JP3915169B2 - Alkaline ion water conditioner - Google Patents

Alkaline ion water conditioner Download PDF

Info

Publication number
JP3915169B2
JP3915169B2 JP13463397A JP13463397A JP3915169B2 JP 3915169 B2 JP3915169 B2 JP 3915169B2 JP 13463397 A JP13463397 A JP 13463397A JP 13463397 A JP13463397 A JP 13463397A JP 3915169 B2 JP3915169 B2 JP 3915169B2
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
electrode plate
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13463397A
Other languages
Japanese (ja)
Other versions
JPH10323667A (en
Inventor
朋信 大津
文治 藤本
久徳 白水
裕基 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13463397A priority Critical patent/JP3915169B2/en
Publication of JPH10323667A publication Critical patent/JPH10323667A/en
Application granted granted Critical
Publication of JP3915169B2 publication Critical patent/JP3915169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水道水等の原水を電気分解して、飲用、医療用として利用するアルカリイオン水や化粧水、抗菌洗浄水等として利用する酸性イオン水を製造するアルカリイオン整水器に関するものである。
【0002】
【従来の技術】
近年、連続電解方式のイオン生成器として、アルカリイオン整水器が普及している。このアルカリイオン整水器は、電解槽内で水道水等を電気分解して、陽極側に酸性イオン水を生成し、陰極側にアルカリイオン水を生成するものである。
【0003】
以下、従来の連続電解方式のアルカリイオン整水器について説明する。図2は従来のアルカリイオン整水器の概略構造図である。図2において、1は水道水等の原水管、2は原水管1を開閉する水栓、3は水栓2を介して原水管1と接続されたアルカリイオン整水器である。
【0004】
アルカリイオン整水器3のうち、4は内部に原水中の残留塩素やトリハロメタン、カビ臭等を吸着する活性炭及び一般細菌や不純物を精度よく取り除く中空糸膜等を備えた浄水部、5は通水を確認し、制御手段19に制御を指示する流量センサ、6はグリセロリン酸カルシウムや乳酸カルシウム等のカルシウムイオンを陽極室側に供給する原水中に付与し原水導電率を高めるカルシウム供給部、7は流量センサ5を経由してきた水を電気分解してアルカリイオン水、酸性イオン水を生成する電解槽である。
【0005】
また、8は電解槽7を2分し、電極室を形成する隔膜、9及び10は隔膜8で2分されて形成された各電極室に配置された電極板、11は電極板10側の水(電極板10が陽極の場合は酸性イオン水)を排出する排水管、12は排水管11に配設されアルカリイオン水を効率よく生成するために設けられた吐水排水流量比率調節用の絞り部、13は電極板9側の水(電極板9が陰極の場合はアルカリイオン水)を吐出する吐水管である。
【0006】
14は電解槽7内の滞留水や電極板洗浄時のカルシウム、マグネシウム等からなるスケールが溶出した洗浄水を排出すると共に、電解槽7と排水管11の間を遮断するための第1電磁弁、15は止水後に陽極と陰極を逆にして行う洗浄運転中に、サイフォン現象による電解槽7内の水位を低下を防止するために排水経路を遮断し、アルカリイオン水生成時及び酸性イオン水生成時には弁を開き排水をおこなう第2電磁弁、16は排水管11を介して電極板10側の水(電極板10が陽極の場合は酸性イオン水)や電解槽7の滞留水や洗浄水を排水する放出管である。
【0007】
17は電源投入用プラグ、18は電源投入用プラグ17からの交流電源を直流電源に変換する電源部、19はアルカリイオン整水器3の動作を制御する制御手段、20はアルカリイオン整水器3の操作状態を表示する操作表示部である。
【0008】
次に、以上のように構成された従来のアルカリイオン整水器3について、アルカリイオン水を生成する際の動作を説明する。利用者は、操作表示部20のモード選択ボタンを押して、アルカリイオン水生成モード、酸性イオン水生成モードまたは浄水モードを選択設定するとともに、アルカリイオン水生成モードまたは酸性イオン水生成モードにおいては、操作表示部20のpH強度設定ボタンにて所望のpH強度を選択し、水栓2を開く。
【0009】
水栓2から通水された原水は、浄水部4で原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物が取り除かれ、流量センサ5を経てカルシウム供給部6にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて、電気分解が容易な水に処理された後、電解槽7に通水される。このとき、第1電磁弁14は閉状態で、第2電磁弁15は開状態である。
【0010】
一方、電源投入用プラグ17からAC100Vが供給され、電源部18内のトランス及び制御用直流電源で電気分解に必要な直流電圧電流を発生させ、制御手段19を介して電解槽7の電極板9、10に電気分解に必要な電力が給電される。
【0011】
このとき、相対的にプラス電圧を印加する電極板を陽極、マイナス電圧を印加する電極板を陰極とすると、電解槽7内に隔膜8で仕切られた陽極室と陰極室とが形成される。
【0012】
尚、アルカリイオン水生成モード時においては、電極板10が陽極となり、電極板9が陰極となる。また酸性イオン水生成モード時においては、電極板9が陽極となり、電極板10が陰極となる。
【0013】
さて、通水後、制御手段19は、流量センサ5の信号を読み取り、流量レベルが一定量を越えると、この状態を通水中と判断する。この時、操作表示部20の生成モード選択ボタンの押下により、すでに電気分解条件が設定されているので、制御手段19は、電解槽7にて電気分解をおこなうため、電極板9、10に所定の電圧が印加されるように、動作命令の出力をおこなう。
【0014】
これにより、アルカリイオン水生成モード時においては、電極板9が陰極かつ電極板10が陽極となり、吐出管13よりアルカリイオ水ンが吐出され、酸性イオン水生成モード時においては、電極板9が陽極かつ電極板10が陰極となり、吐出管13より酸性イオン水が吐出される。
【0015】
また、浄水モード時においては、電極板9、10には電圧が印加されず、かつ第2電磁弁15を閉じることにより、排水をカットし、吐出管13より浄水が吐出される。
【0016】
洗浄運転時において、ある一定の使用回数または使用積算流量を越えた状態で流量センサ5が電解OFF流量以下を検知すると、第1電磁弁14及び第2電磁弁15は、閉の状態になり、それまで使用していた電極板9、10の逆の極性の電解電圧を一定時間印加する。
【0017】
これにより、陰極として使用されていた電極板9、10に付着したカルシウム・マグネシウム等からなるスケールを除去した後、スケールが溶出した電解槽7内の滞留水を第1電磁弁14、第2電磁弁15を一定時間開状態にすることにより、放出管16より排出する。
【0018】
もし、第2電磁弁15を廃止した場合は、水栓2を締めて止水すると、水頭差で放出管16から電解槽7内の滞留水が放出され、サイフォン現象により吐出管13より空気を吸引して通常陰極として使用されている電極板9が収められている陰極室の水位が低下し、洗浄が不十分になる。
【0019】
【発明が解決しようとする課題】
このように、従来のアルカリイオン整水器は、所望のアルカリイオン水または酸性イオン水を生成する本来機能を有し、その本来機能を長期的に維持するための洗浄機能を効率的に行うべく、止水後にサイフォン現象により電解槽内の水位が下がらないように、電磁弁等の電気的駆動弁を必要としていた。
【0020】
そのため、電磁弁等の電気的駆動弁とそれに連結される通路部およびそれを制御する制御回路部等が必要となり、アルカリイオン整水器の小型軽量化と低価格化が困難であった。そのために、シンク廻りが狭いという昨今の台所事情にマッチできず、しかも、低価格化もできず、アルカリイオン整水器の普及拡大の妨げとなるという問題点を有していた。
【0021】
そこで本発明は、電磁弁等の電気的駆動弁を必要とせず、所望のアルカリイオン水または酸性イオン水を生成する本来機能を維持するための洗浄機能を、効率的に行えるアルカリイオン整水器を提供することを目的とする。
【0022】
【課題を解決するための手段】
本発明のアルカリイオン整水器は、陽極と陰極との間を隔膜で仕切って陽極室と陰極室とを形成した電解槽を有し、アルカリイオン水を生成する前記電解槽の陰極室と排水通路とを結ぶ経路に第1絞り部を、この第1絞り部と排水管との接続部位より排水下流側に第2絞り部を、前記陰極室の吐出側と酸性水を生成する陽極室の排水側との間に設けたバイパス経路に第3絞り部をそれぞれ設けたものである。
【0023】
この構成により、電磁弁等の電気的駆動弁を必要とせず、所望のアルカリイオン水または酸性イオン水を生成する本来機能を維持するための洗浄機能を、効率的に行えるアルカリイオン整水器を実現できる。
【0024】
【発明の実施の形態】
本発明は、陽極と陰極との間を隔膜で仕切って陽極室と陰極室とを形成した電解槽を有し、アルカリイオン水を生成する前記電解槽の陰極室と排水通路とを結ぶ経路に第1絞り部を、この第1絞り部と排水管との接続部位より排水下流側に第2絞り部を、前記陰極室の吐出側と酸性水を生成する陽極室の排水側との間に設けたバイパス経路に第3絞り部をそれぞれ設けて小型軽量化を妨げていた電磁弁等を排止し、しかも十分な洗浄が行える。
【0025】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の一実施の形態におけるアルカリイオン整水器の概略構造図である。図1において、図2と同様の構成要素については同一符号を付して詳細な説明を省略する。
【0026】
図1において、1は水道水等の原水管、2は水栓、3はアルカリイオン整水器、4は浄水部、5は流量センサ、6はカルシウム供給部、7は電解槽、8は隔膜、9及び10は電極板、11は排水管、13は吐出管、16は放出管、17は電源投入用プラグ、18は電源部、19は制御手段、20は操作表示部である。
【0027】
21は電極板9を収納する電解槽7の電極室(通常は陰極室)と排水管11の間に設けられ流量調節を行う第1絞り部、22は第1絞り部21と排水管11の交差部より排水口側に設けられ流量調節を行う第2絞り部、23は電極板9を収納する電解槽7の電極室(通常は陰極室でアルカリイオン水を生成)の吐出側と電極板10を収納する電解槽7の電極室(通常は陽極室で酸性水を生成)の排水側との間に設けたバイパス経路、24はバイパス経路23に設けられ流量調節を行う第3絞り部である。
【0028】
次に動作を説明する。さて、利用者は、操作表示部20のモード選択ボタンを押して、アルカリイオン水生成モード、酸性イオン水生成モードまたは浄水モードを選択設定する。アルカリイオン水生成モードまたは酸性イオン水生成モードにおいて、操作表示部20のpH強度設定ボタンにて所望のpH強度を選択する。このとき、制御手段19は、操作表示部20から指令されたイオン水生成モード及びpH強度に応じた設定電圧と設定電流を制御値として設定する。
【0029】
次に、水栓2を開き、水栓2から通水された原水は、浄水部4で原水中の残留塩素やトリハロメタン、カビ臭、一般細菌等の不純物が取り除かれ、流量センサ5を経てカルシウム供給部6にてグリセロリン酸カルシウムや乳酸カルシウム等が溶解されて電気分解が容易な水に処理された後、電解槽7に通水される。
【0030】
一方、電源投入用プラグ17からはAC100Vが供給され、電源部18内のトランス及び制御用直流電源で電気分解に必要な直流電圧電流を発生させ、制御手段19を介して、電解槽7の電極板9、10に電気分解に必要な電力が給電される。
【0031】
このとき、相対的にプラス電圧を印加する電極板を陽極、マイナス電圧を印加する電極板を陰極とすると、電解槽7内に隔膜8で仕切られた陽極室と陰極室とが形成される。尚、アルカリイオン水生成モード時において、電極板10が陽極となり、電極板9が陰極となる。また酸性イオン水生成モード時において、電極板9が陽極となり、電極板10が陰極となる。
【0032】
まず、アルカリイオン水生成モードで通水したときの第1絞り部21、第2絞り部22、第3絞り部24の機能について説明する。本実施の形態では、第1絞り部21、第2絞り部22、第3絞り部24のそれぞれの孔径をφ1.0、φ2.0、φ1.5に設定した。
【0033】
第1絞り部21は、電極板9を収納する電解槽7の電極室(通常は陰極室)に給水される水が、排水管11に逃げないように絞られている。
【0034】
第2絞り部22は、吐出管13から吐水される水量と排水管11から吐水される水量の比率を適正にするために設けられており、本実施の形態では、その比率は4:1に設定されるように孔径が決定されている。
【0035】
さらに、第2絞り部22を、第1絞り部21と排水管11の交差部より排水口側に設けたことにより、第1絞り部21の排水側の内圧が高くなって、電極板9を収納する電解槽7の電極室に給水される水が、排水管11に逃げ難くなっている。
【0036】
第3絞り部24は、吐出管13側に流れる生成水がバイパス経路23を通じて排水管11側に逃げないように、絞られている。
【0037】
次に、洗浄運転中における第1絞り部21、第2絞り部22の機能について説明する。洗浄運転時において、ある一定の使用回数または使用積算流量を越えた状態で、流量センサ5が電解OFF流量以下を検知すると、それまで使用していた電極板9、10の逆の極性の電解電圧を一定時間印加することで、陰極として使用されていた電極板9、10に付着したカルシウム・マグネシウム等からなるスケールを除去する。
【0038】
このとき、第1絞り部21と第2絞り部22は、洗浄運転によりカルシウム・マグネシウム等からなるスケール分が溶出した電解槽7内の滞留水を放出管16を通って外部に少しずつ排出させるために、絞られている。
【0039】
少しずつ排出させないと、電解槽7内の水位が下がり電極板9または10の表面部に水が無くなり洗浄ができなくなる。
【0040】
また、止水すると水頭差により放出管16から排水されるので、サイフォン現象により吐出管13から吸引される空気をバイパス経路23を経由して排水管11に導くことにより、電解槽7内の水位が下がって電極板9または10の表面部に水が無くなり洗浄ができなくなるのを防止する。
【0041】
このように本形態によれば、電磁弁等の何等かの電気的駆動弁を必要とせず、所望のアルカリイオン水または酸性イオン水を生成する本来機能を発揮し、その本来機能を長期的に維持するための洗浄機能を効率的に行うため、止水後にサイフォン現象により電解槽内の水位低下を防止でき、かつ小型軽量で低価格のアルカリイオン整水器が得られる。
【0042】
【発明の効果】
本発明によれば、電気的駆動弁を必要とせず、小型軽量化できると共に、所望のアルカリイオン水または酸性イオン水を生成する本来機能を維持するための洗浄を、効率的に行える。
【図面の簡単な説明】
【図1】 本発明の一実施の形態におけるアルカリイオン整水器の概略構造図
【図2】 従来のアルカリイオン整水器の概略構造図
【符号の説明】
7 電解槽
8 隔膜
9、10 電極板
21 第1絞り部
22 第2絞り部
23 バイパス経路
24 第3絞り部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkali ion water conditioner that electrolyzes raw water such as tap water and produces acidic ion water used as drinking water, medical water, and lotion, antibacterial washing water, etc. is there.
[0002]
[Prior art]
In recent years, alkali ion water conditioners have become widespread as continuous electrolysis type ion generators. This alkaline ion adjuster electrolyzes tap water or the like in an electrolytic cell to generate acidic ion water on the anode side and alkaline ion water on the cathode side.
[0003]
A conventional continuous electrolysis type alkaline ion water conditioner will be described below. FIG. 2 is a schematic structural diagram of a conventional alkaline ionized water device. In FIG. 2, 1 is a raw water pipe such as tap water, 2 is a faucet that opens and closes the raw water pipe 1, and 3 is an alkali ion water conditioner connected to the raw water pipe 1 via the faucet 2.
[0004]
Among the alkali ion water conditioners 3, 4 is a water purification unit equipped with activated carbon that adsorbs residual chlorine, trihalomethane, mold odor, etc. in raw water, and a hollow fiber membrane that accurately removes general bacteria and impurities. A flow rate sensor for confirming water and instructing the control means 19 to control, 6 is a calcium supply unit for imparting calcium ions such as calcium glycerophosphate and calcium lactate to the anode chamber to increase the raw water conductivity, 7 It is an electrolytic cell that electrolyzes water that has passed through the flow sensor 5 to generate alkaline ionized water and acidic ionized water.
[0005]
Further, 8 is a diaphragm that divides the electrolytic cell 7 into two and forms an electrode chamber, 9 and 10 are electrode plates arranged in each electrode chamber formed by being divided into two by the diaphragm 8, and 11 is an electrode plate 10 side. A drain pipe for discharging water (acidic ion water when the electrode plate 10 is an anode), 12 is a throttle for adjusting the discharge water discharge flow rate ratio provided in the drain pipe 11 to efficiently generate alkaline ion water. Reference numeral 13 denotes a water discharge pipe for discharging water on the electrode plate 9 side (alkaline ion water when the electrode plate 9 is a cathode).
[0006]
14 is a first solenoid valve for discharging the staying water in the electrolytic cell 7 and the cleaning water eluted by the scale made of calcium, magnesium, etc. when cleaning the electrode plate, and blocking between the electrolytic cell 7 and the drain pipe 11. , 15 shuts off the drainage path in order to prevent the water level in the electrolytic cell 7 from being lowered by the siphon phenomenon during the cleaning operation in which the anode and the cathode are reversed after the water is stopped. A second electromagnetic valve that opens and drains when it is generated, 16 is water on the electrode plate 10 side through the drain pipe 11 (acid ionic water if the electrode plate 10 is an anode), or stagnant water or washing water in the electrolytic cell 7. It is a discharge pipe that drains water.
[0007]
Reference numeral 17 denotes a power-on plug, 18 denotes a power supply unit that converts AC power from the power-on plug 17 into DC power, 19 denotes control means for controlling the operation of the alkali ion water conditioner 3, and 20 denotes an alkali ion water conditioner. 3 is an operation display unit that displays the operation state 3.
[0008]
Next, the operation | movement at the time of producing | generating alkali ion water is demonstrated about the conventional alkali ion water conditioner 3 comprised as mentioned above. The user presses the mode selection button of the operation display unit 20 to select and set the alkali ion water generation mode, the acid ion water generation mode, or the water purification mode. In the alkali ion water generation mode or the acid ion water generation mode, the user operates A desired pH intensity is selected with the pH intensity setting button of the display unit 20 and the faucet 2 is opened.
[0009]
The raw water passed from the faucet 2 is freed of impurities such as residual chlorine, trihalomethane, musty odor, and general bacteria in the raw water by the water purification unit 4, and after passing through the flow sensor 5, calcium glycerophosphate and lactic acid are supplied by the calcium supply unit 6. After calcium or the like is dissolved and treated with water that is easily electrolyzed, water is passed through the electrolytic cell 7. At this time, the first electromagnetic valve 14 is closed and the second electromagnetic valve 15 is open.
[0010]
On the other hand, 100 V AC is supplied from the power-on plug 17, a DC voltage / current required for electrolysis is generated by the transformer in the power supply unit 18 and the control DC power supply, and the electrode plate 9 of the electrolytic cell 7 is connected via the control means 19. 10 is supplied with electric power necessary for electrolysis.
[0011]
At this time, if an electrode plate to which a positive voltage is applied relatively is an anode and an electrode plate to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by a diaphragm 8 are formed in the electrolytic cell 7.
[0012]
In the alkaline ion water generation mode, the electrode plate 10 serves as an anode and the electrode plate 9 serves as a cathode. In the acidic ion water generation mode, the electrode plate 9 serves as an anode and the electrode plate 10 serves as a cathode.
[0013]
Now, after passing water, the control means 19 will read the signal of the flow sensor 5, and will judge that this state is underwater if the flow level exceeds a fixed amount. At this time, since the electrolysis conditions have already been set by pressing the generation mode selection button of the operation display unit 20, the control means 19 performs the electrolysis in the electrolytic cell 7, so The operation command is output so that the voltage of 1 is applied.
[0014]
Thus, in the alkaline ionized water generation mode, the electrode plate 9 serves as a cathode and the electrode plate 10 serves as an anode, and alkaline ionized water is discharged from the discharge pipe 13, and in the acidic ionized water generation mode, the electrode plate 9 is The anode and the electrode plate 10 serve as a cathode, and acidic ion water is discharged from the discharge tube 13.
[0015]
Further, in the water purification mode, no voltage is applied to the electrode plates 9 and 10, and the second electromagnetic valve 15 is closed to cut the waste water and the purified water is discharged from the discharge pipe 13.
[0016]
During the cleaning operation, when the flow sensor 5 detects that the electrolytic OFF flow is less than or equal to a certain number of times of use or the usage accumulated flow, the first solenoid valve 14 and the second solenoid valve 15 are closed, An electrolytic voltage having the opposite polarity of the electrode plates 9 and 10 used so far is applied for a predetermined time.
[0017]
As a result, after removing the scale made of calcium, magnesium, etc. adhering to the electrode plates 9 and 10 used as the cathode, the first electromagnetic valve 14 and the second electromagnetic By opening the valve 15 for a certain period of time, it is discharged from the discharge pipe 16.
[0018]
If the second solenoid valve 15 is abolished, when the water faucet 2 is closed and the water is stopped, the accumulated water in the electrolytic cell 7 is discharged from the discharge pipe 16 due to a water head difference, and air is discharged from the discharge pipe 13 by siphon phenomenon. The water level of the cathode chamber in which the electrode plate 9 which is normally used as the cathode is sucked is lowered, and the cleaning becomes insufficient.
[0019]
[Problems to be solved by the invention]
As described above, the conventional alkaline ionized water device has an original function of generating desired alkaline ionized water or acidic ionized water, and efficiently performs a cleaning function for maintaining the original function for a long period of time. In order to prevent the water level in the electrolytic cell from dropping due to the siphon phenomenon after water stoppage, an electrically driven valve such as an electromagnetic valve is required.
[0020]
Therefore, an electrically driven valve such as an electromagnetic valve, a passage portion connected to the valve, a control circuit portion for controlling the passage, and the like are required, and it is difficult to reduce the size and weight of the alkaline ionized water device. For this reason, there is a problem in that it cannot be matched with the recent kitchen situation that the sink area is narrow, the price cannot be reduced, and the spread of the alkaline ionized water apparatus is hindered.
[0021]
Therefore, the present invention does not require an electrically driven valve such as a solenoid valve, and an alkaline ion water conditioner that can efficiently perform a cleaning function for maintaining the original function of generating desired alkaline ionized water or acidic ionized water. The purpose is to provide.
[0022]
[Means for Solving the Problems]
The alkaline ionized water device of the present invention has an electrolytic cell in which an anode chamber and a cathode chamber are formed by partitioning an anode and a cathode with a diaphragm, and the cathode chamber and drainage of the electrolytic cell for generating alkaline ionized water. The first throttle part is connected to the path connecting the passage, the second throttle part is disposed downstream of the drainage portion from the connection part of the first throttle part and the drain pipe, and the discharge side of the cathode chamber and the anode chamber for generating acidic water A third throttle portion is provided in each bypass path provided between the drainage side.
[0023]
This configuration eliminates the need for an electrically driven valve such as a solenoid valve, and provides an alkaline ion water conditioner that can efficiently perform a cleaning function for maintaining the original function of generating desired alkaline ionized water or acidic ionized water. realizable.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has an electrolytic cell in which an anode chamber and a cathode chamber are formed by partitioning an anode and a cathode with a diaphragm, and a path connecting the cathode chamber and the drainage passage of the electrolytic cell for generating alkaline ionized water. The first throttle part is disposed downstream of the drainage portion from the connection part between the first throttle part and the drain pipe, and the second throttle part is disposed between the discharge side of the cathode chamber and the drain side of the anode chamber that generates acidic water. The third restricting portion is provided in each of the provided bypass paths, and the solenoid valve or the like that has prevented the reduction in size and weight is removed, and sufficient cleaning can be performed.
[0025]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic structural diagram of an alkaline ionized water device according to an embodiment of the present invention. 1, the same components as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0026]
In FIG. 1, 1 is a raw water pipe such as tap water, 2 is a faucet, 3 is an alkaline ion adjuster, 4 is a water purification unit, 5 is a flow sensor, 6 is a calcium supply unit, 7 is an electrolytic cell, and 8 is a diaphragm. , 9 and 10 are electrode plates, 11 is a drain pipe, 13 is a discharge pipe, 16 is a discharge pipe, 17 is a power-on plug, 18 is a power supply section, 19 is a control means, and 20 is an operation display section.
[0027]
Reference numeral 21 denotes a first throttle part that is provided between the electrode chamber (usually the cathode chamber) of the electrolytic cell 7 that houses the electrode plate 9 and the drain pipe 11, and 22 controls the first throttle part 21 and the drain pipe 11. A second constriction section 23 is provided on the drain outlet side from the intersection to adjust the flow rate, and 23 is a discharge side and an electrode plate of an electrode chamber (usually producing alkaline ionized water in the cathode chamber) of the electrolytic cell 7 that houses the electrode plate 9 10 is a bypass passage provided between the electrode chamber of the electrolytic cell 7 (usually producing acidic water in the anode chamber) and a drain side, and 24 is a third throttle portion provided in the bypass passage 23 for adjusting the flow rate. is there.
[0028]
Next, the operation will be described. Now, the user presses the mode selection button of the operation display unit 20 to select and set the alkaline ion water generation mode, the acidic ion water generation mode, or the water purification mode. In the alkaline ion water generation mode or the acidic ion water generation mode, a desired pH intensity is selected with the pH intensity setting button of the operation display unit 20. At this time, the control means 19 sets the set voltage and the set current according to the ion water generation mode and pH intensity commanded from the operation display unit 20 as control values.
[0029]
Next, the faucet 2 is opened, and the raw water passed through the faucet 2 is freed of impurities such as residual chlorine, trihalomethane, mold odor, and general bacteria in the raw water by the water purification unit 4, and calcium is passed through the flow sensor 5. After the calcium glycerophosphate, calcium lactate, etc. are melt | dissolved in the supply part 6 and processed into the water which is easy to electrolyze, it is made to flow through the electrolytic cell 7. FIG.
[0030]
On the other hand, 100 VAC is supplied from the power-on plug 17, and a DC voltage / current required for electrolysis is generated by the transformer in the power supply unit 18 and the control DC power supply, and the electrode of the electrolytic cell 7 is connected via the control means 19. Electric power necessary for electrolysis is supplied to the plates 9 and 10.
[0031]
At this time, if an electrode plate to which a positive voltage is applied relatively is an anode and an electrode plate to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by a diaphragm 8 are formed in the electrolytic cell 7. In the alkaline ion water generation mode, the electrode plate 10 serves as an anode and the electrode plate 9 serves as a cathode. In the acidic ion water generation mode, the electrode plate 9 serves as an anode and the electrode plate 10 serves as a cathode.
[0032]
First, functions of the first throttle unit 21, the second throttle unit 22, and the third throttle unit 24 when water is passed in the alkaline ionized water generation mode will be described. In the present embodiment, the hole diameters of the first restrictor 21, the second restrictor 22, and the third restrictor 24 are set to φ1.0, φ2.0, and φ1.5.
[0033]
The first throttle portion 21 is throttled so that water supplied to the electrode chamber (usually the cathode chamber) of the electrolytic cell 7 that houses the electrode plate 9 does not escape to the drain pipe 11.
[0034]
The second restrictor 22 is provided to make the ratio of the amount of water discharged from the discharge pipe 13 and the amount of water discharged from the drain pipe 11 appropriate, and in this embodiment, the ratio is 4: 1. The hole diameter is determined to be set.
[0035]
Furthermore, by providing the second throttle portion 22 on the drain outlet side from the intersection of the first throttle portion 21 and the drain pipe 11, the internal pressure on the drain side of the first throttle portion 21 is increased, and the electrode plate 9 is The water supplied to the electrode chamber of the electrolytic cell 7 to be stored is difficult to escape to the drain pipe 11.
[0036]
The third throttle portion 24 is throttled so that the generated water flowing toward the discharge pipe 13 does not escape to the drain pipe 11 side through the bypass path 23.
[0037]
Next, functions of the first throttle unit 21 and the second throttle unit 22 during the cleaning operation will be described. When the flow rate sensor 5 detects an electrolysis OFF flow rate or less in a state where a certain number of times of use or an accumulated use flow rate has been exceeded during the cleaning operation, the electrolysis voltage having the opposite polarity of the electrode plates 9 and 10 used so far. Is applied for a certain period of time to remove the scale made of calcium, magnesium, etc. attached to the electrode plates 9, 10 used as the cathode.
[0038]
At this time, the first throttling part 21 and the second throttling part 22 discharge the accumulated water in the electrolytic cell 7 from which the scale portion made of calcium, magnesium, etc. has been eluted by the washing operation little by little through the discharge pipe 16. It is squeezed for.
[0039]
If the water is not discharged little by little, the water level in the electrolytic cell 7 will drop and water will be lost on the surface of the electrode plate 9 or 10, making it impossible to clean.
[0040]
Further, when the water is stopped, the water is drained from the discharge pipe 16 due to a water head difference. Therefore, the water level in the electrolytic cell 7 is guided by guiding the air sucked from the discharge pipe 13 by the siphon phenomenon to the drain pipe 11 via the bypass path 23. Prevents the surface of the electrode plate 9 or 10 from running out of water and being unable to be cleaned.
[0041]
Thus, according to this embodiment, it does not require any electrically driven valve such as a solenoid valve, and exhibits the original function of generating desired alkaline ionized water or acidic ionized water, and the original function for a long time. In order to efficiently perform the cleaning function for maintaining, a water level drop in the electrolytic cell can be prevented by a siphon phenomenon after water stoppage, and a small, lightweight, and low-priced alkaline ion water conditioner can be obtained.
[0042]
【The invention's effect】
According to the present invention, it is possible to reduce the size and weight without requiring an electrically driven valve, and to efficiently perform cleaning for maintaining the original function of generating desired alkaline ionized water or acidic ionized water.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of an alkaline ionized water device according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of a conventional alkaline ionized water device.
7 Electrolyzer 8 Diaphragm 9, 10 Electrode Plate 21 First Restriction Part 22 Second Restriction Part 23 Bypass Path 24 Third Restriction Part

Claims (1)

陽極と陰極との間を隔膜で仕切って陽極室と陰極室とを形成した電解槽を有し、アルカリイオン水を生成する前記電解槽の陰極室と排水通路とを結ぶ経路に第1絞り部を、この第1絞り部と排水管との接続部位より排水下流側に第2絞り部を、前記陰極室の吐出側と酸性水を生成する陽極室の排水側との間に設けたバイパス経路に第3絞り部をそれぞれ設けたアルカリイオン整水器。 An electrolytic cell having an anode chamber and a cathode chamber formed by partitioning an anode and a cathode with a diaphragm, and a first throttle part in a path connecting the cathode chamber and the drainage passage of the electrolytic cell for generating alkaline ionized water A bypass path in which a second throttle part is provided between the discharge side of the cathode chamber and the drain side of the anode chamber for generating acidic water, on the downstream side of drainage from the connection site between the first throttle part and the drain pipe. Alkaline ion water conditioner provided with a third throttle part respectively .
JP13463397A 1997-05-26 1997-05-26 Alkaline ion water conditioner Expired - Fee Related JP3915169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13463397A JP3915169B2 (en) 1997-05-26 1997-05-26 Alkaline ion water conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13463397A JP3915169B2 (en) 1997-05-26 1997-05-26 Alkaline ion water conditioner

Publications (2)

Publication Number Publication Date
JPH10323667A JPH10323667A (en) 1998-12-08
JP3915169B2 true JP3915169B2 (en) 2007-05-16

Family

ID=15132943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13463397A Expired - Fee Related JP3915169B2 (en) 1997-05-26 1997-05-26 Alkaline ion water conditioner

Country Status (1)

Country Link
JP (1) JP3915169B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121393B2 (en) * 1991-10-06 1995-12-25 龍夫 岡崎 Continuous water flow type electrolytic ion water generator
JPH06154759A (en) * 1992-11-25 1994-06-03 Matsushita Electric Works Ltd Ionic water supply device
JPH07132288A (en) * 1993-02-24 1995-05-23 Tatsuo Okazaki Continuous electrolytic water conditioning device having ph regulating function
JPH06335679A (en) * 1993-05-31 1994-12-06 Matsushita Electric Ind Co Ltd Alkaline ion water regulator
JPH07290064A (en) * 1994-04-26 1995-11-07 Nippon Intec Kk Continuous electrolytic water producer
JPH08257561A (en) * 1995-03-27 1996-10-08 Sanden Corp Electrolytic water generating device
JP2991111B2 (en) * 1996-04-23 1999-12-20 東陶機器株式会社 Non-diaphragm type water electrolyzer

Also Published As

Publication number Publication date
JPH10323667A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP4462157B2 (en) Electrolyzed water generating device and sink equipped with the same
JP3915169B2 (en) Alkaline ion water conditioner
JP4106788B2 (en) Alkaline ion water conditioner
JPH01203097A (en) Apparatus for producing electrolytic ionic water
JP3911727B2 (en) Alkaline ion water conditioner
JP3716027B2 (en) Method and apparatus for sterilization and sterilization of continuous electrolytic water generator
JP3760676B2 (en) Alkaline ion water conditioner
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
JP3906518B2 (en) Built-in alkaline water conditioner
WO2012132600A1 (en) Electrolyzed water generation device
JP2001029954A (en) Apparatus for producing electrolytic water
JP3235152B2 (en) Water creation device
JP4378803B2 (en) Alkaline ion water conditioner
JP3843518B2 (en) Built-in alkaline water conditioner
JP3915166B2 (en) Alkaline ion water conditioner
JP4474889B2 (en) Ion water conditioner
JPH06335679A (en) Alkaline ion water regulator
JP3555342B2 (en) Alkaline ion water purifier
JP4591001B2 (en) Alkaline ion water conditioner
JPH1043760A (en) Alkali ion water conditioning device
JP4379132B2 (en) Alkaline ion water conditioner
JP3461030B2 (en) Alkaline ion water purifier
JP3887883B2 (en) Alkaline ion water conditioner
JPH10309580A (en) Alkali ion water generator
JP3283938B2 (en) Stopped continuous electrolyzed water generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees