JP3915977B2 - Control circuit for series-parallel power supply - Google Patents

Control circuit for series-parallel power supply Download PDF

Info

Publication number
JP3915977B2
JP3915977B2 JP2002172455A JP2002172455A JP3915977B2 JP 3915977 B2 JP3915977 B2 JP 3915977B2 JP 2002172455 A JP2002172455 A JP 2002172455A JP 2002172455 A JP2002172455 A JP 2002172455A JP 3915977 B2 JP3915977 B2 JP 3915977B2
Authority
JP
Japan
Prior art keywords
voltage
inverter
series
calculating
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002172455A
Other languages
Japanese (ja)
Other versions
JP2004023833A (en
Inventor
隆二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002172455A priority Critical patent/JP3915977B2/en
Publication of JP2004023833A publication Critical patent/JP2004023833A/en
Application granted granted Critical
Publication of JP3915977B2 publication Critical patent/JP3915977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、入力側に並列インバータ、出力側に直列インバータを備えた直並列式電源装置の制御回路に関する。
【0002】
【従来の技術】
図3に従来例を示す。
同図において、1は交流電源、2はリアクトル、3は並列インバータ、4は直列インバータ、5はトランス、6はLCフィルタ、7は負荷、11は電流調節器(ACR)、12,14はパルス幅変調(PWM)パターン発生器、13は電圧調節器(AVR)である。
【0003】
並列インバータ3は、負荷電流波形にかかわらず入力電流I1を正弦波とする動作をする。すなわち、入力電流I1は交流電源1の電圧と並列インバータ出力電圧V1との差電圧がリアクトル2の両端に印加されることにより流れるので、V1を制御することにより、負荷に独立に任意の波形とすることができる。そのため、I1の指令値と図示されない電流検出器により検出されるI1の検出値をACR11に入力してV1指令値を得、これをPWMパターン発生器12に入力してPWMパターンに変換する。これにもとづき図示されないゲート駆動回路により、並列インバータ3内の半導体スイッチがオン,オフされる。V1の波形はパルス幅変調された方形波パルス列となる。
【0004】
一方、直列インバータ4は出力電圧V2を規定の正弦波形に保つ動作をする。入力電圧が低いときには補償電圧Vcを加算方向、高いときには減算方向に発生する。また、電源または負荷電流歪みとLCフィルタ6のインピーダンスに起因するV2の波形歪みを抑制するように、補償電圧Vcの瞬時波形を制御する。すなわち、V2指令値と図示されない電圧検出器により検出されるV2の検出値との差をAVR13に入力してVc指令値を得、これをPWMパターン発生器14に入力してPWMパターンに変換する。以後の動作は上記並列インバータ3の場合と同様なので、説明は省略する。
【0005】
また、LCフィルタ6は、方形波パルス列からスイッチングによる周波数成分を除き、連続波形とする。トランス5は、並列インバータ3と直列インバータ4が直流部でつながっているため、直列インバータ4の交流出力を絶縁し、直列インバータ4の電位と無関係に補償電圧Vcを与えるために設けられる。また、その変圧比を適宜に設定することにより、直列インバータ4の必要容量を軽減する。例えば、入力電圧変動が規定値の90%〜100%であれば、これを補償するには10%の補償電圧を与えれば良いので、変圧比を10:1として直列インバータ4の出力電圧100%に対してVc10%が与えられるようにする。このとき、直列インバータ4の出力電流はI2の1/10になるので、装置容量および発生損失を軽減できる。なお、これらの機能を必要としない場合は、トランス5は省略できる。また、図3は単相結線図で示しているが、三相または多相回路にも拡張できる。
【0006】
【発明が解決しようとする課題】
図3のような装置には、入力電流を正弦波にする機能と、負荷電圧を規定の振幅の正弦波にする機能との2つがある。電源装置としての性格上、2つの機能が両立しないときは後者を優先すべきであるが、図3の制御では前者が優先されてしまう。すなわち、まずV2とは独立にV1が決められ、次にV1と基準電圧との差の補償を含む形でVcが決められる。そのため、V1の値によっては基準電圧との差が大きすぎて、直列インバータ4が必要量のVcを発生できない場合がある。この場合、V2には波形歪みや電圧誤差を生じる。これを回避するためにVcの最大値を大きくとると、直列インバータ4の容量が大きくなり大型化するという問題がある。
したがって、この発明の課題は、インバータ容量を大きくすることなく、出力電圧波形を改善することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、交流電源にリアクトルを介して第1インバータの交流端子を並列に接続し、この第1インバータと前記リアクトルとの接続点とLCフィルタの入力端との間に第2インバータの交流端子を直列に接続し、前記LCフィルタの出力端に負荷を接続し、第1インバータにより入力電流を制御し、第2インバータにより出力電圧を制御する直並列式電源装置において、
負荷電圧波形を基準電圧波形に一致させるような前記LCフィルタの入力電圧指令を演算する第1の電圧指令演算手段と、入力電流を基準電流波形に一致させるような前記第1のインバータの交流端子電圧を演算する第2の電圧指令演算手段と、第1の電圧指令と第2の電圧指令との差電圧を演算する第1の差電圧演算手段と、前記差電圧が規定値以内となるように制限しその制限値を補償電圧指令とするリミッタ手段と、前記第1の電圧指令と前記補償電圧指令との差により前記第1のインバータの交流電圧指令を演算する第2の差電圧演算手段とを設けたことを特徴とする。
【0008】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成図、図2はその動作を説明する波形図である。
図1からも明らかなように、電圧調節器(AVR)15、加算器16,18およびリミッタ17を設けた点が特徴である。
AVR15はV2の指令値と実際値との差により、LCフィルタ6の入力電圧Vfの指令値を演算する。加算器16はAVR11が出力するV1指令値1と、Vf指令値との差を演算する。これが本来の補償電圧Vcとなるべきであるが、出力可能な値を越えないようリミッタ17で制限した値をVc指令値とするようにしている。
【0009】
そして、加算器18によりVf指令値からVc指令値を差し引くことで、Vfを指令値に一致させることができる範囲のV1指令値2を求め、これにより並列インバータ3の制御を行なうようにする。なお、直列インバータ4の制御は、Vc指令値にもとづき行なわれる。
図2にV1指令値1,V1指令値およびVf指令値の各波形とVc指令値の例を示す。
以上のようにすることにより、必要なVfが確保されるので、出力電圧V2を所望の波形に保つことが可能となる。
【0010】
【発明の効果】
この発明によれば、まず、LCフィルタの入力電圧(Vf)の指令値を確保するようにしたので、インバータ容量を大きくすることなく、出力電圧波形を改善することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成図である。
【図2】図1の動作を説明する波形図である。
【図3】従来例を示す構成図である。
【符号の説明】
1…交流電源、2…リアクトル、3…並列インバータ、4…直列インバータ、5…トランス、6…LCフィルタ、7…負荷、11…電流調節器、12,14…PWMパターン発生器、13,15…電圧調節器、16,18…加算器、17…リミッタ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control circuit for a series-parallel power supply apparatus having a parallel inverter on the input side and a series inverter on the output side.
[0002]
[Prior art]
FIG. 3 shows a conventional example.
In the figure, 1 is an AC power source, 2 is a reactor, 3 is a parallel inverter, 4 is a series inverter, 5 is a transformer, 6 is an LC filter, 7 is a load, 11 is a current regulator (ACR), and 12 and 14 are pulses. A width modulation (PWM) pattern generator, 13 is a voltage regulator (AVR).
[0003]
The parallel inverter 3 operates so that the input current I1 is a sine wave regardless of the load current waveform. That is, the input current I1 flows by applying a difference voltage between the voltage of the AC power supply 1 and the parallel inverter output voltage V1 across the reactor 2, so that by controlling V1, an arbitrary waveform can be obtained independently of the load. can do. Therefore, the I1 command value and the detected value of I1 detected by a current detector (not shown) are input to the ACR 11 to obtain the V1 command value, which is input to the PWM pattern generator 12 and converted into a PWM pattern. Based on this, the semiconductor switch in the parallel inverter 3 is turned on and off by a gate drive circuit (not shown). The waveform of V1 is a pulse wave modulated square wave pulse train.
[0004]
On the other hand, the series inverter 4 operates to keep the output voltage V2 in a prescribed sine waveform. When the input voltage is low, the compensation voltage Vc is generated in the addition direction, and when it is high, the compensation voltage Vc is generated in the subtraction direction. Further, the instantaneous waveform of the compensation voltage Vc is controlled so as to suppress the waveform distortion of V2 caused by the power supply or load current distortion and the impedance of the LC filter 6. That is, a difference between a V2 command value and a detected value of V2 detected by a voltage detector (not shown) is input to the AVR 13 to obtain a Vc command value, which is input to the PWM pattern generator 14 and converted into a PWM pattern. . Since the subsequent operation is the same as that of the parallel inverter 3, the description is omitted.
[0005]
The LC filter 6 has a continuous waveform by excluding frequency components due to switching from the square wave pulse train. The transformer 5 is provided to insulate the AC output of the series inverter 4 and provide the compensation voltage Vc irrespective of the potential of the series inverter 4 because the parallel inverter 3 and the series inverter 4 are connected at the DC part. Moreover, the required capacity | capacitance of the series inverter 4 is reduced by setting the transformation ratio suitably. For example, if the input voltage fluctuation is 90% to 100% of the specified value, a compensation voltage of 10% may be given to compensate for this, so the transformation ratio is 10: 1 and the output voltage of the series inverter 4 is 100%. Vc of 10% is given. At this time, since the output current of the series inverter 4 becomes 1/10 of I2, the device capacity and the generated loss can be reduced. If these functions are not required, the transformer 5 can be omitted. FIG. 3 shows a single-phase connection diagram, but it can be extended to a three-phase or multi-phase circuit.
[0006]
[Problems to be solved by the invention]
The device as shown in FIG. 3 has two functions: a function of making the input current a sine wave and a function of making the load voltage a sine wave having a specified amplitude. Due to the nature of the power supply device, when the two functions are not compatible, the latter should be prioritized, but the former is prioritized in the control of FIG. That is, V1 is first determined independently of V2, and then Vc is determined including compensation for the difference between V1 and the reference voltage. Therefore, depending on the value of V1, the difference from the reference voltage is too large, and the series inverter 4 may not be able to generate the required amount of Vc. In this case, waveform distortion and voltage error occur in V2. In order to avoid this, if the maximum value of Vc is increased, there is a problem that the capacity of the series inverter 4 increases and the size thereof increases.
Therefore, an object of the present invention is to improve the output voltage waveform without increasing the inverter capacity.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, in the first aspect of the invention, the AC terminal of the first inverter is connected in parallel to the AC power source via the reactor, the connection point between the first inverter and the reactor, and the LC filter. The AC terminal of the second inverter is connected in series with the input terminal, a load is connected to the output terminal of the LC filter, the input current is controlled by the first inverter, and the output voltage is controlled by the second inverter. In parallel power supply,
First voltage command calculation means for calculating an input voltage command of the LC filter that matches the load voltage waveform with the reference voltage waveform, and an AC terminal of the first inverter that matches the input current with the reference current waveform A second voltage command calculating means for calculating a voltage; a first difference voltage calculating means for calculating a difference voltage between the first voltage command and the second voltage command; and the difference voltage within a specified value. And a second difference voltage calculation means for calculating an AC voltage command of the first inverter based on a difference between the first voltage command and the compensation voltage command. And is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the operation thereof.
As is clear from FIG. 1, the voltage regulator (AVR) 15, adders 16, 18 and limiter 17 are provided.
The AVR 15 calculates the command value of the input voltage Vf of the LC filter 6 based on the difference between the command value of V2 and the actual value. The adder 16 calculates the difference between the V1 command value 1 output from the AVR 11 and the Vf command value. This should be the original compensation voltage Vc, but the value limited by the limiter 17 so as not to exceed a value that can be output is set as the Vc command value.
[0009]
Then, the Vc command value is subtracted from the Vf command value by the adder 18 to obtain a V1 command value 2 in a range in which Vf can be matched with the command value, thereby controlling the parallel inverter 3. The series inverter 4 is controlled based on the Vc command value.
FIG. 2 shows examples of waveforms of the V1 command value 1, the V1 command value, and the Vf command value, and the Vc command value.
By doing as described above, the necessary Vf is ensured, so that the output voltage V2 can be maintained in a desired waveform.
[0010]
【The invention's effect】
According to the present invention, since the command value of the input voltage (Vf) of the LC filter is secured first, the output voltage waveform can be improved without increasing the inverter capacity.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a waveform diagram for explaining the operation of FIG. 1;
FIG. 3 is a block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Reactor, 3 ... Parallel inverter, 4 ... Series inverter, 5 ... Transformer, 6 ... LC filter, 7 ... Load, 11 ... Current regulator, 12, 14 ... PWM pattern generator, 13, 15 ... voltage regulator, 16, 18 ... adder, 17 ... limiter.

Claims (1)

交流電源にリアクトルを介して第1インバータの交流端子を並列に接続し、この第1インバータと前記リアクトルとの接続点とLCフィルタの入力端との間に第2インバータの交流端子を直列に接続し、前記LCフィルタの出力端に負荷を接続し、第1インバータにより入力電流を制御し、第2インバータにより出力電圧を制御する直並列式電源装置において、
負荷電圧波形を基準電圧波形に一致させるような前記LCフィルタの入力電圧指令を演算する第1の電圧指令演算手段と、入力電流を基準電流波形に一致させるような前記第1のインバータの交流端子電圧を演算する第2の電圧指令演算手段と、第1の電圧指令と第2の電圧指令との差電圧を演算する第1の差電圧演算手段と、前記差電圧が規定値以内となるように制限しその制限値を補償電圧指令とするリミッタ手段と、前記第1の電圧指令と前記補償電圧指令との差により前記第1のインバータの交流電圧指令を演算する第2の差電圧演算手段とを設けたことを特徴とする直並列式電源装置の制御回路。
The AC terminal of the first inverter is connected in parallel to the AC power source via the reactor, and the AC terminal of the second inverter is connected in series between the connection point of the first inverter and the reactor and the input end of the LC filter. In a series-parallel power supply apparatus in which a load is connected to the output end of the LC filter, an input current is controlled by a first inverter, and an output voltage is controlled by a second inverter,
First voltage command calculation means for calculating an input voltage command of the LC filter that matches the load voltage waveform with the reference voltage waveform, and an AC terminal of the first inverter that matches the input current with the reference current waveform A second voltage command calculating means for calculating a voltage; a first difference voltage calculating means for calculating a difference voltage between the first voltage command and the second voltage command; and the difference voltage within a specified value. And a second difference voltage calculation means for calculating an AC voltage command of the first inverter based on a difference between the first voltage command and the compensation voltage command. And a control circuit for a series-parallel power supply device.
JP2002172455A 2002-06-13 2002-06-13 Control circuit for series-parallel power supply Expired - Fee Related JP3915977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172455A JP3915977B2 (en) 2002-06-13 2002-06-13 Control circuit for series-parallel power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172455A JP3915977B2 (en) 2002-06-13 2002-06-13 Control circuit for series-parallel power supply

Publications (2)

Publication Number Publication Date
JP2004023833A JP2004023833A (en) 2004-01-22
JP3915977B2 true JP3915977B2 (en) 2007-05-16

Family

ID=31172006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172455A Expired - Fee Related JP3915977B2 (en) 2002-06-13 2002-06-13 Control circuit for series-parallel power supply

Country Status (1)

Country Link
JP (1) JP3915977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105613A1 (en) * 2006-03-14 2007-09-20 The University Of Tokushima Power compensation device, power compensation facility, uninterruptible power supply device, and uninterruptible power supply facility

Also Published As

Publication number Publication date
JP2004023833A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP0672317B1 (en) Closed loop pulse width modulator inverter with volt-seconds feedback control
JPH0851790A (en) Control circuit for inductive load
WO2006063598A1 (en) Power factor correction method for ac/dc converters and corresponding converter
JP4599694B2 (en) Voltage type PWM inverter dead time compensation method
CN108400737A (en) Dead-zone compensation method, circuit, power electronic equipment and computer storage media
JP2000514997A (en) Power inverter with low switching frequency
CN111316558B (en) Power conversion device
JP2001128462A (en) Inverter device control method
JP3915977B2 (en) Control circuit for series-parallel power supply
RU198721U1 (en) DEVICE FOR SUPPRESSING HIGHER HARMONICS AND CORRECTING THE MAINS POWER FACTOR
US5592368A (en) Static frequency converter which compensates for fluctuations in a voltage source while controlling the waveform applied to a charge while controlling the waveform applied to a charge
US20210083592A1 (en) Voltage doubling variable frequency drive
Krishna et al. Boost converter based power factor correction for single phase rectifier using fuzzy logic control
JPH1189219A (en) Circuit arrangement for supply from trunk line of energy source to load of single phase or polyphase
JPH07123726A (en) Power converter
JPH11164481A (en) Method for controlling active filter
US4287556A (en) Capacitive current limiting inverter
JP3750799B2 (en) Control circuit for series-parallel power supply
JP3261998B2 (en) Inverter control device
JPH04200299A (en) Operation control device for wound-rotor generator
JP3227009B2 (en) AC electric vehicle control device
JP4277360B2 (en) 3-level inverter controller
JP2000125575A (en) Constant sampling type pwm device for sine wave input- output single-phase voltage doubler ac-dc converting circuit
JPH11146564A (en) Power converter
JPH08331855A (en) Inverter apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees