JP3913937B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3913937B2
JP3913937B2 JP26191799A JP26191799A JP3913937B2 JP 3913937 B2 JP3913937 B2 JP 3913937B2 JP 26191799 A JP26191799 A JP 26191799A JP 26191799 A JP26191799 A JP 26191799A JP 3913937 B2 JP3913937 B2 JP 3913937B2
Authority
JP
Japan
Prior art keywords
ground
conductor
resistor
semiconductor device
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26191799A
Other languages
Japanese (ja)
Other versions
JP2001085570A (en
Inventor
康 志津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26191799A priority Critical patent/JP3913937B2/en
Publication of JP2001085570A publication Critical patent/JP2001085570A/en
Application granted granted Critical
Publication of JP3913937B2 publication Critical patent/JP3913937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Landscapes

  • Waveguide Connection Structure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ミリ波やマイクロ波などの高周波信号を扱う半導体装置に関する。
【0002】
【従来の技術】
通信分野の広がりから利用する周波数範囲が拡大し、通信分野においてミリ波(30GHz)以上の超高周波帯を利用する動きが出ている。
【0003】
ここで、高周波信号を利用する従来の半導体装置について図5を参照して説明する。図5の半導体装置は、MMIC(Monolithic Microwave Integrated Circuit )チップ210およびMMICチップ210を実装する実装基板220などから構成されている。MMICチップ210の主表面上には、HEMTなどの能動素子、および、キャパシタや抵抗を含む集中定数回路や分布定数回路などで構成された電気回路(図示省略)が形成されている。これら電気回路の周囲には、複数のボンディングパッド230が設けられている。
【0004】
MMICチップ210が実装される実装基板220上には、線路導体250やボンディングパッド260が設けられ、MMICチップ210上のボンディングパッド230と実装基板220上のボンディングパッド260間は、ボンディングワイヤ240で電気的に接続されている。実装基板220上のボンディングパッド260の一部は、実装基板220に形成されたスルーホール270を介して、実装基板220裏面のほぼ全面に形成された接地電極280と電気的に接続されている。
【0005】
上記した構成の半導体装置は、たとえば、実装基板220の一部にMMICチップ210の大きさに見合った窪みを設け、その窪みの部分にMMICチップ210を実装する方法がとられ、MMICチップ210の底面は接地電極280に接続されている。
【0006】
次に、MMICチップ210の主表面に形成される電気回路の一例を図6を参照して説明する。INは入力端子、OUTは出力端子で、入力端子INと出力端子OUT間に、HEMT201などの能動デバイスやキャパシタC1、C2、整合回路を構成する分布定数線路202a、202bが接続されている。HEMT201と分布定数線路202a間には、分布定数線路202cとキャパシタC3からなるバイアス回路が接続され、HEMT201と分布定数線路202a間には分布定数線路202dやキャパシタC4からなるバイアス回路が接続されている。
【0007】
上記した構成のMMICの場合、電気素子間を接続する伝送線路には、図8に示すようなコプレーナ線路が多く使用される。図の(a)はコプレーナ線路の上面図、図の(b)(c)は、図(a)のA−A、B−Bにおける断面図で電界分布を矢印で示している。
【0008】
図中301はコプレーナ線路を構成する信号導体、302a、302bはコプレーナ線路を構成する接地メタルで、接地メタル302a、302b間は、電位を等しくするために、信号導体301を跨いでブリッジ303で接続されている。ブリッジ303は信号導体301と接触しないように形成される。
【0009】
上記したコプレーナ線路は、信号導体301の両脇に等間隔に接地メタル302a、302bが配置されている。このため、図(b)に示すように配線構造は左右対称となり、電界分布も左右対称となる。ブリッジ303の部分でも、図(c)に示すように配線構造は左右対称となり、電界分布も左右対称になっている。
【0010】
MMICにおいてコプレーナ線路を伝送線路として用いる場合、コプレーナ線路の接地メタルを利用して接地できる。このため、MMICチップの接地部分を接地する場合、実装基板に接地用の貫通孔を設けないですむという利点がある。
【0011】
【発明が解決しようとする課題】
MMICチップを実装基板に実装する従来の半導体装置は、MMICの接地部分と実装基板の接地導体とを電気的に同一電位にするために、両者の間がボンディングワイヤなどを用いて接続される。この状態を図7の断面図を参照して説明する。図7では、図8に対応する部分には同一の符号を付し、重複する説明を一部省略する。
【0012】
符号311がMMICチップを構成するMMIC基板で、MMIC基板311は、たとえば実装基板312に設けられた窪みに配置され、MMIC基板311の底面は実装基板312の裏面に設けられた接地導体316と接触している。
【0013】
MMIC311基板上には信号導体301や接地メタル302a、302bが設けられ、接地メタル302a、302bは、ボンディングワイヤ315および実装基板312上のパッド313、実装基板312に形成されたスルーホール313aなどを介して、実装基板312裏面の接地導体316と電気的に接続されている。
【0014】
上記した構成の場合、MMIC基板311が、接地メタル302a、302bや接地導体316などの導体で囲まれた形になり、擬似的な空間が形成される。そのため、擬似的な空間の共振周波数においてMMIC内の伝送線路と結合し、特性を劣化させる。
【0015】
図7(b)は、図7(a)の上面図で、コプレーナ配線を用いたMMICチップを実装基板312に実装して共振が発生した場合に、コプレーナ線路の接地メタル302a、302b部分に流れる電流分布を矢印Yで示している。この電流分布は、上記した擬似的空間を、導体に囲まれた空胴共振器とみなした場合のTE101モードの電流分布と同じである。
【0016】
ミリ波帯の場合は、MMICチップの大きさが動作周波数の波長に対して無視できなくなる。MMIC基板にGaAsを用いた場合は、比誘電率が13程度と高く共振周波数が低下する。そのため、擬似的空間の共振周波数でMMIC上の伝送線路と結合が起り、MMIC内の電気回路の動作に障害となる。
【0017】
図7(b)は、コプレーナ線路の信号導体301をMMIC311の中心線上に配置した場合を示している。しかし、擬似的空間の共振周波数における伝送線路との結合は、信号導体の位置に関係なく発生する。
【0018】
本発明は、上記した欠点を解決し、不要な共振を抑え動作が安定な半導体装置を提供することを目的としている。
【0019】
【課題を解決するための手段】
本発明は、信号導体およびこの両側に位置する接地メタルで構成されるコプレーナ線路によって、伝送線路の少なくとも一部が形成されているMMICチップを有する半導体装置において、前記接地メタルが複数に分割され、かつ、分割された前記接地メタル間が導体および抵抗体で接続されていることを特徴としている。
【0020】
【発明の実施の形態】
本発明の実施形態について図1を参照して説明する。図の(a)は、MMICチップを実装基板上にワイヤボンディング実装した場合の上面図、図の(b)は、図(a)の点線で囲んだ円Rの部分を拡大した拡大図、図(c)は、図(a)のA−Aにおける断面図である。
【0021】
符号12は実装基板で、たとえば、実装基板12の中央に窪み12aが設けられ、その窪み12aの部分にMMICチップ11が配置されている。実装基板12上には、MMICチップ11を囲んで複数のパッド13が配置され、左右の両端部分に伝送線路14が設けられている。
【0022】
MMICチップ11中央部分の横方向にコプレーナ線路を構成する信号線1aが設けられ、信号線1aが延長するその一方の側に、信号線1aの延長方向に分割された接地メタル2a1〜2a3が設けられ、信号線1aの他方の側にも、信号線1aの延長方向に分割された接地メタル2b1〜2b3が設けられている。分割された接地メタル2a1〜2a3、2b1〜2b3のうち、信号線1aの延長方向に隣接するどうしは、それぞれ導体のブリッジ5および複数の抵抗体3で接続されている。なお、信号線1aを挟んで隣接する接地メタルどうし、たとえば2a1と2b1、2a2と2b2、2a3と2b3は、信号線1aを跨ぐブリッジ5によって接続されている。
【0023】
上記した構成において、それぞれの接地メタル2a1〜2a3、2b1〜2b3と実装基板12上のパッド13がボンディングワイヤ15で接続される。パッド13は、図1(c)に示すように、実装基板12を貫通するスルーホール13aを通して実装基板12裏面の接地導体16と電気的に接続されている。このとき、MMICチップ11部分には、MMICチップ11上の接地メタル2a1〜2a3、2b1〜2b3および実装基板16裏面の接地導体16などの導体で囲まれた擬似的空間が形成される。
【0024】
なお、図(b)に示すように、信号導体1aの同じ側で隣接する接地メタルどうし、たとえば2a1と2a2間は、ブリッジ5の方が抵抗体3よりも信号導体1aに近い位置で電気的に接続されている。この場合、信号導体1aの同じ側で隣接する接地メタルどうしが信号導体1aに近い位置で電気的に接続されるため、コプレーナ線路自体に伝送特性の劣化が生じない。
【0025】
ここで、MMICチップを実装基板にワイヤボンディング実装した場合の共振について、分割した接地メタルどおしを抵抗体で接続した場合と、抵抗体なしに直接接続した場合とで、三次元電磁界解析のシミュレーションを行った結果について図2を参照して説明する。
【0026】
シミュレーションは、
MMICチップの大きさ:1.2mm×1.5mm×0.2mm、
MMICチップの基板の誘電率:12.9
MMICチップの伝送線路を中央付近で開放
という条件で行った。
【0027】
抵抗体ありの場合は、隣接する接地メタル間どうしを抵抗体によって3個所で接続し、抵抗体なしの場合は、抵抗体の抵抗値を0として比較した。
【0028】
図2は、縦軸が挿入損失(S21)(dB)、横軸が周波数(GHz)で、特性Pが抵抗なしの場合で、特性Qが抵抗(抵抗値20Ω)ありの場合である。図から分かるように、抵抗なしの場合(P)は、共振周波数(36.2GHz)でアイソレーションが劣化している。抵抗ありの場合(Q)は、共振周波数におけるアイソレーションの極大値が減少している。
【0029】
したがって、分割した接地メタル間を抵抗体で接続すれば、共振時に接地メタルに流れる電流を抵抗体で減衰できる。そのため、MMICにコプレーナ線路を用いても、不要な共振による特性の劣化が防止される。また、分割した接地メタルどうしをつなぐブリッジを信号導体に近接させているため、接地メタル間が抵抗体で接続されても伝送特性の劣化は防止される。
【0030】
本発明の他の実施形態について図3を参照して説明する。図3では、図1に対応する部分には同一の符号を付し、重複する説明は一部省略する。
【0031】
この実施形態は、コプレーナ線路の信号導体を一部で分岐し、分岐信号導体を設けた場合で、図3(a)は、その分岐部分を拡大して示した上面図、図3(b)は、図(a)のB−Bにおける断面図である。
【0032】
コプレーナ線路を構成する信号線路1aの一部に、信号線路1aから分岐する分岐信号線1bが設けられている。信号線路1aの一方の側に接地メタル2aが設けられ、分岐信号線1bは、たとえば信号線路1aの他方の側に位置し分割された接地メタル2b1と2b2間に伸びている。分割された接地メタル2b1と2b2間は信号線路1aに近い位置がブリッジ5で接続され、ブリッジ5よりも離れた位置に抵抗体3が接続されている。この場合、図(b)に示すように、分岐信号線1bと抵抗体3が交差する部分は、分岐信号線1bの一部が抵抗体3の上方を跨ぐブリッジ状線路4に形成されている。
【0033】
なお、コプレーナ線路を構成する接地メタル間を抵抗体で接続する場合、隣接する接地メタル間の中央と抵抗体の中心とが一致するすれば、左右対称の構造となる。このとき、抵抗体に電流が流れないため、抵抗体を接続したことによる伝送損失は生じない。
【0034】
上記した構成によれば、不要な共振を防止するための抵抗体を含むT分岐部を設けても、T分岐自体に伝送損失を生じないように構成できる。
【0035】
本発明の他の実施形態について図4を参照して説明する。図の(a)はMMICチップ上に形成される回路構成、図(b)は図(a)の回路構成をMMICにレイアウトした際の信号導体や接地メタル、抵抗体などの配置図、図(c)は、図(b)の一部を拡大した拡大図である。
【0036】
図(a)において、INが入力端子、OUTが出力端子で、入力端子INと出力端子OUT間に、入力端子INの側から順に、整合回路41、FET42、整合回路43、整合回路44、FET45、整合回路46が接続されている。
【0037】
2つのFET42、45にはそれぞれ、スタブLやキャパシタCなどで構成されたバイアス回路が2個づつ設けられている。
【0038】
図(b)は、図(a)の回路構成の一部、たとえば、コプレーナ線路を構成する信号導体101、および、信号導体101の一方の側に分割して配置された接地メタル104a1、104a2、104a3、信号導体101の他方の側に分割して配置された接地メタル104b1、104b2、104b3、隣接する接地メタル間を接続する抵抗体105、隣接する接地メタル間を接続する抵抗を装荷しないブリッジ106、信号導体101から分岐し、抵抗105と交差する部分がブリッジ状に形成されたスタブLなどの配置を示している。
【0039】
上記したMMICチップは全体が矩形状に形成され、一方、たとえば図の左右方向の長さlが、図の上下方向の長さsよりも長くなっている。なお、矩形状の点線Sで囲った部分はスタブL部分のレイアウトを示している。
【0040】
図4(c)は、図4(b)における円Rで囲まれた信号導体の分岐部分を拡大した図で、バイアス回路を構成するスタブLの少なくとも一部がMMICチップの短辺sに平行にレイアウトされている。
【0041】
上記のスタブLをコプレーナ線路で構成する場合、接地メタル間を接続するブリッジの一部、たとえばその中央に抵抗体を装荷すれば、不要な共振を減衰させる抵抗体をコプレーナ線路内に設けることができる。
【0042】
上記の実施形態では、接地メタル間を抵抗体で接続しているが、この場合、接地メタル間を、一部が抵抗体で一部が導体で形成された抵抗片を用いて接続することもできる。
【0043】
また、上記の実施形態では、接地メタルを分割する場合、接地メタルを信号導体の延長方向で分割している。しかし、接地メタルを分割する場所や方向は任意に設定することができる。また、上記の実施形態では、MMICチップをワイヤボンディング実装した場合で説明しているが、この発明は、MMICチップをバンプ実装した場合にも適用できる。
【0044】
【発明の効果】
本発明によれば、不要な共振を抑え、動作が安定な半導体装置を実現できる。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための概略の構造図である。
【図2】本発明の特性を説明するための特性図である。
【図3】本発明の他の実施形態を説明するための概略の構造図である。
【図4】本発明の他の実施形態を説明するための概略の構造図である。
【図5】従来例を説明するための概略の斜視図である。
【図6】従来例を説明するための回路構成図である。
【図7】従来例を説明するための概略の構造図である。
【図8】従来例を説明するための概略の構造図である。
【符号の説明】
3…抵抗体
5…ブリッジ
11…MMICチップ
12…実装基板
13…パッド
13a…スルーホール
14…伝送線路
15…ボンディングワイヤ
16…実装基板裏面の接地導体
1a…コプレーナ線路の信号導体
2a1〜2a3、2b1〜2b3…コプレーナ線路の接地メタル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device that handles high-frequency signals such as millimeter waves and microwaves.
[0002]
[Prior art]
The frequency range to be used has been expanded due to the spread of the communication field, and there has been a movement in the communication field to use an ultra-high frequency band of millimeter waves (30 GHz) or higher.
[0003]
Here, a conventional semiconductor device using a high-frequency signal will be described with reference to FIG. The semiconductor device of FIG. 5 includes an MMIC (Monolithic Microwave Integrated Circuit) chip 210 and a mounting substrate 220 on which the MMIC chip 210 is mounted. On the main surface of the MMIC chip 210, an electric circuit (not shown) formed of an active element such as a HEMT and a lumped constant circuit or a distributed constant circuit including a capacitor and a resistor is formed. Around these electric circuits, a plurality of bonding pads 230 are provided.
[0004]
A line conductor 250 and a bonding pad 260 are provided on the mounting substrate 220 on which the MMIC chip 210 is mounted. A bonding wire 240 electrically connects the bonding pad 230 on the MMIC chip 210 and the bonding pad 260 on the mounting substrate 220. Connected. A part of the bonding pad 260 on the mounting substrate 220 is electrically connected to a ground electrode 280 formed on almost the entire back surface of the mounting substrate 220 through a through hole 270 formed in the mounting substrate 220.
[0005]
In the semiconductor device having the above-described configuration, for example, a method is provided in which a recess corresponding to the size of the MMIC chip 210 is provided in a part of the mounting substrate 220 and the MMIC chip 210 is mounted in the recess. The bottom surface is connected to the ground electrode 280.
[0006]
Next, an example of an electric circuit formed on the main surface of the MMIC chip 210 will be described with reference to FIG. IN is an input terminal, OUT is an output terminal, and active devices such as HEMT 201, capacitors C1 and C2, and distributed constant lines 202a and 202b constituting a matching circuit are connected between the input terminal IN and the output terminal OUT. A bias circuit including a distributed constant line 202c and a capacitor C3 is connected between the HEMT 201 and the distributed constant line 202a, and a bias circuit including a distributed constant line 202d and a capacitor C4 is connected between the HEMT 201 and the distributed constant line 202a. .
[0007]
In the case of the MMIC configured as described above, a coplanar line as shown in FIG. 8 is often used as a transmission line that connects electrical elements. (A) of the figure is a top view of the coplanar line, and (b) and (c) of the figure are cross-sectional views taken along lines AA and BB in FIG.
[0008]
In the figure, 301 is a signal conductor constituting the coplanar line, 302a and 302b are ground metals constituting the coplanar line, and the ground metals 302a and 302b are connected by a bridge 303 across the signal conductor 301 in order to equalize the potential. Has been. The bridge 303 is formed so as not to contact the signal conductor 301.
[0009]
In the above-described coplanar line, ground metals 302 a and 302 b are arranged at equal intervals on both sides of the signal conductor 301. For this reason, as shown in FIG. 2B, the wiring structure is symmetric, and the electric field distribution is also symmetric. Even at the bridge 303, the wiring structure is symmetric as shown in FIG. 7C, and the electric field distribution is also symmetric.
[0010]
When a coplanar line is used as a transmission line in the MMIC, it can be grounded using a ground metal of the coplanar line. For this reason, when the grounding portion of the MMIC chip is grounded, there is an advantage that it is not necessary to provide a through hole for grounding on the mounting board.
[0011]
[Problems to be solved by the invention]
In a conventional semiconductor device in which an MMIC chip is mounted on a mounting substrate, the grounding portion of the MMIC and the grounding conductor of the mounting substrate are electrically connected to each other using a bonding wire or the like. This state will be described with reference to the sectional view of FIG. In FIG. 7, parts corresponding to those in FIG.
[0012]
Reference numeral 311 denotes an MMIC substrate constituting the MMIC chip. The MMIC substrate 311 is disposed, for example, in a recess provided on the mounting substrate 312, and the bottom surface of the MMIC substrate 311 is in contact with the ground conductor 316 provided on the back surface of the mounting substrate 312. is doing.
[0013]
The signal conductor 301 and the ground metals 302a and 302b are provided on the MMIC 311 substrate. The ground metals 302a and 302b are connected to the bonding wires 315, the pads 313 on the mounting substrate 312 and the through holes 313a formed on the mounting substrate 312. Thus, the mounting conductor 312 is electrically connected to the ground conductor 316 on the back surface.
[0014]
In the case of the above configuration, the MMIC substrate 311 is surrounded by conductors such as the ground metals 302a and 302b and the ground conductor 316, and a pseudo space is formed. Therefore, it couples with the transmission line in the MMIC at the resonance frequency of the pseudo space, and deteriorates the characteristics.
[0015]
FIG. 7 (b) is a top view of FIG. 7 (a), and when the MMIC chip using the coplanar wiring is mounted on the mounting substrate 312 and resonance occurs, it flows to the ground metal 302a, 302b portion of the coplanar line. The current distribution is indicated by an arrow Y. This current distribution is the same as the current distribution in the TE101 mode when the above-described pseudo space is regarded as a cavity resonator surrounded by a conductor.
[0016]
In the case of the millimeter wave band, the size of the MMIC chip cannot be ignored with respect to the wavelength of the operating frequency. When GaAs is used for the MMIC substrate, the relative dielectric constant is as high as about 13, and the resonance frequency is lowered. Therefore, coupling with the transmission line on the MMIC occurs at the resonance frequency in the pseudo space, which hinders the operation of the electric circuit in the MMIC.
[0017]
FIG. 7B shows a case where the signal conductor 301 of the coplanar line is arranged on the center line of the MMIC 311. However, the coupling with the transmission line at the resonance frequency in the pseudo space occurs regardless of the position of the signal conductor.
[0018]
An object of the present invention is to solve the above-described drawbacks and to provide a semiconductor device that suppresses unnecessary resonance and has a stable operation.
[0019]
[Means for Solving the Problems]
The present invention provides a semiconductor device having an MMIC chip in which at least a part of a transmission line is formed by a coplanar line composed of a signal conductor and a ground metal located on both sides of the signal conductor. In addition, the divided ground metal is connected by a conductor and a resistor.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. (A) of the figure is a top view when the MMIC chip is mounted on the mounting substrate by wire bonding, (b) of the figure is an enlarged view of an enlarged circle R surrounded by a dotted line in FIG. (C) is sectional drawing in AA of Fig. (A).
[0021]
Reference numeral 12 denotes a mounting substrate. For example, a recess 12a is provided in the center of the mounting substrate 12, and the MMIC chip 11 is disposed in the recess 12a. A plurality of pads 13 are disposed on the mounting substrate 12 so as to surround the MMIC chip 11, and transmission lines 14 are provided at both left and right end portions.
[0022]
A signal line 1a constituting a coplanar line is provided in the lateral direction of the central portion of the MMIC chip 11, and ground metals 2a1 to 2a3 divided in the extending direction of the signal line 1a are provided on one side where the signal line 1a extends. On the other side of the signal line 1a, ground metals 2b1 to 2b3 divided in the extending direction of the signal line 1a are also provided. Of the divided ground metals 2a1 to 2a3 and 2b1 to 2b3, adjacent ones in the extending direction of the signal line 1a are connected by a conductor bridge 5 and a plurality of resistors 3, respectively. In addition, the grounding metals adjacent to each other across the signal line 1a, for example, 2a1, 2b1, 2a2, 2b2, and 2a3 and 2b3 are connected by a bridge 5 straddling the signal line 1a.
[0023]
In the configuration described above, the respective ground metals 2a1 to 2a3, 2b1 to 2b3 and the pads 13 on the mounting substrate 12 are connected by the bonding wires 15. As shown in FIG. 1C, the pad 13 is electrically connected to the ground conductor 16 on the back surface of the mounting substrate 12 through a through hole 13 a penetrating the mounting substrate 12. At this time, a pseudo space surrounded by conductors such as the ground metals 2a1 to 2a3, 2b1 to 2b3 on the MMIC chip 11 and the ground conductor 16 on the back surface of the mounting substrate 16 is formed in the MMIC chip 11 portion.
[0024]
As shown in FIG. 2B, the ground metal adjacent to each other on the same side of the signal conductor 1a, for example, between 2a1 and 2a2, is electrically connected at a position where the bridge 5 is closer to the signal conductor 1a than the resistor 3. It is connected to the. In this case, the ground metal adjacent on the same side of the signal conductor 1a is electrically connected at a position close to the signal conductor 1a, so that the transmission characteristics are not deteriorated in the coplanar line itself.
[0025]
Here, regarding the resonance when the MMIC chip is wire-bonded to the mounting substrate, the three-dimensional electromagnetic field analysis is performed when the divided ground metal is connected with a resistor and when it is directly connected without a resistor. The result of the simulation will be described with reference to FIG.
[0026]
The simulation is
MMIC chip size: 1.2 mm × 1.5 mm × 0.2 mm
Dielectric constant of MMIC chip substrate: 12.9
The transmission line of the MMIC chip was performed under the condition that it was open near the center.
[0027]
When there was a resistor, adjacent ground metals were connected to each other at three points by a resistor, and when there was no resistor, the resistance value of the resistor was set to 0 for comparison.
[0028]
FIG. 2 shows a case where the vertical axis represents insertion loss (S21) (dB), the horizontal axis represents frequency (GHz), the characteristic P has no resistance, and the characteristic Q has resistance (resistance value 20Ω). As can be seen from the figure, in the case of no resistance (P), the isolation is degraded at the resonance frequency (36.2 GHz). When there is resistance (Q), the maximum value of isolation at the resonance frequency decreases.
[0029]
Therefore, if the divided ground metals are connected by a resistor, the current flowing through the ground metal during resonance can be attenuated by the resistor. Therefore, even if a coplanar line is used for the MMIC, deterioration of characteristics due to unnecessary resonance is prevented. In addition, since the bridge connecting the divided ground metals is placed close to the signal conductor, even if the ground metals are connected by a resistor, deterioration of transmission characteristics is prevented.
[0030]
Another embodiment of the present invention will be described with reference to FIG. In FIG. 3, parts corresponding to those in FIG.
[0031]
In this embodiment, the signal conductor of the coplanar line is partially branched, and a branched signal conductor is provided. FIG. 3A is an enlarged top view of the branched portion, and FIG. These are sectional drawings in BB of figure (a).
[0032]
A branch signal line 1b branched from the signal line 1a is provided in a part of the signal line 1a constituting the coplanar line. A ground metal 2a is provided on one side of the signal line 1a, and the branch signal line 1b extends, for example, between the divided ground metals 2b1 and 2b2 located on the other side of the signal line 1a. Between the divided ground metals 2b1 and 2b2, a position close to the signal line 1a is connected by a bridge 5, and a resistor 3 is connected at a position farther from the bridge 5. In this case, as shown in FIG. 2B, the portion where the branch signal line 1b and the resistor 3 intersect is formed in a bridge-like line 4 in which a part of the branch signal line 1b straddles the resistor 3 above. .
[0033]
In addition, when connecting the ground metal which comprises a coplanar track | line with a resistor, if the center between adjacent ground metals and the center of a resistor correspond, it will become a symmetrical structure. At this time, since no current flows through the resistor, transmission loss due to the connection of the resistor does not occur.
[0034]
According to the above-described configuration, even if a T branch portion including a resistor for preventing unnecessary resonance is provided, a transmission loss can be prevented from occurring in the T branch itself.
[0035]
Another embodiment of the present invention will be described with reference to FIG. (A) of the figure is a circuit configuration formed on the MMIC chip, (b) is a layout diagram of signal conductors, ground metal, resistors, etc. when the circuit configuration of FIG. c) is an enlarged view of a part of FIG.
[0036]
In FIG. 1A, IN is an input terminal, OUT is an output terminal, and between the input terminal IN and the output terminal OUT, in order from the input terminal IN side, a matching circuit 41, an FET 42, a matching circuit 43, a matching circuit 44, and an FET 45. The matching circuit 46 is connected.
[0037]
Each of the two FETs 42 and 45 is provided with two bias circuits each composed of a stub L and a capacitor C.
[0038]
FIG. 2B shows a part of the circuit configuration of FIG. 2A, for example, a signal conductor 101 constituting a coplanar line, and ground metals 104a1, 104a2, arranged on one side of the signal conductor 101, 104 a 3, ground metal 104 b 1, 104 b 2, 104 b 3 arranged separately on the other side of the signal conductor 101, a resistor 105 that connects between adjacent ground metals, and a bridge 106 that does not load a resistor that connects between adjacent ground metals The arrangement of a stub L or the like in which a portion branched from the signal conductor 101 and intersecting the resistor 105 is formed in a bridge shape is shown.
[0039]
The MMIC chip described above is formed in a rectangular shape as a whole. On the other hand, for example, the length l in the left-right direction in the drawing is longer than the length s in the vertical direction in the drawing. A portion surrounded by a rectangular dotted line S indicates a layout of the stub L portion.
[0040]
FIG. 4C is an enlarged view of the branch portion of the signal conductor surrounded by the circle R in FIG. 4B, and at least a part of the stub L constituting the bias circuit is parallel to the short side s of the MMIC chip. Is laid out.
[0041]
When the stub L is configured by a coplanar line, a resistor that attenuates unnecessary resonance can be provided in the coplanar line if a resistor is loaded on a part of the bridge connecting the ground metals, for example, at the center thereof. it can.
[0042]
In the above embodiment, the ground metals are connected by resistors, but in this case, the ground metals may be connected by using a resistor piece partly formed of a resistor and part of a conductor. it can.
[0043]
In the above embodiment, when the ground metal is divided, the ground metal is divided in the extending direction of the signal conductor. However, the location and direction for dividing the ground metal can be arbitrarily set. In the above embodiment, the case where the MMIC chip is mounted by wire bonding has been described. However, the present invention can also be applied to the case where the MMIC chip is mounted by bumps.
[0044]
【The invention's effect】
According to the present invention, it is possible to realize a semiconductor device in which unnecessary resonance is suppressed and the operation is stable.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram for explaining an embodiment of the present invention.
FIG. 2 is a characteristic diagram for explaining the characteristics of the present invention.
FIG. 3 is a schematic structural diagram for explaining another embodiment of the present invention.
FIG. 4 is a schematic structural diagram for explaining another embodiment of the present invention.
FIG. 5 is a schematic perspective view for explaining a conventional example.
FIG. 6 is a circuit configuration diagram for explaining a conventional example.
FIG. 7 is a schematic structural diagram for explaining a conventional example.
FIG. 8 is a schematic structural diagram for explaining a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Resistor 5 ... Bridge 11 ... MMIC chip 12 ... Mounting board 13 ... Pad 13a ... Through hole 14 ... Transmission line 15 ... Bonding wire 16 ... Grounding conductor 1a on the back surface of the mounting board ... Signal conductors 2a1-2a3, 2b1 on the coplanar line ~ 2b3 ... Coplanar line ground metal

Claims (6)

信号導体およびこの両側に位置する接地メタルで構成されるコプレーナ線路によって、伝送線路の少なくとも一部が形成されているMMICチップを有する半導体装置において、前記接地メタルが複数に分割され、かつ、分割された前記接地メタル間が導体および抵抗体で接続されていることを特徴とする半導体装置。  In a semiconductor device having an MMIC chip in which at least a part of a transmission line is formed by a coplanar line composed of a signal conductor and a ground metal located on both sides of the signal conductor, the ground metal is divided into a plurality of parts. A semiconductor device characterized in that the ground metal is connected by a conductor and a resistor. 信号導体およびこの両側に位置する接地メタルで構成されるコプレーナ線路によって、伝送線路の少なくとも一部が形成されているMMICチップと、前記接地メタルと電気的に接続される接地導体が設けられた実装基板とを具備した半導体装置において、前記接地メタルが複数に分割され、かつ、分割された前記接地メタル間が導体および抵抗体で接続されていることを特徴とする半導体装置。The signal conductor and a coplanar line with the ground metal positioned on the opposite sides, at least a part of the MMIC chips formed, mounting a ground conductor connected the grounded metal and electrically is provided in the transmission line A semiconductor device comprising a substrate, wherein the ground metal is divided into a plurality of parts, and the divided ground metals are connected by a conductor and a resistor. 信号導体から分岐して分割された接地メタル間を通る分岐導体が設けられ、その分割された接地メタル間で、導体の方が抵抗体よりも信号導体に近い位置で接続されている請求項1または請求項2記載の半導体装置。  2. A branch conductor is provided which passes between divided ground metals branched from the signal conductor, and the conductor is connected at a position closer to the signal conductor than the resistor between the divided ground metals. Alternatively, the semiconductor device according to claim 2. 信号導体から分岐して分割された接地メタル間を通る分岐導体が設けられ、かつ、分割された前記接地メタル間を接続する抵抗体と前記分岐導体とが交差する部分では、前記分岐導体が前記抵抗体の上方を跨いでいる請求項1または請求項2記載の半導体装置。  A branch conductor passing between the divided ground metals is provided by branching from the signal conductor, and at the portion where the resistor connecting the divided ground metals and the branch conductor intersect, the branch conductor is The semiconductor device according to claim 1, wherein the semiconductor device strides over the resistor. 実装基板に貫通孔が設けられ、コプレーナ線路の接地メタルと実装基板の接地導体とが、前記貫通孔部分に形成された導電層を介して電気的に接続されている請求項2記載の半導体装置。  3. The semiconductor device according to claim 2, wherein a through hole is provided in the mounting substrate, and the ground metal of the coplanar line and the ground conductor of the mounting substrate are electrically connected via a conductive layer formed in the through hole portion. . コプレーナ線路の接地メタルと実装基板の接地導体とがバンプによって電気的に接続されている請求項2記載の半導体装置。  3. The semiconductor device according to claim 2, wherein the ground metal of the coplanar line and the ground conductor of the mounting substrate are electrically connected by a bump.
JP26191799A 1999-09-16 1999-09-16 Semiconductor device Expired - Fee Related JP3913937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26191799A JP3913937B2 (en) 1999-09-16 1999-09-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26191799A JP3913937B2 (en) 1999-09-16 1999-09-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001085570A JP2001085570A (en) 2001-03-30
JP3913937B2 true JP3913937B2 (en) 2007-05-09

Family

ID=17368539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26191799A Expired - Fee Related JP3913937B2 (en) 1999-09-16 1999-09-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3913937B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257988A (en) * 2002-03-05 2003-09-12 Sharp Corp Transistor circuit and communication equipment
JP5328234B2 (en) * 2008-06-20 2013-10-30 新日本無線株式会社 Integrated circuit

Also Published As

Publication number Publication date
JP2001085570A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US5977631A (en) Semiconductor device including a semiconductor package with electromagnetic coupling slots
US11424196B2 (en) Matching circuit for integrated circuit die
KR20080065952A (en) Package for high frequency waves containing high frequency electronic circuit
US11417615B2 (en) Transition circuitry for integrated circuit die
US6414387B1 (en) Semiconductor device including a chip having high-frequency circuit blocks
US6972638B2 (en) Directional coupler and electronic device using the same
US5530285A (en) Low-impedance surface-mount device
JP3913937B2 (en) Semiconductor device
JP4171218B2 (en) Surface mount module
US6094114A (en) Slotline-to-slotline mounted flip chip
JP3983456B2 (en) Multilayer board module
JP2002185201A (en) Wiring board for high frequency
JPH09219422A (en) Flip chip mounting structure
TWI783489B (en) Integrated circulator systems, methods of fabricating the same and isolator circuits using the same
JPH11186458A (en) Connecting structure for transmission path for high frequency and wiring board
JP2661570B2 (en) High frequency device
JP3889210B2 (en) Butler matrix
JP3569481B2 (en) Millimeter-wave semiconductor device
JP4162819B2 (en) High frequency circuit equipment
JP3833426B2 (en) High frequency wiring board
JP3470052B2 (en) Connection structure for high frequency components
JPH01143502A (en) Microwave integrated circuit
JP3804244B2 (en) High frequency circuit equipment
JP3470053B2 (en) Connection structure for high frequency components
JP2791301B2 (en) Microwave integrated circuit and microwave circuit device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

LAPS Cancellation because of no payment of annual fees