JP3916330B2 - Gelling agent comprising sugar benzylidene derivative - Google Patents

Gelling agent comprising sugar benzylidene derivative Download PDF

Info

Publication number
JP3916330B2
JP3916330B2 JP25750098A JP25750098A JP3916330B2 JP 3916330 B2 JP3916330 B2 JP 3916330B2 JP 25750098 A JP25750098 A JP 25750098A JP 25750098 A JP25750098 A JP 25750098A JP 3916330 B2 JP3916330 B2 JP 3916330B2
Authority
JP
Japan
Prior art keywords
benzylidene
sugar
gelling agent
methyl
glucopyranoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25750098A
Other languages
Japanese (ja)
Other versions
JPH11323309A (en
Inventor
夏樹 天野倉
健治 與座
征治 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Soda Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nippon Soda Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nippon Soda Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP25750098A priority Critical patent/JP3916330B2/en
Publication of JPH11323309A publication Critical patent/JPH11323309A/en
Application granted granted Critical
Publication of JP3916330B2 publication Critical patent/JP3916330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低分子化合物を用いるゲル化技術の分野に属し、詳述すれば、糖ベンジリデン誘導体から成る新規な溶媒ゲル化剤に関する。
【0002】
【従来の技術】
近年、ゲルの特性に基づく応用開発が精力的に進められている。これらのほとんどのゲルに共通する点は、高分子ハイドロゲルと総称されるように、ゲル化剤が高分子(ポリマー)で、かつゲル化される溶媒が水であることである。低分子化合物をゲル化剤とし非水性溶媒(有機溶媒)を成分とするゲルの実用化は、僅かに、オイルゲル化剤として台所の廃油を固めてゲル化する場合や流出原油を固めて除去する例を見る程度である。このような例のほかには、水を含まないゲルについては、医薬、薬学などの種々の分野において利用が理論的には考えれるが、実際には、有機溶媒に対するゲル化剤となるような低分子化合物はきわめて少ない。
【0003】
また、有機溶媒用ゲル化剤として提示されているものは、低分子化合物とは言っても実際には長大で複雑なものが多く、したがって、調製や取扱の点では必ずしも満足すべきものではない。例えば、「R. J. H. Hafkamp他、J. Chem. Soc., Chem. Commun., 1997, 545」や「G. T. Crisp 他、Synthetic Commun., 27, 2203 (1997)」には、オイルゲル化剤の例が報告されているが、ゲル化剤として用いられるのは長鎖アルキル基を含む比較的複雑な化合物である。
【0004】
さらに、従来から知られているゲル化剤は、専ら特定の構造から成る特定の目的に向けられたものが多く、目的に応じて各種の溶媒に適用し得るように簡単に分子設計できるような融通性のあるゲル化剤は見られない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、調製や取扱が簡単な低分子化合物から成り、溶媒、特に各種の有機溶媒のゲル化に適用することのできる新しいタイプのゲル化剤を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、単糖類の特徴的な構造に注目し、これから得られる糖誘導体を利用することによって上記の目的を達成した。
かくして、本発明に従えば、ピラノース環構造を有する単糖類とベンズアルデヒドとの脱水縮合反応によって得られる糖ベンジリデン誘導体から成ることを特徴とする溶媒のゲル化剤が提供される。
【0007】
本発明の溶媒のゲル化剤として使用される糖ベンジリデン誘導体として好ましい例は、メチル−4,6−O−ベンジリデン−β−D−ガラクトピラノシドである。本発明に従うゲル化剤に用いられる糖ベンジリデン誘導体のその他の好ましい例は、メチル−4,6−O−ベンジリデン−α−D−グルコピラノシド、メチル−4,6−O−ベンジリデン−α−D−ガラクトピラノシド、またはメチル−4,6−O−ベンジリデン−α−D−マンノピラノシドである。さらに、p−ニトロフェニル−4,6−O−ベンジリデン−α−D−グルコピラノシドのような糖ベンジリデン誘導体も本発明の溶媒ゲル化剤として使用し得る。
【0008】
【発明の実施の形態】
ゲル化は、ゲル化剤が溶媒に溶け込もうとする力(ゲル化剤どうしを引き離そうとする力)と、ゲル化剤どうしが凝集しあう力のバランスがとれているところで起こる現象と考えられている。
単糖類とベンズアルデヒドとの脱水縮合反応から得られる糖ベンジリデン誘導体から成る本発明のゲル化剤は、単糖類の種類を変えることにより簡単にゲル化能を変えることができるという特性を有する。これは、単糖類の構造の多様性に起因するものと考えられる。
【0009】
よく知られているように単糖類のピラノース環はきわめて多様な立体構造をとり、結合している水酸基の向きもさまざなの組み合わせが存する。ベンゼン環に糖骨格が結合した構造の本発明のゲル化剤は、ベンゼン環によって溶け込もうとしながら、水酸基を介して分子間の水素結合を形成することによりゲル化剤どうしの凝集力を得ているものと考えられる。ここで、本発明のゲル化剤は、糖骨格の水酸基の方向の相違、および糖骨格とベンジリデンとの結合角度の違いによるゲル化剤のパッキングのしやすさの違いによってゲル化能の差が生じるものと推測される。
【0010】
本発明のゲル化剤を構成する糖ベンジリデン誘導体は、ベンズアルデヒドと単糖類を室温において適当な脱水触媒(例えば、塩化亜鉛)の存在下に反応させることにより簡単に合成することができる。ここで、反応させる単糖類の種類を変えれば、立体構造の異なる、したがって、ゲル化能の異なる糖ベンジリデン誘導体を得ることができる(図1、図2および図3参照)。
【0011】
例えば、図1には、ピラノース環構造を有する単糖類として、メチル−α−D−グルコピラノシド(イ)、メチル−α−D−ガラクトピラノシド(ロ)、およびメチル−α−D−マンノピラノシド(ハ)をベンズアルデヒドと反応させる場合のスキームを示している。これらの単糖類は、4位と6位の水酸基がベンズアルデヒドのアルデヒド基と脱水縮合反応してベンジリデン誘導体を生成するが、各単糖類の水酸基の向きが互いに異なるため、分子式としては同一であるが、立体構造の全く異なる3種類の立体異性体(1:メチル−4,6−O−ベンジリデン−α−D−グルコピラノシド)、(2:メチル−4,6−O−ベンジリデン−α−D−ガラクトピラノシド)および(3:メチル−4,6−O−ベンジリデン−α−D−マンノピラノシド)が形成され、これらは、後の実施例に記すように互いに異なるゲル化能を示す。
【0012】
また、同種の単糖から成るピラノース環には、C−1位の水酸基の立体配置に応じてα体とβ体が存在するが、この違いを利用することによってもゲル化能の異なる糖ベンジリデン誘導体を得ることができる。例えば、図2には、メチル−β−D−ガラクトピラノシドとベンズアルデヒドを反応させてメチル−4,6−O−ベンジリデン−β−D−ガラクトピラノシド(4)を合成する反応スキームを示しているが、得られるβ体(メチル−4,6−0−ベンジリデン−β−D−ガラクトピラノシド)は図1の(2)に示すα体(メチル−4,6−O−ベンジリデン−α−D−ガラクトピラノシド)と異なるゲル化能を示し、α体よりも有機溶媒に対するゲル化能が非常に優れている。
【0013】
さらに、各種の官能基や分子構造を含むピラノース型単糖類(ピラノシド配糖体)から糖ベンジリデン誘導体を調製して、付加的な機能を有するゲル化剤を得ることもできる。例えば、図3に示すように、p−ニトロフェニル−α−D−グルコピラノシドとベンズアルデヒドとから得られるp−ニトロフェニル−4,6−O−ベンジリデン−α−D−グルコピラノシド(5)は、UVスペクトルや円二色性スペクトルによる分析が容易であり、ゲルの状態を判断することができるという利点を有する。
【0014】
本発明のゲル化剤を構成する糖ベンジリデン誘導体を調製するには、好ましい例として上述した単糖類の他、安定なピラノース環構造の化合物として入手できる各種の単糖類を使用することができる。使用できる単糖類の例としては、α−D−グルコース、β−D−グルコース、α−D−ガラクトース、β−D−ガラクトース、α−D−マンノース、β−D−マンノース、α−D−タロース、β−D−タロースなどが挙げられる。メチル−α−D−グルコピラノシド、メチル−β−D−グルコピラノシド、メチル−α−D−ガラクトピラノシド、メチル−β−D−ガラクトピラノシド、メチル−α−D−マンノピラノシド、メチル−β−D−マンノピラノシド、エチル−α−D−グルコピラノシド、エチル−β−D−グルコピラノシド、エチル−α−D−グルコフラノシド、エチル−β−D−グルコフラノシド、p−ニトロフェニル−α−D−グルコピラノシド、p−ニトロフェニル−β−D−グルコピラノシドなどのピラノシド配糖体(グリコピラノシド)も本発明に使用されるピラノース環構造を有する単糖類の例として挙げることができる。
【0015】
本発明のゲル化剤は、各種の有機溶媒をゲル化する性能を有するが、特に、比較的極性の低い溶媒のゲル化に使用することができる。適用される溶媒の例としては、n−ヘキサン、n−ヘプタン、n−オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、p−キシレン、四塩化炭素、二硫化水素、ジエチルエーテル、ジフェニルエーテル、n−オクタノール、トリエチルアミン、トリエチルシラン、テトラエトキシシランなどを挙げることが、単糖類の種類を変えることによりゲル化能を変えることができる。注目すべきは、本発明のゲル化剤は、水中でのゲル化も可能にすることができるということである。例えば、上述した式(3)で表される糖ベンジリデン誘導体は水中でゲルを形成することが見出されている。
【0016】
【実施例】
以下、本発明の特徴をさらに明らかにするため実施例を示すが、本発明は、この実施例によって制限されるものではない。
実施例1:ゲル化剤の合成
1−1:メチル−4,6−O−ベンジリデン−α−D−グルコピラノシド(1)の合成
メチル−α−D−グルコピラノシド2.0g (10.3 mmol)にベンズアルデヒド5.0ml (過剰)および塩化亜鉛1.5g(11.0 mmol)を加えて、室温で6時間撹拌した。その後、この反応混合物に水50mlを加えて析出した沈殿物をろ取した。この沈殿物を水および石油エーテルで洗浄後、クロロホルム/n−ヘキサンにより再沈殿操作を行い、白色結晶(1)を得た(図1のイ参照)。
収量2.27g(78%)
融点165.4 〜166.8 ℃; 1H NMR (250 MHz, CDCl3, 27℃) δ 2.46 (bs, 1H, OH), 2.95 (bs, 1H, OH), 3.45 (s, 3H, OMe), 3.48-4.31 (m, 6H, 糖CH(H-2〜H-6)), 4.77 (d, J3.9 Hz, 1H, 糖H-1), 5.52 (s, 1H, PhCH), 7.35-7.38 (m, 3H, m, p-PhH) および7.47-7.51 (m, 2H, o-PhH) ; IR ( ν/cm-1, KBr ペレット) : 3650-3100 (νO-H ) および1030 (νC-O-C ); 元素分析測定値 : C, 58.21 ; H, 6.55%。理論値( C14H18O6・0.4H2O): C, 58.07 ; H, 6.56%。
【0017】
1−2:メチル−4,6−O−ベンジリデン−α−D−ガラクトピラノシド(2)の合成
1−1においてメチル−α−D−グルコピラノシドの代わりに、メチル−α−D−ガラクトピラノシド2.0g(10.3 mmol) を用いて、同様の方法により、白色結晶(2)を得た(図1のロ参照)。
収量1.12g(39%)
融点168.9 〜170.5 ℃; 1H NMR (250 MHz, CDCl3, 27℃) δ 2.30 (bs, 1H, OH), 2.52 (bs, 1H, OH), 3.46 (s, 3H, OMe), 3.70-4.31 (m, 6H, 糖CH(H-2〜H-6)), 4.93 (d, J2.5 Hz, 1H, 糖H-1), 5.55 (s, 1H, PhCH), 7.36-7.38 (m, 3H, m, p-PhH) および7.48-7.52 (m, 2H, o-PhH) ; IR ( ν/cm-1, KBr ペレット) : 3640-3100 (νO-H ) および1030 (νC-O-C ); 元素分析測定値 : C, 58.09 ; H, 6.35%。理論値( C14H18O6・0.4H2O): C, 58.07 ; H, 6.56%。
【0018】
1−3:メチル−4,6−O−ベンジリデン−α−D−マンノピラノシド(3)の合成
1−1においてメチル−α−D−グルコピラノシドの代わりに、メチル−α−D−マンノピラノシド2.0g (10.3 mmol)を用いて、同様の方法により、白色結晶(3)を得た(図1のハ参照)。
収量190mg(7%)
融点131.1 〜133.7 ℃; 1H NMR (250 MHz, CDCl3, 27℃) δ 2.78-2.82 (m, 2H, OH), 3.39 (s, 3H, OMe), 3.77-4.30 (m, 6H,糖CH(H-2〜H-6)), 4.73 (s, 1H, 糖H-1), 5.56 (s, 1H, PhCH), 7.36-7.39 (m, 3H, m, p-PhH) および7.47-7.51 (m, 2H, o-PhH) ; IR ( ν/cm-1, KBr ペレット) : 3650-3000 (νO-H ) および1020 (νC-O-C ); 元素分析測定値 : C, 54.89 ; H, 5.94%。理論値( C14H18O6・0.25CHCl3): C, 54.82 ; H, 5.90% 。
【0019】
1−4:メチル−4,6−O−ベンジリデン−β−D−ガラクトピラノシドの合成
1−1においてメチル−α−D−グルコピラノシドの代わりに、メチル−β−D−ガラクトピラノシド2.0g(10.3 mmol) を用いて、同様の方法により、白色結晶(4)を得た(図2参照)。
収量530mg(19%)
融点232 〜233 ℃; 1H NMR (300 MHz, CDCl3, 20℃) δ 2.55-2.59 (m, 2H, OH), 3.49-4.38 (m, 10H, OMe, 糖CH(H1 〜H6)), 5.56 (s, 1H,Ph-CH), 7.26-7.37 (m, 3H, p-Ph-H) および7.49-7.52 (m, 2H, o-Ph-H) ; IR (ν/cm-1, KBr ペレット) : 3700-3200 (νO-H ) および1030 (νC-O-C ); 元素分析測定値 : C, 59.23 ; H, 6.48%。理論値( C14H18O6): C, 59.57 ; H, 6.43%。
【0020】
1−5:p−ニトロフェニル−4,6−O−ベンジリデン−α−D−グルコピラ ノシド(5)の合成
ベンズアルデヒド(1.0 ml, 9.9mmol)とp−ニトロフェニル−α−D−グルコプラノシド(500mg, 1.66mmol)の混合物を窒素雰囲気下で塩化亜鉛(240mg, 1.77mmol)とともに攪拌した。室温下で20時間反応を行った。反応混合物を水(15 ml)に添加した後、得られた沈殿をろ過した。ろ紙の生成物を水およびヘキサンで洗浄後、THF/ヘキサンにより再沈殿させ、白色結晶(5)を得た(図3参照)。
収率46%
融点158 〜159 ℃; 1H NMR (DMSO-d6)δ 3.54-4.06および5.47-5.56 (m, 8H, 糖-CH (H-2〜H-6)およびOH)), 5.62 (s, 1H, PhCH), 5.82(d, 1H, 糖 H-1)), 7.30-7.43 (m, 7H, Phおよびp-ニトロフェニル-o-H中), 8.25 (d, 2H, p-ニトロフェニルm-H); IR (KBr)3670-3000 ( νO-H )1340 および1510 (νN-O ) , 1060 (νC-O-C )cm -1 ; 元素分析測定値 : C, 58.29 ; H, 4.87 ; N, 3.56%。理論値( C19H19O8N ): C, 58.61 ; H, 4.92 ; N, 3.60 % 。
【0021】
実施例2:ゲル化実験(その1)
実施例1で合成したゲル化剤を用い、各種の溶媒に対するゲル化能を調べた。ゲル化試験は次のように行った:ゲル化剤(3.0mg)をキャップ付試験管内で溶媒(0.1ml) と混合し、固形分が溶解するまでを加熱した。得られた溶液を室温に冷却し、1時間放置してゲルの形成を観察した。その結果を表1に示す。
【0022】
【表1】

Figure 0003916330
Figure 0003916330
G:gel(1重量%以上でゲル化する);SG:supergel(1重量%以下でもゲル化する);Gp:partial gel(部分的にゲル化する);P:precipitation(沈殿);S:solution(溶ける)。
【0023】
これらの結果から、糖ベンジリデン誘導体から成る本発明のゲル化剤は、各種の有機溶媒をゲル化する性能を有し、ゲル化剤を構成している単糖類を変えることによりゲル化能が変化し、ゲル化剤(3)に見られるように水中でのゲル化も可能となることが理解される。
【0024】
実施例3:ゲル化実験(その2)
実施例1で合成した糖ベンジリデン誘導体(1)〜(4)をゲル化剤として、溶媒(ジフェニルエーテルまたはトルエン)に対してゲルを保持できる温度を測定した。その結果を図4に示す。いずれのゲル化剤もその濃度[Gelator] を増加させるとゲルを保持できる温度Tgelが上昇しているが、(4)の糖ベンジリデン誘導体(メチル−4,6−O−ベンジリデン−β−D−ガラクトピラノシド)は特に優れたゲル化能を有しジフェニルエーテルおよびトルエンのいずれに対してもかなりの高温までゲルを保持できる。
【0025】
【発明の効果】
本発明のゲル化剤は、糖とベンズアルデヒドとから得られる低分子化合物から成り、合成や取扱はきわめて簡単であり、また、使用中に分解されることがあっても糖とベンズアルデヒド等になるだけであるので環境にやさしい安全な物質である。
【0026】
本発明のゲル化剤は、構成成分である単糖類の種類を変えることによりゲル化能を随時変更できる。かくして、本発明のゲル化剤は、単独または複数の糖ベンジリデン誘導体を組み合わせて使用することにより各種の有機溶媒、さらには、水系溶媒もゲル化し得るので、油の凝固剤、いろいろな用途における溶媒粘度の調節剤等の各分野での応用が期待される。
【図面の簡単な説明】
【図1】本発明のゲル化剤として、ピラノース環構造を有する単糖類のα体から糖ベンジリデン誘導体を合成する例を示す。
【図2】本発明のゲル化剤として、ピラノース環構造を有する単糖類のβ体から糖ベンジリデン誘導体を合成する例を示す。
【図3】本発明のゲル化剤として、p−ニトロフェニル基を有するグリコピラノシドから糖ベンジリデン誘導体を合成する例を示す。
【図4】本発明糖ベンジリデン誘導体から成るゲル化剤の溶媒ゲル化能を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the field of gelation technology using a low molecular weight compound, and specifically relates to a novel solvent gelling agent comprising a sugar benzylidene derivative.
[0002]
[Prior art]
In recent years, application development based on the characteristics of gels has been vigorously advanced. The point common to most of these gels is that the gelling agent is a polymer and the solvent to be gelled is water, as generically referred to as polymer hydrogel. Practical use of gels that use low molecular weight compounds as gelling agents and non-aqueous solvents (organic solvents) as a component can be slightly removed when solidifying waste oil in the kitchen as an oil gelling agent or by solidifying and removing spilled crude oil. Just to see an example. In addition to such examples, gels that do not contain water can theoretically be used in various fields such as medicine and pharmacy, but in practice they may be gelling agents for organic solvents. Very few low molecular compounds.
[0003]
In addition, what is presented as a gelling agent for organic solvents is actually a long and complex, even though it is a low molecular weight compound, and is therefore not necessarily satisfactory in terms of preparation and handling. For example, “RJH Hafkamp et al., J. Chem. Soc., Chem. Commun., 1997, 545” and “GT Crisp et al., Synthetic Commun., 27, 2203 (1997)” reported examples of oil gelling agents. However, relatively complex compounds containing long-chain alkyl groups are used as gelling agents.
[0004]
Furthermore, many of the conventionally known gelling agents are exclusively directed to a specific purpose consisting of a specific structure, and can be easily designed in a molecular manner so that they can be applied to various solvents according to the purpose. There are no flexible gelling agents.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a new type of gelling agent which is composed of a low molecular weight compound which is easy to prepare and handle and can be applied to gelation of solvents, particularly various organic solvents.
[0006]
[Means for Solving the Problems]
The present inventor paid attention to the characteristic structure of monosaccharides and achieved the above-mentioned object by utilizing the sugar derivative obtained therefrom.
Thus, according to the present invention, there is provided a solvent gelling agent characterized by comprising a sugar benzylidene derivative obtained by a dehydration condensation reaction between a monosaccharide having a pyranose ring structure and benzaldehyde.
[0007]
A preferred example of a sugar benzylidene derivative used as a gelling agent for the solvent of the present invention is methyl-4,6-O-benzylidene-β-D-galactopyranoside. Other preferred examples of sugar benzylidene derivatives used in the gelling agent according to the present invention are methyl-4,6-O-benzylidene-α-D-glucopyranoside, methyl-4,6-O-benzylidene-α-D-galacto Pyranoside or methyl-4,6-O-benzylidene-α-D-mannopyranoside. Furthermore, sugar benzylidene derivatives such as p-nitrophenyl-4,6-O-benzylidene-α-D-glucopyranoside can also be used as the solvent gelling agent of the present invention.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Gelation is thought to be a phenomenon that occurs where the balance between the force with which the gelling agent dissolves in the solvent (the force with which the gelling agents are separated) and the force with which the gelling agents aggregate together is balanced. ing.
The gelling agent of the present invention comprising a sugar benzylidene derivative obtained from a dehydration condensation reaction between a monosaccharide and benzaldehyde has a characteristic that the gelling ability can be easily changed by changing the type of the monosaccharide. This is believed to be due to the diversity of monosaccharide structures.
[0009]
As is well known, the pyranose ring of monosaccharides has a variety of three-dimensional structures, and there are various combinations of the directions of the hydroxyl groups to which they are attached. The gelling agent of the present invention having a structure in which a sugar skeleton is bonded to a benzene ring obtains cohesion between gelling agents by forming intermolecular hydrogen bonds through hydroxyl groups while trying to dissolve by the benzene ring. It is thought that. Here, the gelling agent of the present invention has a difference in gelation ability due to the difference in the direction of the hydroxyl group of the sugar skeleton and the ease of packing of the gelling agent due to the difference in the bond angle between the sugar skeleton and benzylidene. Presumed to occur.
[0010]
The sugar benzylidene derivative constituting the gelling agent of the present invention can be easily synthesized by reacting benzaldehyde and a monosaccharide at room temperature in the presence of a suitable dehydration catalyst (for example, zinc chloride). Here, by changing the type of monosaccharide to be reacted, sugar benzylidene derivatives having different steric structures and thus different gelling ability can be obtained (see FIGS. 1, 2 and 3).
[0011]
For example, FIG. 1 shows methyl-α-D-glucopyranoside (I), methyl-α-D-galactopyranoside (b), and methyl-α-D-mannopyranoside (b) as monosaccharides having a pyranose ring structure. The scheme in the case of reacting c) with benzaldehyde is shown. In these monosaccharides, hydroxyl groups at the 4-position and the 6-position are subjected to dehydration condensation reaction with the aldehyde group of benzaldehyde to produce a benzylidene derivative. However, since the directions of the hydroxyl groups of each monosaccharide are different from each other, the molecular formula is the same. , Three types of stereoisomers (1: methyl-4,6-O-benzylidene-α-D-glucopyranoside) and (2: methyl-4,6-O-benzylidene-α-D-galacto) having completely different steric structures Pyranoside) and (3: methyl-4,6-O-benzylidene-α-D-mannopyranoside) are formed, which exhibit different gelling abilities as described in the following examples.
[0012]
In addition, in the pyranose ring composed of the same kind of monosaccharide, there are an α-form and a β-form depending on the configuration of the hydroxyl group at the C-1 position. By utilizing this difference, sugar benzylidenes having different gelation ability are also present. Derivatives can be obtained. For example, FIG. 2 shows a reaction scheme for synthesizing methyl-4,6-O-benzylidene-β-D-galactopyranoside (4) by reacting methyl-β-D-galactopyranoside with benzaldehyde. As shown, the β-form (methyl-4,6-0-benzylidene-β-D-galactopyranoside) obtained is the α-form (methyl-4,6-O-benzylidene) shown in (2) of FIG. -Α-D-galactopyranoside), showing a gelling ability different from that of the α-form, which is much better than the α-form.
[0013]
Furthermore, a sugar benzylidene derivative can be prepared from a pyranose-type monosaccharide (pyranoside glycoside) containing various functional groups and molecular structures to obtain a gelling agent having an additional function. For example, as shown in FIG. 3, p-nitrophenyl-4,6-O-benzylidene-α-D-glucopyranoside (5) obtained from p-nitrophenyl-α-D-glucopyranoside and benzaldehyde has a UV spectrum. Moreover, the analysis by a circular dichroism spectrum is easy, and it has the advantage that the state of a gel can be judged.
[0014]
In order to prepare the sugar benzylidene derivative constituting the gelling agent of the present invention, various monosaccharides available as compounds having a stable pyranose ring structure can be used in addition to the monosaccharides described above as preferred examples. Examples of monosaccharides that can be used include α-D-glucose, β-D-glucose, α-D-galactose, β-D-galactose, α-D-mannose, β-D-mannose, α-D-talose. , Β-D-talose and the like. Methyl-α-D-glucopyranoside, methyl-β-D-glucopyranoside, methyl-α-D-galactopyranoside, methyl-β-D-galactopyranoside, methyl-α-D-mannopyranoside, methyl-β- D-mannopyranoside, ethyl-α-D-glucopyranoside, ethyl-β-D-glucopyranoside, ethyl-α-D-glucofuranoside, ethyl-β-D-glucofuranoside, p-nitrophenyl-α-D-glucopyranoside Pyranoside glycosides (glycopyranosides) such as p-nitrophenyl-β-D-glucopyranoside can also be mentioned as examples of monosaccharides having a pyranose ring structure used in the present invention.
[0015]
The gelling agent of the present invention has the ability to gel various organic solvents, and can be used particularly for gelation of solvents with relatively low polarity. Examples of applicable solvents are n-hexane, n-heptane, n-octane, cyclohexane, methylcyclohexane, benzene, toluene, p-xylene, carbon tetrachloride, hydrogen disulfide, diethyl ether, diphenyl ether, n-octanol. , Triethylamine, triethylsilane, tetraethoxysilane, etc. can change the gelation ability by changing the type of monosaccharide. It should be noted that the gelling agent of the present invention can also enable gelation in water. For example, it has been found that the sugar benzylidene derivative represented by the above formula (3) forms a gel in water.
[0016]
【Example】
Hereinafter, examples will be shown to further clarify the features of the present invention, but the present invention is not limited to these examples.
Example 1: Synthesis of gelling agent
1-1: Synthesis of methyl-4,6-O-benzylidene- [alpha] -D-glucopyranoside (1) 2.0 g (10.3 mmol) of methyl- [alpha] -D-glucopyranoside and 5.0 ml (excess) of benzaldehyde and chloride Zinc 1.5 g (11.0 mmol) was added, and the mixture was stirred at room temperature for 6 hours. Thereafter, 50 ml of water was added to the reaction mixture, and the deposited precipitate was collected by filtration. The precipitate was washed with water and petroleum ether, and then reprecipitated with chloroform / n-hexane to obtain white crystals (1) (see (a) in FIG. 1).
Yield 2.27 g (78%)
Melting point 165.4-166.8 ° C; 1 H NMR (250 MHz, CDCl 3 , 27 ° C) δ 2.46 (bs, 1H, OH), 2.95 (bs, 1H, OH), 3.45 (s, 3H, OMe), 3.48-4.31 (m, 6H, sugar CH (H-2 to H-6)), 4.77 (d, J3.9 Hz, 1H, sugar H-1), 5.52 (s, 1H, PhCH), 7.35-7.38 (m, 3H, m, p-PhH) and 7.47-7.51 (m, 2H, o-PhH); IR (ν / cm -1 , KBr pellet): 3650-3100 (ν OH ) and 1030 (ν COC ); Elemental analysis Measurement: C, 58.21; H, 6.55%. Theoretical value (C 14 H 18 O 6 · 0.4H 2 O): C, 58.07; H, 6.56%.
[0017]
1-2: Synthesis of methyl -4,6-O-benzylidene-α-D-galactopyranoside (2) In place of methyl-α-D-glucopyranoside in 1-1, methyl-α-D-galactopyranoside was used. Using 2.0 g (10.3 mmol) of noside, white crystals (2) were obtained in the same manner (see b in FIG. 1).
Yield 1.12 g (39%)
Melting point: 168.9-170.5 ° C; 1 H NMR (250 MHz, CDCl 3 , 27 ° C) δ 2.30 (bs, 1H, OH), 2.52 (bs, 1H, OH), 3.46 (s, 3H, OMe), 3.70-4.31 (m, 6H, sugar CH (H-2 to H-6)), 4.93 (d, J2.5 Hz, 1H, sugar H-1), 5.55 (s, 1H, PhCH), 7.36-7.38 (m, 3H, m, p-PhH) and 7.48-7.52 (m, 2H, o-PhH); IR (ν / cm -1 , KBr pellet): 3640-3100 (ν OH ) and 1030 (ν COC ); Elemental analysis Measurement: C, 58.09; H, 6.35%. Theoretical value (C 14 H 18 O 6 · 0.4H 2 O): C, 58.07; H, 6.56%.
[0018]
1-3: Synthesis of methyl -4,6-O-benzylidene-α-D-mannopyranoside (3) In place of methyl-α-D-glucopyranoside in 1-1, 2.0 g of methyl-α-D-mannopyranoside (10.3 In the same manner, white crystals (3) were obtained (see C in FIG. 1).
Yield 190mg (7%)
Melting point: 131.1-133.7 ° C; 1 H NMR (250 MHz, CDCl 3 , 27 ° C) δ 2.78-2.82 (m, 2H, OH), 3.39 (s, 3H, OMe), 3.77-4.30 (m, 6H, sugar CH (H-2 to H-6)), 4.73 (s, 1H, sugar H-1), 5.56 (s, 1H, PhCH), 7.36-7.39 (m, 3H, m, p-PhH) and 7.47-7.51 (m, 2H, o-PhH); IR (ν / cm −1 , KBr pellet): 3650-3000 (ν OH ) and 1020 (ν COC ); Elemental analysis: C, 54.89; H, 5.94%. Theoretical value (C 14 H 18 O 6 · 0.25CHCl 3): C, 54.82; H, 5.90%.
[0019]
1-4: Synthesis of methyl -4,6-O-benzylidene-β-D-galactopyranoside In place of methyl-α-D-glucopyranoside in 1-1, methyl-β-D-galactopyranoside 2.0 Using g (10.3 mmol), white crystals (4) were obtained in the same manner (see FIG. 2).
Yield 530 mg (19%)
Melting point 232 to 233 ° C; 1 H NMR (300 MHz, CDCl 3 , 20 ° C) δ 2.55-2.59 (m, 2H, OH), 3.49-4.38 (m, 10H, OMe, sugar CH (H1 to H6)), 5.56 (s, 1H, Ph-CH), 7.26-7.37 (m, 3H, p-Ph-H) and 7.49-7.52 (m, 2H, o-Ph-H); IR (ν / cm -1 , KBr Pellets): 3700-3200 (ν OH ) and 1030 (ν COC ); elemental analysis measurements: C, 59.23; H, 6.48%. Theoretical value (C 14 H 18 O 6) : C, 59.57; H, 6.43%.
[0020]
1-5: p- nitrophenyl-4,6-O-benzylidene-.alpha.-D-Gurukopira synthesis <br/> benzaldehyde Noshido (5) (1.0 ml, 9.9mmol ) and p- nitrophenyl-.alpha.-D- A mixture of glucopranoside (500 mg, 1.66 mmol) was stirred with zinc chloride (240 mg, 1.77 mmol) under a nitrogen atmosphere. The reaction was carried out at room temperature for 20 hours. After adding the reaction mixture to water (15 ml), the resulting precipitate was filtered. The product of the filter paper was washed with water and hexane and then reprecipitated with THF / hexane to obtain white crystals (5) (see FIG. 3).
Yield 46%
Melting point 158-159 ° C; 1 H NMR (DMSO-d 6 ) δ 3.54-4.06 and 5.47-5.56 (m, 8H, sugar-CH (H-2 to H-6) and OH)), 5.62 (s, 1H , PhCH), 5.82 (d, 1H, sugar H-1)), 7.30-7.43 (in m, 7H, Ph and p-nitrophenyl-oH), 8.25 (d, 2H, p-nitrophenyl mH); IR (KBr) 3670-3000 (ν OH ) 1340 and 1510 (ν NO ) , 1060 (ν COC ) cm −1 ; Elemental analysis measurements: C, 58.29; H, 4.87; N, 3.56%. Theoretical value (C 19 H 19 O 8 N ): C, 58.61; H, 4.92; N, 3.60%.
[0021]
Example 2: Gelation experiment (part 1)
Using the gelling agent synthesized in Example 1, the gelation ability with respect to various solvents was examined. The gelation test was performed as follows: Gelling agent (3.0 mg) was mixed with solvent (0.1 ml) in a capped tube and heated until the solids dissolved. The resulting solution was cooled to room temperature and left for 1 hour to observe gel formation. The results are shown in Table 1.
[0022]
[Table 1]
Figure 0003916330
Figure 0003916330
G: gel (gels at 1% by weight or more); SG: supergel (gels at 1% by weight or less); Gp: partial gel (partially gels); P: precipitation (precipitation); S: solution.
[0023]
From these results, the gelling agent of the present invention comprising a sugar benzylidene derivative has the ability to gel various organic solvents, and the gelling ability is changed by changing the monosaccharides constituting the gelling agent. In addition, it is understood that gelation in water is possible as seen in the gelling agent (3).
[0024]
Example 3: Gelation experiment (part 2)
The sugar benzylidene derivatives (1) to (4) synthesized in Example 1 were used as gelling agents, and the temperature at which the gel could be retained with respect to the solvent (diphenyl ether or toluene) was measured. The result is shown in FIG. In any of the gelling agents, when the concentration [Gelator] is increased, the temperature Tgel at which the gel can be retained is increased. However, the sugar benzylidene derivative (methyl-4,6-O-benzylidene-β-D- Galactopyranoside) has a particularly excellent gelling ability and can hold the gel to a considerably high temperature with respect to both diphenyl ether and toluene.
[0025]
【The invention's effect】
The gelling agent of the present invention is composed of a low molecular weight compound obtained from sugar and benzaldehyde, is very easy to synthesize and handle, and only becomes sugar and benzaldehyde even if it is decomposed during use. Therefore, it is an environmentally friendly and safe substance.
[0026]
The gelling agent of the present invention can change the gelation ability at any time by changing the type of monosaccharide as a constituent component. Thus, the gelling agent of the present invention can gel various organic solvents and further aqueous solvents by using a single or a combination of a plurality of sugar benzylidene derivatives. Applications in various fields such as viscosity modifiers are expected.
[Brief description of the drawings]
FIG. 1 shows an example of synthesizing a sugar benzylidene derivative from an α-form of a monosaccharide having a pyranose ring structure as a gelling agent of the present invention.
FIG. 2 shows an example of synthesizing a sugar benzylidene derivative from a β-form of a monosaccharide having a pyranose ring structure as a gelling agent of the present invention.
FIG. 3 shows an example of synthesizing a sugar benzylidene derivative from a glycopyranoside having a p-nitrophenyl group as a gelling agent of the present invention.
FIG. 4 is a graph showing the solvent gelation ability of a gelling agent comprising the sugar benzylidene derivative of the present invention.

Claims (1)

ピラノース環構造を有する単糖類とベンズアルデヒドとの脱水縮合反応によって得られる糖ベンジリデン誘導体から成る溶媒のゲル化剤であって、該糖ベンジリデン誘導体が、メチル−4,6−O−ベンジリデン−β−D−ガラクトピラノシド、メチル−4,6−O−ベンジリデン−α−D−グルコピラノシド、メチル−4,6−O−ベンジリデン−α−D−ガラクトピラノシド、メチル−4,6−O−ベンジリデン−α−D−マンノピラノシド、または、p−ニトロフェニル−4,6−O−ベンジリデン−α−D−グルコピラノシドであることを特徴とするゲル化剤。  A solvent gelling agent comprising a sugar benzylidene derivative obtained by a dehydration condensation reaction between a monosaccharide having a pyranose ring structure and benzaldehyde, wherein the sugar benzylidene derivative is methyl-4,6-O-benzylidene-β-D Galactopyranoside, methyl-4,6-O-benzylidene-α-D-glucopyranoside, methyl-4,6-O-benzylidene-α-D-galactopyranoside, methyl-4,6-O-benzylidene A gelling agent, which is α-D-mannopyranoside or p-nitrophenyl-4,6-O-benzylidene-α-D-glucopyranoside.
JP25750098A 1998-03-13 1998-08-27 Gelling agent comprising sugar benzylidene derivative Expired - Fee Related JP3916330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25750098A JP3916330B2 (en) 1998-03-13 1998-08-27 Gelling agent comprising sugar benzylidene derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-82658 1998-03-13
JP8265898 1998-03-13
JP25750098A JP3916330B2 (en) 1998-03-13 1998-08-27 Gelling agent comprising sugar benzylidene derivative

Publications (2)

Publication Number Publication Date
JPH11323309A JPH11323309A (en) 1999-11-26
JP3916330B2 true JP3916330B2 (en) 2007-05-16

Family

ID=26423679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25750098A Expired - Fee Related JP3916330B2 (en) 1998-03-13 1998-08-27 Gelling agent comprising sugar benzylidene derivative

Country Status (1)

Country Link
JP (1) JP3916330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084596A1 (en) 2007-12-28 2009-07-09 Ortho-Clinical Diagnostics Kabushiki Kaisha Detection method and determination method for detection target
US9372187B2 (en) 2007-12-28 2016-06-21 Ortho-Clinical Diagnostics Kabushiki Kaisha Detection method and determination method for detection target

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092070B2 (en) * 2000-11-27 2008-05-28 独立行政法人科学技術振興機構 Organic-inorganic composite using sugar derivative and method for producing metal oxide
JP4164247B2 (en) 2001-08-07 2008-10-15 独立行政法人科学技術振興機構 Sugar-derived gelling agent
JP3660282B2 (en) 2001-08-20 2005-06-15 独立行政法人科学技術振興機構 Hydrogelator
CN104159992B (en) * 2012-03-08 2017-03-08 国立大学法人九州大学 New carbohydrate derivatives gelating agent
KR20180050335A (en) * 2015-08-25 2018-05-14 고쿠리쓰다이가쿠호진 규슈다이가쿠 New sugar derivative gelling agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084596A1 (en) 2007-12-28 2009-07-09 Ortho-Clinical Diagnostics Kabushiki Kaisha Detection method and determination method for detection target
US9372187B2 (en) 2007-12-28 2016-06-21 Ortho-Clinical Diagnostics Kabushiki Kaisha Detection method and determination method for detection target
US9714942B2 (en) 2007-12-28 2017-07-25 Jnc Corporation Detection method and determination method for detection target

Also Published As

Publication number Publication date
JPH11323309A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
TW518329B (en) Process for preparing derivatives of the taxoid family
CN1646481A (en) Crystal forms of N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine
EP1091969A1 (en) Glucosamine sulfate metal chloride compositions and processes of preparation thereof
JPH0899989A (en) New glycolipid derivative and intermediate for its production
JP3916330B2 (en) Gelling agent comprising sugar benzylidene derivative
CA2099530C (en) Preparation of form 1 ranitidine hydrochloride
CN101402655B (en) Process for producing platinum
CN112469698B (en) Preparation method of indocyanine green triethylamine salt
EP1416026B1 (en) Sugar-derived gellant for hydrogel formation
KR950004899B1 (en) Process for preparing moranoline derivatives
JP3898897B2 (en) Novel gelling agent comprising a sugar derivative
JP4136226B2 (en) Sugar derivative having azobenzene structure
JP3898850B2 (en) Gelling agent comprising sugar derivative having metal coordination ability
US20020099159A1 (en) Method of synthesizing complexes of platinum and alkenylpolysiloxane, especially of platinum and divinyltetramethyldisiloxane
JP5207165B2 (en) Oil-soluble chitosan derivative and method for producing the same, and composition containing oil-soluble chitosan derivative
JPS6334158B2 (en)
JPH0460118B2 (en)
JPS6335533A (en) Production of inclusion compound
JP2004231845A (en) Gelling agent and method for carrying out gelling agent of organic substance having fluidity
JPS6321675B2 (en)
JP4161047B2 (en) Gold particles having reactive organic groups
JPH0680618A (en) Long-chain alkyl derivative of amino acid
JPH0460120B2 (en)
JPS58203999A (en) Preparation of glucose compound
JPH07138278A (en) Cellobiose derivative and cello-oligomer derivative and their production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees