into a thickness distribution equivalent to a stable PET resin alone.
[0049]
Further, the sitting condition of the completed container is also better in Example 3, and further, the fogging condition of the container body is also better than that in Example 2, and is the same as that of the PET resin alone. Of the level.
[0050]
For each of the laminated containers molded in Example 2 and Example 3 described above, the presence or absence of a delamination phenomenon between the layers was examined, and the results were as shown in Table 1 below.
[0051]
[Table 1]
Figure 0003918168
As can be seen from the result of looking at this table, each of the primary blow molded primary intermediate molded product, the secondary intermediate molded product thermally contracted by secondary heating, the finished product blown by secondary blow molding, etc. No peeling phenomenon was observed between the laminated resins, and even when the finished product was pressed with a finger, no peeling occurred between the layers of the container, and the appearance was satisfactory.
[0052]
Furthermore, the results of measuring the oxygen permeability of each of the laminated containers formed in two-stage blow (so-called double blow) in Example 2 and Example 3 are as shown in Table 2 below.
[0053]
[Table 2]
Figure 0003918168
From the results shown in this table, it was confirmed that the laminated container was extremely excellent in oxygen barrier properties as compared with a container made of PET resin alone.
[0054]
Furthermore, in order to show how the double blow molded laminated container is superior in oxygen barrier properties, a single single laminated container (350 ml) of conventional PET resin alone and MXD-6 (5.5 wt%) are laminated. About blow container (350ml)
PET resin simple substance: 0.031
MXD-6 (5.5 wt%): 0.012
Met.
[0055]
Therefore, the permeation ratio is 1.47 for PET resin alone and 0.57 for MXD-6 (5.5 wt%). When oxygen permeability is compared, double blow molding is single blow molding. The non-oxygen transmission rate is improved by 32% for PET resin alone and 41% for MXD-6 (5.5 wt%). Even in the same laminated container, the double blow molded container is better. It can be seen that the gas barrier property is good.
[0056]
This is because the double blow molded container is given a thermal history as compared with the single blow molded container, and as a result, the crystallinity of the PET resin is increased and gas barrier properties are imparted.
[0057]
Subsequently, with respect to various hollow containers having a capacity of 500 ml or more, the above-described MXD-6 nylon resin was used to perform the biaxial stretch blow molding of the same PET resin laminated container as in Examples 2 and 3 by the double blow method. As a result, as in the case of 350 ml described above, a good laminated hollow container excellent in gas barrier properties could be biaxially stretch blow molded.
[0058]
As molding conditions at this time, in the primary blow molding process, the temperature of the molding die is as follows: body part: 70 ° C. to 180 ° C., bottom part: 20 ° C. to 40 ° C., blow pressure: 20 to 30 kg / cm 2 Blow time: 2.0-7.0 seconds,
Moreover, in the secondary blow molding process, the secondary heating temperature of the secondary intermediate molded product: 130 ° C. to 200 ° C., and the temperature of the molding die are the body part: 80 ° C. to 150 ° C., the bottom part: 75 ° C. to 100 ° C. Blow pressure: 30-40kg / cm 2 Blow time: It was found that when biaxial stretch blow molding was performed in the range of 2.0 to 7.0 seconds, a desired good product could be obtained.
[0059]
Further, when a heat resistance test was performed on each of the laminated containers molded in Example 2 and Example 3, no change was observed in any container until the heat filling temperature reached 93 ° C., and 95 ° C. As compared with the case of the PET resin alone, the shoulder portion was slightly closed, but it was enough to withstand practical use.
[0060]
Therefore, it can be seen that when a laminated container is double blow molded by the method of the present invention and a thermal history is intentionally given, a hollow container having a high gas barrier property can be reliably obtained.
[0061]
【The invention's effect】
As is apparent from the above description, the laminated container using the PET resin molded by the method of the present invention has a white wall of the mouth and neck, the extension of the gas barrier layer to the mouth and neck, and the wall of the vessel wall based on double blow molding. Due to the increase in density, the gas barrier property as a container becomes more perfect, and it can cope with contents that require strict performance. At the same time, it has high heat resistance against heat shrinkage.
[0062]
Furthermore, according to the molding method of the present invention, since the primary intermediate molded product is forcibly heated and contracted in a state where the primary blow molding die is opened, heat treatment is performed in the primary blow molding die, Compared to those that shrink spontaneously outside the mold, the primary blow mold can be kept at a constant temperature at all times, so the structure of the mold can be simplified and the product can be manufactured at a high molding cycle. There are advantages that can be done.
[Brief description of the drawings]
1A and 1B are longitudinal sectional views showing an operation state of injection molding of a multilayer preform.
FIGS. 2a and 2b are longitudinal sectional views showing a three-layered preform used in the present invention.
FIGS. 3a to 3c are process diagrams for blow-molding the laminated hollow container of the present invention.
FIGS. 4a and 4b are partial sectional views showing a laminated hollow container formed according to the present invention.
FIGS. 5a and 5b are longitudinal sectional views showing a five-layered preform used in the present invention.
[Explanation of symbols]
1; Outer resin layer
2; Intermediate resin layer
3, 3 '; mouth and neck
4, 4 '; Laminated container
4a: inner layer
4b: Intermediate layer
4c: outer layer
5, 5 '; Primary intermediate molded product
6, 6 '; Secondary intermediate molded product
11; Injection mold
12; Primary blow mold
13; Secondary blow mold
A: First injection molding machine
B: Second injection molding machine
P, P ': Laminated preform
H: Heating area

Claims (3)

口頸部並びに胴部及び底部を含む本体部分を最内外層をポリエステル樹脂層で形成すると共に、中間内層を少なくとも一層のガスバリヤー性樹脂層で形成した多層プリフォームを、最終成形品の形状に対応した所定形状に予め成形して、90℃〜120℃に加熱して、該プリフォームを胴部:70〜180℃、底部:20〜40℃に加熱された一次ブロー成形金型により2軸延伸ブロー成形して一次中間成形品となし、該一次中間成形品を一次ブロー金型から解放して130℃〜200℃に加熱して強制的に熱収縮変形させて、二次中間成形品となし、該二次中間成形品を胴部:80〜150℃、底部:75〜100℃に加熱された二次ブロー成形金型により再び二次ブロー成形して最終成形品に2軸延伸成形すると共に熱固定することを特徴とする耐熱性ポリエステル樹脂積層容器の成形方法。A multilayer preform in which the inner and outer layers are formed of a polyester resin layer and the intermediate inner layer is formed of at least one gas barrier resin layer is formed into the shape of the final molded product. Pre-formed into a corresponding shape, heated to 90 ° C. to 120 ° C. , and the preform was biaxially formed by a primary blow molding die heated to a body part: 70 to 180 ° C. and a bottom part: 20 to 40 ° C. Stretch blow molding to form a primary intermediate molded product, the primary intermediate molded product is released from the primary blow mold and heated to 130 ° C. to 200 ° C. to forcibly undergo heat shrink deformation, None, the secondary intermediate molded product is subjected to secondary blow molding again with a secondary blow molding die heated to a body portion of 80 to 150 ° C. and a bottom portion of 75 to 100 ° C. , and biaxially stretched into a final molded product. Specially heat-fixed with A method for forming a heat-resistant polyester resin laminated container. 多層プリフォームが最内外層はポリエチレンテレフタレート樹脂で、中間層はメタキシレン基含有ポリアミド樹脂の3層構造である請求項1記載の耐熱性ポリエステル樹脂積層容器の成形方法。 The method for forming a heat-resistant polyester resin laminated container according to claim 1, wherein the multilayer preform has a three-layer structure of a polyethylene terephthalate resin as an innermost layer and a polyamide resin containing a metaxylene group as an intermediate layer . 多層プリフォームが最内外層、中心層はポリエチレンテレフタレート樹脂で、中間内層の2層はメタキシレン基含有ポリアミド樹脂の5層構造である請求項1記載の耐熱性ポリエステル樹脂積層容器の成形方法。 The method for molding a heat-resistant polyester resin laminated container according to claim 1, wherein the multilayer preform has an innermost outer layer, the central layer is a polyethylene terephthalate resin, and the middle inner layer has a five-layer structure of a metaxylene group-containing polyamide resin .
JP2000361320A 1999-11-30 2000-11-28 Polyester resin laminated container and molding method thereof Expired - Lifetime JP3918168B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000361320A JP3918168B2 (en) 2000-11-28 2000-11-28 Polyester resin laminated container and molding method thereof
DE2000618042 DE60018042T2 (en) 1999-11-30 2000-11-29 A method of molding a multilayered polyester container
CA 2360792 CA2360792C (en) 1999-11-30 2000-11-29 Laminated polyester resin container and method of molding such a container
AU15540/01A AU758920B2 (en) 1999-11-30 2000-11-29 Polyester resin lamination vessel and molding method therefor
EP20000977994 EP1155807B1 (en) 1999-11-30 2000-11-29 Method for molding a multilayered polyester container
PCT/JP2000/008388 WO2001039956A1 (en) 1999-11-30 2000-11-29 Polyester resin lamination vessel and molding method therefor
CNB008032254A CN1202944C (en) 1999-11-30 2000-11-29 Polyester resin lamination vessel and molding method therefor
KR1020067024748A KR100742077B1 (en) 1999-11-30 2000-11-29 Polyester resin lamination vessel and molding method therefor
CNB2004100883805A CN1299953C (en) 1999-11-30 2000-11-29 Laminated polyester resin container and method of molding such a container
KR1020017009473A KR100742076B1 (en) 1999-11-30 2000-11-29 Polyester resin lamination vessel and molding method therefor
TW89125506A TW505597B (en) 1999-11-30 2000-11-30 Polyester resin lamination vessel and molding method therefor
US10/463,545 US7459119B2 (en) 1999-11-30 2003-06-18 Laminated polyester resin container and method of molding such a container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000361320A JP3918168B2 (en) 2000-11-28 2000-11-28 Polyester resin laminated container and molding method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34146899A Division JP3858113B2 (en) 1999-11-30 1999-11-30 Heat resistant polyester resin laminate container and molding method thereof

Publications (2)

Publication Number Publication Date
JP2001206336A JP2001206336A (en) 2001-07-31
JP3918168B2 true JP3918168B2 (en) 2007-05-23

Family

ID=18832772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361320A Expired - Lifetime JP3918168B2 (en) 1999-11-30 2000-11-28 Polyester resin laminated container and molding method thereof

Country Status (1)

Country Link
JP (1) JP3918168B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547843B2 (en) * 2001-08-30 2010-09-22 株式会社吉野工業所 Primary molded product and casing of biaxially stretched blow molded casing
US7491359B2 (en) * 2003-10-16 2009-02-17 Graham Packaging Pet Technologies Inc. Delamination-resistant multilayer container, preform, article and method of manufacture
RU2414352C2 (en) 2005-07-08 2011-03-20 Мицубиси Гэс Кемикал Компани, Инк. Multilayer bottle
JP4730046B2 (en) * 2005-10-06 2011-07-20 東洋製罐株式会社 Multilayer polyester container and method for producing the same
EP1964673B1 (en) 2005-12-22 2011-02-09 Mitsubishi Gas Chemical Company, Inc. Multilayer bottle
JP4984221B2 (en) * 2006-10-13 2012-07-25 大日本印刷株式会社 Plastic container having a gas barrier layer
JPWO2008117474A1 (en) * 2007-03-22 2010-07-08 東洋製罐株式会社 Multilayer polyester container and method for producing the same
CN102869489B (en) 2010-04-23 2016-05-25 三菱瓦斯化学株式会社 Laminated vessel, the laminated vessel manufacture method of mould and laminated vessel
ES2610953T3 (en) * 2011-11-15 2017-05-04 Amcor Limited Container formed by several blow molds
JP6910735B2 (en) * 2017-12-28 2021-07-28 株式会社吉野工業所 Manufacturing method of synthetic resin container, preform, and synthetic resin container
JP7377426B2 (en) * 2019-01-29 2023-11-10 キョーラク株式会社 double container
JP7242398B2 (en) * 2019-04-23 2023-03-20 大日本印刷株式会社 Composite container manufacturing method and manufacturing device, composite preform manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JP2001206336A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
KR100742077B1 (en) Polyester resin lamination vessel and molding method therefor
KR940005636B1 (en) Multi-layer vessel and manufacturing method thereof
EP0885105B1 (en) Multilayer container resistant to elevated temperatures and pressures, and method of making the same
US5651933A (en) Method for making multi-layer preform used for plastic blow molding
JP3918168B2 (en) Polyester resin laminated container and molding method thereof
JPS63194912A (en) Preform for biaxially orienting container and molding method thereof
JP4547843B2 (en) Primary molded product and casing of biaxially stretched blow molded casing
JP3858113B2 (en) Heat resistant polyester resin laminate container and molding method thereof
JP2005067002A (en) Preform for plastic bottle container
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPH01254539A (en) Heat and pressure resistant multiple layer container and its manufacture method
AU2002311237B2 (en) Synthetic resin container excellent in functional characteristics and production method therefor
JPH0323336B2 (en)
JPS61268426A (en) Manufacture of oriented polyester container with resistance to heat shrinkage
JPS6319208A (en) Premolded product
KR100743165B1 (en) Synthetic resin container excellent in functional characteristics and production method therefor
JP2000102966A (en) Two-layered stretch blow-molded container
JP7342372B2 (en) multiple containers
JP4811700B2 (en) Retort-compatible polyester container and method for producing the same
JPH05193636A (en) Preformed molding of resin with hollow wall and method for its manufacture and container produced therefrom by biaxially stretching blow molding
JPS61146521A (en) Preparation of multi-layered stretched polyester container
JPH0272040A (en) Heat resistant blown bottle
JPH09314650A (en) Biaxially stretching blow molding method
JPH02274523A (en) Multi-layer stretched blow polyester vessel
JP2019072902A (en) Preform, plastic bottle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3918168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

EXPY Cancellation because of completion of term