JP3913564B2 - Superjunction semiconductor device manufacturing method - Google Patents

Superjunction semiconductor device manufacturing method Download PDF

Info

Publication number
JP3913564B2
JP3913564B2 JP2002024779A JP2002024779A JP3913564B2 JP 3913564 B2 JP3913564 B2 JP 3913564B2 JP 2002024779 A JP2002024779 A JP 2002024779A JP 2002024779 A JP2002024779 A JP 2002024779A JP 3913564 B2 JP3913564 B2 JP 3913564B2
Authority
JP
Japan
Prior art keywords
trench
epitaxial growth
epitaxial layer
semiconductor substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002024779A
Other languages
Japanese (ja)
Other versions
JP2003229569A (en
Inventor
了典 清水
大輔 岸本
勝典 上野
哲史 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Fuji Electric Holdings Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2002024779A priority Critical patent/JP3913564B2/en
Publication of JP2003229569A publication Critical patent/JP2003229569A/en
Application granted granted Critical
Publication of JP3913564B2 publication Critical patent/JP3913564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超接合半導体素子の製造方法に関し、より詳細には、MOSFET(絶縁ゲート型電界効果トランジスタ)やIGBT(絶縁ゲート型バイポーラトランジスタ)、バイポーラトランジスタ、ダイオード等に適用可能な高耐圧化と大電流容量化を両立させることのできる超接合半導体素子の製造方法に関する。
【0002】
【従来の技術】
従来の高耐圧半導体素子は、高い降伏電圧を得るために高比抵抗のドリフト領域を主電流経路に設けるため、高耐圧のものほどこの部分の電圧降下が大きくなってオン電圧が高くなるという問題があった。
【0003】
この問題に対する解決法として、ドリフト層を、不純物濃度を高めたn型とp型の領域とを交互に積層した並列pn層で構成し、オフ状態の時は空乏化して耐圧を負担するようにした構造の半導体装置が、たとえば、特公平2−54661号公報、米国特許第5216275号明細書、特開平7−7154号公報に開示されている。
【0004】
【発明が解決しようとする課題】
このような超接合構造を形成するために、エピタキシャル成長によってトレンチ構造を埋め込む方法や、プレーナ基板上においてエピタキシャル成長とイオン打ち込みを繰り返す方法が使われてきた。
【0005】
しかしながら、トレンチ構造を形成してこのトレンチ部を埋め込む方法には、2つの問題点があった。その第1の問題点は、トレンチの幅が1〜10μmで、その深さが20〜100μmであり、アスペクト比が10〜50という高いアスペクト比のトレンチ構造を形成する過程で、エッチングにより結晶欠陥や凹凸や残留応力や不純物の混入などのダメージが基板に残り、このダメージを除去するためにプラズマエッチングや犠牲酸化やアニールなどの工程が増えるほか、除去しきれないダメージが残るという問題点である。
【0006】
また、第2の問題点は、従来のエピタキシャル成長技術による場合、たとえば耐圧クラスが600VのMOSFETではアスペクト比が10〜20であるが、このようなアスペクト比の極めて深いトレンチ構造を埋め込む必要があり、成長中にトレンチの開口部がふさがってしまい、トレンチ内部に空間(ボイド)が残るという問題点である。トレンチに対するエピタキシャル成長によるこの問題を解決する指針は、これまでに与えられていなかった。
【0007】
また、エピタキシャル成長とイオン打ち込みを繰り返す形成方法では、工程数が増加するため耐圧構造部のコストが極めて高くなり、また、リソグラフィとイオン打ち込みの繰り返しによりプロセスダメージや不純物汚染が増え、結晶品質を劣化させるという問題点があった。また、この方法は、特定の位置にイオン打ち込みした不純物を熱拡散により広げる方法であるため、超接合領域における不純物分布が不均一であり、この不均一性がデバイス特性を不安定にするという問題があった。
【0008】
これらの問題を解決するためには、高アスペクト比のトレンチの奥方においても十分に速い成長速度でもってエピタキシャル成長をおこなうことができる技術を導入することが望ましい。このようなエピタキシャル成長技術については、従来以下の2つの方法がある。
【0009】
第1は、原子線または分子線を用いたエピタキシー法により、分子の直進性を使って特定の面だけに原子線または分子線を当て、選択的に成長する方法である。すなわち、トレンチの底部のみに選択的に原子線または分子線を当てエピタキシャル成長を促し、側壁には当たりにくくして側壁の成長を抑え、エピタキシャル成長中に開口部がふさがらないようにする方法である。
【0010】
第2は、異方性成長効果を利用するもので、平坦化して安定しやすく成長速度が遅い面での成長と、荒れやすく成長速度が速い面での成長との差を利用して選択成長をおこなう方法である。この異方性成長効果は液相成長(LPE:Liquid Phase Epitaxy)法で最も顕著に現れるが、気相成長(CVD:Chemical Vapor Deposition)法でも得ることができる。この場合、トレンチの側面として平坦化しやすい面、たとえば(111)面や(100)面を選び、底面に荒れやすい面、たとえば(110)面を選び、底面の成長速度を上げて、エピタキシャル成長中に開口部がふさがらないようにする。しかしながら、このような解決方法にもまだまだ改善の余地が残されているのが現状である。
【0011】
ところで、トレンチをエピタキシャル成長によって埋め込む際に、原料ガスとしてジクロロシランを用いる方法が、たとえば特開平1−214013号公報や特開平11−102870号公報に開示されている。しかし、特開平1−214013号公報に開示された方法は、ポリシリコン層に形成されたトレンチ内に単結晶シリコンを成長させる方法であるため、厳密にはエピタキシャル成長ではない。
【0012】
また、この方法は、複数のトレンチ内に成長した単結晶シリコンの結晶方位がトレンチごとに異なる可能性があるので、超接合構造を製造するには不適である。一方、特開平11−102870号公報に開示された方法は、底面がシリコンで側面が二酸化シリコンよりなるトレンチ内にシリコンをエピタキシャル成長させる方法であるため、得られる構造は超接合構造ではない。
【0013】
本発明は、上述した事情に鑑みてなされたもので、その目的とするところは、トレンチをエピタキシャル成長によって埋め込む工程で、ボイドが残らないようにトレンチを埋めることができる超接合半導体素子の製造方法を提供することにある。また他の目的は、エピタキシャル成長によってトレンチを十分に埋め込めなかった場合でも、トレンチ内のボイドを消失させることができる超接合半導体素子の製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、幅が1〜10μmで深さが20〜100μmであるトレンチを有する第1導電型の半導体基板の該トレンチ内に、原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程と、エピタキシャル成長につづいて、水素還元雰囲気にて900℃を超える温度でアニールをおこなう工程と、を含むことを特徴とする。
【0015】
また、請求項2に記載の発明は、請求項1に記載の発明において、800℃以上1000℃以下の温度でエピタキシャル成長をおこなうことを特徴とする。
【0016】
また、請求項3に記載の発明は、トレンチを有する第1導電型の半導体基板に、トレンチ開口部が半導体基板表面側からトレンチの底面に向かって徐々に狭くなるように、相対峙する両トレンチ側壁が基板表面に対して90°未満の角度θで傾斜し、かつ前記角度θとトレンチのアスペクト比ARとの間にAR<1/2×tanθの関係が成り立つように、トレンチを形成して、該トレンチ内に、原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程を含むことを特徴とする。
【0017】
また、請求項4に記載の発明は、トレンチを有する第1導電型の半導体基板に、トレンチ開口部が半導体基板表面側からトレンチの底面に向かって徐々に狭くなるように、相対峙する両トレンチ側壁が基板表面に対して90°未満の角度θで傾斜し、かつ前記角度θとトレンチのアスペクト比ARとの間にAR<1/2×tanθの関係が成り立つように、トレンチを形成して、該トレンチ内に、原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程と、エピタキシャル成長につづいて、水素還元雰囲気にて900℃を超える温度でアニールをおこなう工程と、を含むことを特徴とすることを特徴とする。
【0018】
また、請求項5に記載の発明は、請求項1〜4のいずれか一つに記載の発明において、成長した前記エピタキシャル層の表面高さが、トレンチの非開口部と同じ高さになるように、ポリシングにより除去する工程をさらに有することを特徴とする。
【0021】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。図1は、本発明方法により製造される超接合構造の断面図であり、図2〜図7は、本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。図中符号1はn型半導体基板であり、符号2はp型エピタキシャル層であり、符号3は酸化膜または窒化膜などの絶縁性マスクである。
【0022】
本発明は、耐圧領域の構造と製造方法にかかわるもので、ソース構造およびドレイン構造は任意である。したがって、IGBTやバイポーラトランジスタ、GTOサイリスタ、ダイオード等にも適用される。
【0023】
以下、図1に示した超接合構造の製造方法について、図2〜図7に基づいて説明する。まず、低抵抗のn型半導体基板1を準備する。ついで、図2に示すように、このn型半導体基板1の表面上にエピタキシャル成長のマスクとなる酸化膜または窒化膜などの絶縁性マスク3を形成する。ついで、図3に示すように、図示しないマスクを使って、絶縁性マスク3にストライプ状の窓開け部3aを形成する。ストライプの窓開け部3aと絶縁性マスク3の幅は、1〜20μm程度とする。
【0024】
ついで、図4に示すように、n型半導体基板1の、窓開け部3aに相当する領域をエッチングにより除去して所望の深さ、たとえば20〜100μm程度の深さのトレンチ開口部13を、基板表面側からトレンチの底面に向かって徐々に狭くなるように形成する。そして、絶縁性マスク3をエッチングにより除去する。ここで、相対峙する両トレンチ側壁は、基板表面(厳密には基板表面をトレンチ開口部13上へ延長した仮想面)とのなす角度θが90°未満で、かつトレンチのアスペクト比ARに対してつぎの(1)式を満たすように傾斜する。
AR<1/2×tanθ ・・・(1)
【0025】
このように、トレンチ側壁を傾斜させるためのトレンチエッチングの方法や条件としては、ドライエッチングとウエットエッチングの2種類を採用することができる。
【0026】
ドライエッチングとしては、たとえば、プラズマエッチング、RIE(Reactive Ion Etching)などの異方性をもつドライなエッチングによって酸化膜の絶縁性マスク3でマスクされていないシリコンの露出部を垂直または垂直に近い角度でエッチングする。この場合、トレンチを形成する結晶面方位が限定されないという特徴がある。
【0027】
ウエットエッチングとしては、異方性をもつウエットエッチングによってトレンチを形成することができる。この場合、トレンチを形成する結晶面方位が限定されるが、ドライエッチングよりも結晶に与えるダメージを小さくすることができるという特徴がある。
【0028】
ついで、図5に示すように、トレンチ開口部13に、CVD法によりp型のエピタキシャル層2を、トレンチ幅の1/2以上の厚さとなるように結晶成長させる。つまり、トレンチの全面にわたって同じ厚さのエピタキシャル層2が付着するように、理想的なエピタキシャル成長が進んだとすると、エピタキシャル層2の厚さがトレンチ幅の1/2になった時点でトレンチがエピタキシャル層2で埋まることとなる。このため、結晶成長をトレンチ幅の1/2以上の厚さとしている。このとき、トレンチ窓開け部3aの周囲の成長速度がトレンチ開口部13の成長速度を上回らないようにすることが望ましい。
【0029】
このような成長条件を達成するため、エピタキシャル成長の原料ガスの付着確率を低減し、またガス分子の平均自由工程を大きくして原料の反応性ガスがトレンチの奥深くまで飛来するようにすることが重要である。原料ガスの付着確率を低減させるためには、原料ガスとしてジクロロシランを用いることと、成長温度を800℃以上1000℃以下の温度に制御することが有効である。また、ガス分子の平均自由工程を大きくするためには、エピタキシャル成長時にチャンバー内の圧力を1333.22Pa以上13332.2Pa以下の圧力に制御することが有効である。
【0030】
さらにエピタキシャル成長をつづけ、図6に示すように、エピタキシャル層2が十分厚く成長して、トレンチ底部がn型半導体基板1の表面より高くなれば成長を終了する。ついで、水素還元雰囲気にて900℃よりも高い温度でアニールをおこなう。その後、エピタキシャル層2をポリシングし、その表面の高さがもとのn型半導体基板1の表面と同じになるようにする。その結果、図7に示すような超接合構造を得る。
【0031】
つぎに、前記角度θが90°未満である理由について説明する。まず、前記角度θが90°未満であれば、CVDの原料ガスの存在する気相からトレンチ側壁を見込む角度が有限の値となる。そのため、トレンチの下部と上部で側壁膜厚の差が低減し、トレンチ開口部13の上部がその付近のエピタキシャル成長によりふさがれてしまう前にトレンチを埋め込むことができるからである。
【0032】
つぎに、前記(1)式を満たす必要がある理由について図8を参照しながら説明する。トレンチ開口部13の基板表面における開口幅をW、トレンチ深さをdとすると、図8よりつぎの(2)式が成り立つ。
d=W/2×tanθ ・・・(2)
【0033】
トレンチ開口部13にトレンチ底面が存在するためには、トレンチ深さdはW/2×tanθよりも浅くなくてはならない。つまり、つぎの(3)式が成り立たなくてはならない。
d<W/2×tanθ ・・・(3)
【0034】
上記(3)式より、つぎの(4)式が導かれ、また、アスペクト比ARはd/Wであるから、前記(1)式が導かれる。
d/W<1/2×tanθ ・・・(4)
【0035】
図9に、トレンチ側壁の角度θを90°または87°として、ジクロロシランを原料ガスに用いたCVD法によりトレンチを埋め込んだ状態の断面写真の模式図を示す。図9(a)はθ=90°であり、同図(b)はθ=87°であり、両図において矢印で指し示すトレンチが同じ開口幅のトレンチである。図9より、明らかにθ=87°の方が埋め込み状態が優れていることがわかる。
【0036】
つぎに、エピタキシャル成長の原料ガスとしてジクロロシランを用いる理由について説明する。図10に、原料ガスをトリクロロシランまたはジクロロシランとして、CVD法によりトレンチを埋め込む途中の段階における断面写真の模式図を示す。図10(a)はトリクロロシランを用いたものであり、同図(b)はジクロロシランを用いたものであり、両図において矢印で指し示すトレンチが同じ開口幅のトレンチである。
【0037】
トレンチ窓開け部3aではトレンチ開口部13をふさぐような庇が成長するので、それを抑えるためにエッチング作用を並行して施しながら成長させる必要がある。そのためには、塩素を含む原料ガス、たとえばトリクロロシランまたはジクロロシランが有効である。トリクロロシランの場合には、その付着確率が0.1以上と大きいため、図10(a)に示すように、トレンチが埋まり切る前に窓開け部3aがふさがってしまう。
【0038】
それに対して、ジクロロシランでは、付着確率が0.01以下と小さいため、図10(b)に示すように、成長速度が小さいながらもトレンチ形状にほぼコンフォーマルに埋まっていく。したがって、ジクロロシランを原料ガスに用いることが有効である。図11は、原料ガスとしてジクロロシランを用いたCVD法によりトレンチが完全に埋め込まれた状態を示す断面写真の模式図である。
【0039】
つぎに、エピタキシャル成長温度が800℃以上1000℃以下の温度である理由について説明する。図12に、エピタキシャル成長温度を1100℃または900℃として、ジクロロシランを原料ガスに用いたCVD法によりトレンチを埋め込む途中の段階における断面写真の模式図を示す。図12(a)は1100℃のものであり、同図(b)は900℃のものであり、両図において矢印で指し示すトレンチが同じ開口幅のトレンチである。
【0040】
原料ガスの付着確率は、成長温度が100℃増減すると、1桁増減するため、成長温度が1100℃になるとジクロロシランの付着確率は0.1近くまで増大する。そのため、図12(a)に示すように、エピタキシャル成長の途中で窓開け部3aがふさがれてしまう。この不具合は、成長温度が1000℃を超えると発生しやすくなる。
【0041】
それに対して成長温度が900℃では、図12(b)に示すように、窓開け部3aがふさがれずに、トレンチ形状にほぼコンフォーマルに埋まっていくのがわかる。このように、成長温度は1000℃以下であればよいが、成長温度が800℃未満では、成長速度が著しく小さくなり、量産に向かない。したがって、成長温度は800℃以上1000℃以下であるのが適当である。
【0042】
つぎに、エピタキシャル成長時の圧力が1333.22Pa以上13332.2Pa以下の圧力である理由について説明する。図13に、エピタキシャル成長圧力を101324.72Paまたは5332.88Paとして、ジクロロシランを原料ガスに用いたCVD法によりトレンチを埋め込む途中の段階における断面写真の模式図を示す。図13(a)は101324.72Paのものであり、同図(b)は5332.88Paのものであり、両図において矢印で指し示すトレンチが同じ開口幅のトレンチである。
【0043】
圧力を101324.72Paから5332.88Paまで低下させると、分子の平均自由工程はそれに反比例して19倍に伸びる。したがって、圧力を下げるとアスペクト比の大きいトレンチでも分子がトレンチの奥深くまで侵入し、トレンチ形状にコンフォーマルな埋め込みがより容易となる。図13より明らかなように、低圧力の方がトレンチ内にできたボイドが小さい。
【0044】
しかし、圧力が1333.22Pa未満になると、成長速度が著しく小さくなり、量産に向かない。また、圧力が13332.2Paを超えると、後の水素還元雰囲気アニール工程をおこなっても埋めることが困難な程度に大きいボイドが残ってしまう。したがって、エピタキシャル成長時の圧力は1333.22Pa以上13332.2Pa以下であるのが適当である。
【0045】
つぎに、エピタキシャル成長につづいて、水素還元雰囲気にて900℃よりも高い温度でアニールをおこなう理由について説明する。図14に、900℃または1000℃でアニールを施したトレンチ部分の断面写真の模式図を示す。図14(a)は900℃のものであり、同図(b)は1000℃のものである。なお、アニール効果を明瞭にするため、エピタキシャル層を埋め込む前にアニールをおこなっており、図14はそのトレンチの断面を示している。
【0046】
図14において丸印で囲む部分に着目すると、アニール温度が900℃ではトレンチ上部の角や下部のコーナー部で曲率半径の増加が見られないが、アニール温度が1000℃では曲率半径が増加している。つまり、1000℃でアニールをおこなうことによって、シリコンの表面マイグレーションが大幅に起こりやすくなっていることがわかる。このような曲率半径の増加、すなわちシリコンの表面マイグレーションは、アニール温度が900℃よりも高くなると起こりやすくなる。したがって、エピタキシャル成長時に万一エピタキシャル層2内にボイドが残っても、900℃よりも高い温度でアニールをおこなうことによって、そのボイドを完全に消失させることができる。
【0047】
図15は、実施の形態にかかる超接合構造を適用したプレーナ構造の縦型MOSFETの構造を示す断面斜視図である。なお、説明を理解しやすくするために、半導体基板の表面に形成される酸化膜やソース電極などは省略してある(図16においても同じ)。上述したようにして形成されたエピタキシャル層2を有するn型半導体基板1に対し、その表面に図示しない酸化膜とポリシリコンのゲート電極層を形成し、この酸化膜とゲート電極層をマスクとしてpベース領域6とnソース領域7を拡散にて順次形成する。
【0048】
本例では、このpベース領域6が、ストライプ状になっており、エピタキシャル層2のストライプ方向と直交するように形成されている。このように直交されることで、pベース領域6が確実にエピタキシャル層2およびn型半導体基板1と接するようになるため、位置合わせの精度を高める必要がなく、製造が容易となる。
【0049】
図16は、実施の形態にかかる超接合構造を適用したトレンチ構造の縦型MOSFETの構造を示す断面斜視図である。上述したようにして形成されたエピタキシャル層2を有するn型半導体基板1に対し、pベース領域8を形成し、つづいてストライプ状の、n型ソース領域9を拡散やイオン注入などの方法で形成し、その後、このnソース領域上にエッチングによりトレンチを形成し、そのトレンチ内に酸化膜10とポリシリコンのゲート電極11を形成して、トレンチ構造の縦型MOSFETを形成する。
【0050】
図16に示す例でも図15に示す例と同じくpベース領域8のストライプ方向とエピタキシャル層2のストライプ方向が直交している。なお、図15または図16に示す例において、pベース領域6,8のストライプ方向とエピタキシャル層2のストライプ方向が、直交でなく同じ方向となっていてもよい。
【0051】
上述した実施の形態によれば、トレンチ側壁を傾斜させ、原料ガスとしてジクロロシランを用いて、800℃以上1000℃以下の温度で、かつ1333.22Pa以上13332.2Pa以下の圧力でエピタキシャル成長をおこなうため、エピタキシャル層2内にボイドが残らないように、トレンチをエピタキシャル層2で埋めることができる。また、エピタキシャル成長によってトレンチを十分に埋め込めなかった場合でも、エピタキシャル成長後に900℃よりも高い温度で水素還元雰囲気アニールをおこなうことによってトレンチ内のボイドを消失させることができる。したがって、エピタキシャル層2内にボイドのない超接合半導体素子を得ることができる。
【0052】
【発明の効果】
本発明によれば、半導体基板に設けられたトレンチをエピタキシャル成長により埋め込む際に、エピタキシャル層内にボイドが残らないように、トレンチをエピタキシャル層で埋めることができる。また、エピタキシャル成長時に万一ボイドが残っても、エピタキシャル成長後に高温水素還元雰囲気アニールをおこなうことによってトレンチ内のボイドを消失させることができる。したがって、ボイドのない超接合半導体素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる製造方法により製造される超接合構造の断面図である。
【図2】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図3】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図4】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図5】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図6】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図7】本発明の実施の形態にかかる超接合構造の製造工程を示す断面図である。
【図8】トレンチ側壁角度の限定理由を説明するためのトレンチの模式図である。
【図9】トレンチへの埋め込みエピタキシャル成長のトレンチ側壁角度依存性を調べた結果を示す断面写真の模式図である。
【図10】トレンチへの埋め込みエピタキシャル成長の原料ガス依存性を調べた結果を示す断面写真の模式図である。
【図11】原料ガスとしてジクロロシランを用いたCVD法によりトレンチが完全に埋め込まれた状態を示す断面写真の模式図である。
【図12】トレンチへの埋め込みエピタキシャル成長の温度依存性を調べた結果を示す断面写真の模式図である。
【図13】トレンチへの埋め込みエピタキシャル成長の圧力依存性を調べた結果を示す断面写真の模式図である。
【図14】高温水素還元雰囲気アニールの効果の温度依存性を調べた結果を示す断面写真の模式図である。
【図15】本発明の実施の形態にかかる超接合構造を適用したプレーナ構造の縦型MOSFETの構造を示す断面斜視図である。
【図16】本発明の実施の形態にかかる超接合構造を適用したトレンチ構造の縦型MOSFETの構造を示す断面斜視図である。
【符号の説明】
1 半導体基板
2 エピタキシャル層
13 トレンチ開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a superjunction semiconductor device, and more particularly, to a high breakdown voltage applicable to MOSFET (insulated gate field effect transistor), IGBT (insulated gate bipolar transistor), bipolar transistor, diode, and the like. The present invention relates to a method for manufacturing a superjunction semiconductor device capable of achieving both large current capacity.
[0002]
[Prior art]
The conventional high voltage semiconductor element has a high resistivity drift region in the main current path in order to obtain a high breakdown voltage. Therefore, the higher the withstand voltage, the larger the voltage drop in this part and the higher the on-voltage. was there.
[0003]
As a solution to this problem, the drift layer is composed of a parallel pn layer in which n-type and p-type regions with increased impurity concentration are alternately stacked, and is depleted in the off state to bear a breakdown voltage. A semiconductor device having such a structure is disclosed in, for example, Japanese Patent Publication No. 2-54661, US Pat. No. 5,216,275, and Japanese Patent Laid-Open No. 7-7154.
[0004]
[Problems to be solved by the invention]
In order to form such a superjunction structure, a method of filling a trench structure by epitaxial growth or a method of repeating epitaxial growth and ion implantation on a planar substrate has been used.
[0005]
However, there are two problems in the method of forming the trench structure and embedding the trench portion. The first problem is that, in the process of forming a trench structure having a high aspect ratio of 1 to 50 μm, a depth of 20 to 100 μm, and an aspect ratio of 10 to 50, crystal defects are caused by etching. In addition to damages such as unevenness, residual stress and impurities remaining on the substrate, plasma etching, sacrificial oxidation, annealing, etc. are added to remove this damage, and damage that cannot be removed remains. .
[0006]
Further, the second problem is that when the conventional epitaxial growth technique is used, for example, a MOSFET having a withstand voltage class of 600 V has an aspect ratio of 10 to 20, but it is necessary to bury a trench structure with such an extremely deep aspect ratio. The problem is that the opening of the trench is blocked during growth, leaving a space (void) inside the trench. No guidance has been given to solve this problem with epitaxial growth on trenches.
[0007]
In addition, in the formation method in which epitaxial growth and ion implantation are repeated, the number of steps increases, so the cost of the pressure-resistant structure portion becomes extremely high, and process damage and impurity contamination increase due to repetition of lithography and ion implantation, thereby deteriorating crystal quality. There was a problem. In addition, since this method is a method in which impurities implanted by ion implantation at a specific position are spread by thermal diffusion, the impurity distribution in the superjunction region is non-uniform, and this non-uniformity makes the device characteristics unstable. was there.
[0008]
In order to solve these problems, it is desirable to introduce a technique capable of performing epitaxial growth at a sufficiently high growth rate even in the depth of a high aspect ratio trench. As for such an epitaxial growth technique, there are the following two conventional methods.
[0009]
The first is a method of selectively growing by applying an atomic beam or a molecular beam only to a specific surface by using the straightness of the molecule by an epitaxy method using an atomic beam or a molecular beam. That is, this is a method in which an atomic beam or a molecular beam is selectively applied only to the bottom portion of the trench to promote epitaxial growth, and the side wall is prevented from hitting to suppress the growth, so that the opening is not blocked during the epitaxial growth.
[0010]
Second, the anisotropic growth effect is used. Selective growth is made by using the difference between the growth on the surface that is flat and stable and has a slow growth rate, and the growth on the surface that is rough and has a fast growth rate. It is a method to do. This anisotropic growth effect appears most prominently in the liquid phase epitaxy (LPE) method, but can also be obtained by a vapor phase epitaxy (CVD: Chemical Vapor Deposition) method. In this case, a surface that is easy to flatten, for example, the (111) surface or the (100) surface is selected as the side surface of the trench, and a surface that is easily roughened, for example, the (110) surface is selected as the bottom surface. Do not block the opening. However, there is still room for improvement in such a solution.
[0011]
Incidentally, a method of using dichlorosilane as a source gas when filling a trench by epitaxial growth is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 1-214013 and 11-102870. However, since the method disclosed in Japanese Patent Laid-Open No. 1-214013 is a method of growing single crystal silicon in a trench formed in a polysilicon layer, it is not strictly epitaxial growth.
[0012]
In addition, this method is not suitable for manufacturing a superjunction structure because the crystal orientation of single crystal silicon grown in a plurality of trenches may be different for each trench. On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. 11-102870 is a method in which silicon is epitaxially grown in a trench having a bottom surface made of silicon and a side surface made of silicon dioxide, and thus the resulting structure is not a superjunction structure.
[0013]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method of manufacturing a superjunction semiconductor device capable of filling a trench so that no void remains in the step of filling the trench by epitaxial growth. It is to provide. Another object is to provide a method of manufacturing a superjunction semiconductor device that can eliminate voids in a trench even when the trench cannot be sufficiently filled by epitaxial growth.
[0014]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention described in claim 1 is characterized in that a source gas is formed in the trench of the first conductivity type semiconductor substrate having a trench having a width of 1 to 10 μm and a depth of 20 to 100 μm. A step of growing a second conductivity type epitaxial layer using chlorosilane at a pressure of 1333.22 Pa to 13332.2 Pa, a step of annealing at a temperature exceeding 900 ° C. in a hydrogen reduction atmosphere following the epitaxial growth, It is characterized by including .
[0015]
The invention described in claim 2 is characterized in that, in the invention described in claim 1, epitaxial growth is performed at a temperature of 800 ° C. or higher and 1000 ° C. or lower .
[0016]
According to a third aspect of the present invention, in the first conductivity type semiconductor substrate having a trench, both trenches facing each other so that the trench opening gradually narrows from the semiconductor substrate surface side toward the bottom surface of the trench. The trench is formed so that the side wall is inclined at an angle θ of less than 90 ° with respect to the substrate surface, and the relationship of AR <1/2 × tan θ is established between the angle θ and the aspect ratio AR of the trench. In the trench, a step of growing an epitaxial layer of the second conductivity type at a pressure of 1333.22 Pa or more and 13332.2 Pa or less using dichlorosilane as a source gas is characterized.
[0017]
According to a fourth aspect of the present invention, in the first conductivity type semiconductor substrate having a trench, both trenches facing each other so that the trench opening gradually narrows from the semiconductor substrate surface side toward the bottom surface of the trench. The trench is formed so that the side wall is inclined at an angle θ of less than 90 ° with respect to the substrate surface, and the relationship of AR <1/2 × tan θ is established between the angle θ and the aspect ratio AR of the trench. In the trench, a step of growing an epitaxial layer of the second conductivity type at a pressure of 1333.22 Pa to 13332.2 Pa using dichlorosilane as a source gas, followed by epitaxial growth at 900 ° C. in a hydrogen reducing atmosphere. And a step of performing annealing at a temperature exceeding .
[0018]
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the surface height of the grown epitaxial layer is the same height as the non-opening portion of the trench. And a step of removing by polishing .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a superjunction structure manufactured by the method of the present invention, and FIGS. In the figure, reference numeral 1 denotes an n-type semiconductor substrate, reference numeral 2 denotes a p-type epitaxial layer, and reference numeral 3 denotes an insulating mask such as an oxide film or a nitride film.
[0022]
The present invention relates to the structure of the breakdown voltage region and the manufacturing method, and the source structure and the drain structure are arbitrary. Therefore, the present invention is also applied to IGBTs, bipolar transistors, GTO thyristors, diodes, and the like.
[0023]
Hereinafter, a method for manufacturing the superjunction structure shown in FIG. 1 will be described with reference to FIGS. First, a low-resistance n-type semiconductor substrate 1 is prepared. Next, as shown in FIG. 2, an insulating mask 3 such as an oxide film or a nitride film serving as an epitaxial growth mask is formed on the surface of the n-type semiconductor substrate 1. Next, as shown in FIG. 3, a striped window opening 3a is formed in the insulating mask 3 using a mask (not shown). The width of the stripe window opening 3a and the insulating mask 3 is about 1 to 20 μm.
[0024]
Next, as shown in FIG. 4, a region corresponding to the window opening 3 a of the n-type semiconductor substrate 1 is removed by etching to form a trench opening 13 having a desired depth, for example, about 20 to 100 μm. It is formed so as to become gradually narrower from the substrate surface side toward the bottom surface of the trench. Then, the insulating mask 3 is removed by etching. Here, the angle between the opposite trench sidewalls and the substrate surface (strictly speaking, a virtual surface obtained by extending the substrate surface onto the trench opening 13) is less than 90 °, and the aspect ratio AR of the trench And tilt to satisfy the following equation (1).
AR <1/2 × tan θ (1)
[0025]
As described above, two methods of dry etching and wet etching can be employed as the trench etching method and conditions for inclining the trench sidewall.
[0026]
As the dry etching, for example, an exposed portion of silicon that is not masked by the insulating mask 3 of the oxide film by dry etching having anisotropy such as plasma etching or RIE (Reactive Ion Etching) is vertical or nearly perpendicular. Etch with. In this case, the crystal plane orientation for forming the trench is not limited.
[0027]
As the wet etching, a trench can be formed by wet etching having anisotropy. In this case, although the crystal plane orientation for forming the trench is limited, there is a feature that damage to the crystal can be reduced as compared with dry etching.
[0028]
Next, as shown in FIG. 5, the p-type epitaxial layer 2 is crystal-grown in the trench opening 13 by a CVD method so as to have a thickness of ½ or more of the trench width. That is, assuming that the ideal epitaxial growth has progressed so that the epitaxial layer 2 having the same thickness adheres to the entire surface of the trench, the trench becomes the epitaxial layer 2 when the thickness of the epitaxial layer 2 becomes 1/2 of the trench width. It will be buried with. For this reason, the crystal growth is set to a thickness of ½ or more of the trench width. At this time, it is desirable that the growth rate around the trench window opening 3 a does not exceed the growth rate of the trench opening 13.
[0029]
In order to achieve such growth conditions, it is important to reduce the probability of deposition of the source gas for epitaxial growth and to increase the mean free path of gas molecules so that the reactive gas of the source can fly deep into the trench. It is. In order to reduce the adhesion probability of the source gas, it is effective to use dichlorosilane as the source gas and control the growth temperature to a temperature of 800 ° C. or higher and 1000 ° C. or lower. In order to increase the mean free path of gas molecules, it is effective to control the pressure in the chamber to 1333.32 Pa or more and 13332.2 Pa or less during epitaxial growth.
[0030]
Further, the epitaxial growth is continued. As shown in FIG. 6, when the epitaxial layer 2 grows sufficiently thick and the bottom of the trench becomes higher than the surface of the n-type semiconductor substrate 1, the growth is terminated. Next, annealing is performed at a temperature higher than 900 ° C. in a hydrogen reduction atmosphere. Thereafter, the epitaxial layer 2 is polished so that the height of the surface thereof is the same as the surface of the original n-type semiconductor substrate 1. As a result, a super junction structure as shown in FIG. 7 is obtained.
[0031]
Next, the reason why the angle θ is less than 90 ° will be described. First, if the angle θ is less than 90 °, the angle at which the trench sidewall is viewed from the gas phase in which the CVD source gas is present becomes a finite value. For this reason, the difference in sidewall film thickness between the lower and upper portions of the trench is reduced, and the trench can be buried before the upper portion of the trench opening 13 is blocked by epitaxial growth in the vicinity thereof.
[0032]
Next, the reason why the expression (1) needs to be satisfied will be described with reference to FIG. If the opening width of the trench opening 13 on the substrate surface is W and the trench depth is d, the following equation (2) is established from FIG.
d = W / 2 × tan θ (2)
[0033]
In order for the trench bottom 13 to exist in the trench opening 13, the trench depth d must be shallower than W / 2 × tan θ. In other words, the following equation (3) must hold.
d <W / 2 × tan θ (3)
[0034]
From the above equation (3), the following equation (4) is derived, and since the aspect ratio AR is d / W, the above equation (1) is derived.
d / W <1/2 × tan θ (4)
[0035]
FIG. 9 shows a schematic diagram of a cross-sectional photograph of a state in which the trench is embedded by a CVD method using dichlorosilane as a source gas with the trench sidewall angle θ being 90 ° or 87 °. 9A shows θ = 90 °, FIG. 9B shows θ = 87 °, and the trenches indicated by arrows in both figures are trenches having the same opening width. FIG. 9 clearly shows that the embedded state is better when θ = 87 °.
[0036]
Next, the reason why dichlorosilane is used as a source gas for epitaxial growth will be described. FIG. 10 is a schematic diagram of a cross-sectional photograph in the middle of filling a trench by a CVD method using a source gas as trichlorosilane or dichlorosilane. FIG. 10 (a) uses trichlorosilane, FIG. 10 (b) uses dichlorosilane, and the trenches indicated by arrows in both figures are trenches having the same opening width.
[0037]
In the trench window opening portion 3a, soot that covers the trench opening portion 13 grows, and in order to suppress this, it is necessary to grow it while performing an etching operation in parallel. For this purpose, a source gas containing chlorine, such as trichlorosilane or dichlorosilane, is effective. In the case of trichlorosilane, the adhesion probability is as high as 0.1 or more, and therefore, as shown in FIG. 10A, the window opening 3a is blocked before the trench is completely filled.
[0038]
On the other hand, with dichlorosilane, the adhesion probability is as small as 0.01 or less, and therefore, as shown in FIG. 10B, the growth rate is low but the trench shape is almost conformally buried. Therefore, it is effective to use dichlorosilane as a source gas. FIG. 11 is a schematic diagram of a cross-sectional photograph showing a state in which the trench is completely buried by a CVD method using dichlorosilane as a source gas.
[0039]
Next, the reason why the epitaxial growth temperature is 800 ° C. or higher and 1000 ° C. or lower will be described. FIG. 12 shows a schematic diagram of a cross-sectional photograph in the middle of filling a trench by a CVD method using dichlorosilane as a source gas at an epitaxial growth temperature of 1100 ° C. or 900 ° C. FIG. 12 (a) is at 1100 ° C., FIG. 12 (b) is at 900 ° C., and the trenches indicated by arrows in both figures are trenches having the same opening width.
[0040]
The deposition probability of the source gas increases or decreases by an order of magnitude when the growth temperature increases or decreases by 100 ° C., so that the probability of deposition of dichlorosilane increases to near 0.1 when the growth temperature reaches 1100 ° C. Therefore, as shown in FIG. 12A, the window opening 3a is blocked during the epitaxial growth. This defect tends to occur when the growth temperature exceeds 1000 ° C.
[0041]
On the other hand, when the growth temperature is 900 ° C., as shown in FIG. 12B, it can be seen that the window opening 3a is not blocked and is almost conformally buried in the trench shape. As described above, the growth temperature may be 1000 ° C. or less. However, if the growth temperature is less than 800 ° C., the growth rate is remarkably reduced, which is not suitable for mass production. Accordingly, it is appropriate that the growth temperature is 800 ° C. or higher and 1000 ° C. or lower.
[0042]
Next, the reason why the pressure during epitaxial growth is 1333.22 Pa or more and 13332.2 Pa or less will be described. FIG. 13 is a schematic diagram of a cross-sectional photograph in the middle of filling a trench by a CVD method using dichlorosilane as a source gas with an epitaxial growth pressure of 101324.72 Pa or 5332.88 Pa. FIG. 13 (a) is for 101324.72 Pa, FIG. 13 (b) is for 5332.88 Pa, and the trenches indicated by arrows in both figures are trenches having the same opening width.
[0043]
When the pressure is reduced from 101324.72 Pa to 5332.88 Pa, the mean free path of the molecule increases 19 times in inverse proportion. Therefore, when the pressure is lowered, even in a trench having a large aspect ratio, molecules penetrate deep into the trench, and conformal filling in the trench shape becomes easier. As apparent from FIG. 13, the void formed in the trench is smaller when the pressure is low.
[0044]
However, when the pressure is less than 1333.22 Pa, the growth rate is remarkably reduced, which is not suitable for mass production. On the other hand, if the pressure exceeds 13332.2 Pa, a void that remains so large that it is difficult to fill even if a subsequent hydrogen reduction atmosphere annealing step is performed. Therefore, it is appropriate that the pressure during the epitaxial growth is 1333.22 Pa or more and 13332.2 Pa or less.
[0045]
Next, the reason why annealing is performed at a temperature higher than 900 ° C. in a hydrogen reduction atmosphere following epitaxial growth will be described. FIG. 14 is a schematic diagram of a cross-sectional photograph of a trench portion annealed at 900 ° C. or 1000 ° C. FIG. 14 (a) is at 900 ° C., and FIG. 14 (b) is at 1000 ° C. In order to clarify the annealing effect, annealing is performed before embedding the epitaxial layer, and FIG. 14 shows a cross section of the trench.
[0046]
Focusing on the circled portion in FIG. 14, when the annealing temperature is 900 ° C., no increase in the radius of curvature is observed at the upper corner of the trench or the lower corner, but when the annealing temperature is 1000 ° C., the radius of curvature increases. Yes. In other words, it can be seen that annealing at 1000 ° C. greatly facilitates surface migration of silicon. Such an increase in the radius of curvature, that is, surface migration of silicon is likely to occur when the annealing temperature is higher than 900 ° C. Therefore, even if voids remain in the epitaxial layer 2 during epitaxial growth, the voids can be completely eliminated by annealing at a temperature higher than 900 ° C.
[0047]
FIG. 15 is a cross-sectional perspective view illustrating the structure of a planar MOSFET having a planar structure to which the superjunction structure according to the embodiment is applied. For easy understanding of the description, an oxide film and a source electrode formed on the surface of the semiconductor substrate are omitted (the same applies to FIG. 16). An oxide film and a polysilicon gate electrode layer (not shown) are formed on the surface of the n-type semiconductor substrate 1 having the epitaxial layer 2 formed as described above, and the oxide film and the gate electrode layer are used as a mask. A base region 6 and an n source region 7 are sequentially formed by diffusion.
[0048]
In this example, the p base region 6 has a stripe shape and is formed to be orthogonal to the stripe direction of the epitaxial layer 2. By being orthogonal to each other in this manner, the p base region 6 is surely in contact with the epitaxial layer 2 and the n-type semiconductor substrate 1, so that it is not necessary to increase the alignment accuracy, and the manufacturing is facilitated.
[0049]
FIG. 16 is a cross-sectional perspective view showing the structure of a trench type vertical MOSFET to which the superjunction structure according to the embodiment is applied. A p base region 8 is formed on the n-type semiconductor substrate 1 having the epitaxial layer 2 formed as described above, and then a striped n-type source region 9 is formed by a method such as diffusion or ion implantation. Thereafter, a trench is formed on the n source region by etching, and an oxide film 10 and a polysilicon gate electrode 11 are formed in the trench, thereby forming a vertical MOSFET having a trench structure.
[0050]
Also in the example shown in FIG. 16, the stripe direction of the p base region 8 and the stripe direction of the epitaxial layer 2 are orthogonal to each other as in the example shown in FIG. In the example shown in FIG. 15 or FIG. 16, the stripe direction of the p base regions 6 and 8 and the stripe direction of the epitaxial layer 2 may be the same direction instead of being orthogonal to each other.
[0051]
According to the above-described embodiment, the trench sidewall is inclined, and dichlorosilane is used as the source gas to perform epitaxial growth at a temperature of 800 ° C. or higher and 1000 ° C. or lower and at a pressure of 1333.22 Pa or higher and 13332.2 Pa or lower. The trench can be filled with the epitaxial layer 2 so that no void remains in the epitaxial layer 2. Even if the trench is not sufficiently filled by epitaxial growth, voids in the trench can be eliminated by annealing in a hydrogen reducing atmosphere at a temperature higher than 900 ° C. after epitaxial growth. Therefore, a superjunction semiconductor element having no voids in the epitaxial layer 2 can be obtained.
[0052]
【The invention's effect】
According to the present invention, when a trench provided in a semiconductor substrate is buried by epitaxial growth, the trench can be filled with the epitaxial layer so that no void remains in the epitaxial layer. Even if voids remain during the epitaxial growth, the voids in the trench can be eliminated by performing high-temperature hydrogen reduction atmosphere annealing after the epitaxial growth. Therefore, a superjunction semiconductor element free from voids can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a superjunction structure manufactured by a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of a superjunction structure according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a manufacturing process of a super junction structure according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a manufacturing process of a superjunction structure according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a manufacturing process of a superjunction structure according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a manufacturing process of a superjunction structure according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a manufacturing process of the superjunction structure according to the embodiment of the present invention.
FIG. 8 is a schematic view of a trench for explaining the reason for limiting the trench side wall angle.
FIG. 9 is a schematic view of a cross-sectional photograph showing the result of examining the trench sidewall angle dependence of buried epitaxial growth in a trench.
FIG. 10 is a schematic diagram of a cross-sectional photograph showing the result of examining the dependency of the buried epitaxial growth on the trenches on the source gas.
FIG. 11 is a schematic diagram of a cross-sectional photograph showing a state in which a trench is completely buried by a CVD method using dichlorosilane as a source gas.
FIG. 12 is a schematic diagram of a cross-sectional photograph showing the results of examining the temperature dependence of buried epitaxial growth in a trench.
FIG. 13 is a schematic diagram of a cross-sectional photograph showing the result of examining the pressure dependence of buried epitaxial growth in a trench.
FIG. 14 is a schematic diagram of a cross-sectional photograph showing the results of examining the temperature dependence of the effect of high-temperature hydrogen reducing atmosphere annealing.
FIG. 15 is a cross-sectional perspective view showing the structure of a planar MOSFET having a planar structure to which a superjunction structure according to an embodiment of the present invention is applied.
FIG. 16 is a cross-sectional perspective view showing the structure of a trench type vertical MOSFET to which the superjunction structure according to the embodiment of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Epitaxial layer 13 Trench opening

Claims (5)

幅が1〜10μmで深さが20〜100μmであるトレンチを有する第1導電型の半導体基板の該トレンチ内に、
原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程と、
エピタキシャル成長につづいて、水素還元雰囲気にて900℃を超える温度でアニールをおこなう工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In the trench of the first conductivity type semiconductor substrate having a trench having a width of 1 to 10 μm and a depth of 20 to 100 μm,
Growing a second conductivity type epitaxial layer at a pressure of 1333.22 Pa or more and 13332.2 Pa or less using dichlorosilane as a source gas;
Following epitaxial growth, annealing at a temperature exceeding 900 ° C. in a hydrogen reduction atmosphere;
Method of manufacturing a super-junction semiconductor device, which comprises a.
800℃以上1000℃以下の温度でエピタキシャル成長をおこなうことを特徴とする請求項に記載の超接合半導体素子の製造方法。Method of manufacturing a super-junction semiconductor device according to claim 1, wherein the epitaxial growth is performed at 800 ° C. or higher 1000 ° C. or lower. トレンチを有する第1導電型の半導体基板に、トレンチ開口部が半導体基板表面側からトレンチの底面に向かって徐々に狭くなるように、相対峙する両トレンチ側壁が基板表面に対して90°未満の角度θで傾斜し、かつ前記角度θとトレンチのアスペクト比ARとの間にAR<1/2×tanθの関係が成り立つように、トレンチを形成して、該トレンチ内に、
原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程を含むことを特徴とする超接合半導体素子の製造方法。
In the first conductivity type semiconductor substrate having a trench, both trench sidewalls facing each other are less than 90 ° with respect to the substrate surface so that the trench opening gradually narrows from the semiconductor substrate surface side toward the bottom surface of the trench. The trench is formed so that the relationship of AR <1/2 × tan θ is established between the angle θ and the aspect ratio AR of the trench, and the angle θ is tilted.
A method of manufacturing a superjunction semiconductor device, comprising a step of growing an epitaxial layer of a second conductivity type at a pressure of 1333.22 Pa to 13332.2 Pa using dichlorosilane as a source gas .
トレンチを有する第1導電型の半導体基板に、トレンチ開口部が半導体基板表面側からトレンチの底面に向かって徐々に狭くなるように、相対峙する両トレンチ側壁が基板表面に対して90°未満の角度θで傾斜し、かつ前記角度θとトレンチのアスペクト比ARとの間にAR<1/2×tanθの関係が成り立つように、トレンチを形成して、該トレンチ内に、
原料ガスとしてジクロロシランを用いて1333.22Pa以上13332.2Pa以下の圧力で第2導電型のエピタキシャル層を成長させる工程と、
エピタキシャル成長につづいて、水素還元雰囲気にて900℃を超える温度でアニールをおこなう工程と、
を含むことを特徴とする超接合半導体素子の製造方法。
In the first conductivity type semiconductor substrate having a trench, both trench sidewalls facing each other are less than 90 ° with respect to the substrate surface so that the trench opening gradually narrows from the semiconductor substrate surface side toward the bottom surface of the trench. The trench is formed so that the relationship of AR <1/2 × tan θ is established between the angle θ and the aspect ratio AR of the trench, and the angle θ is tilted .
Growing a second conductivity type epitaxial layer at a pressure of 1333.22 Pa or more and 13332.2 Pa or less using dichlorosilane as a source gas;
Following epitaxial growth, annealing at a temperature exceeding 900 ° C. in a hydrogen reduction atmosphere;
The manufacturing method of the super junction semiconductor element characterized by the above -mentioned.
成長した前記エピタキシャル層の表面高さが、トレンチの非開口部と同じ高さになるように、ポリシングにより除去する工程をさらに有することを特徴とする請求項1〜のいずれか一つに記載の超接合半導体素子の製造方法。Surface height of the grown the epitaxial layer, so that the same height as the non-opening portion of the trench, according to any one of claims 1-4, characterized in that it further comprises a step of removing by polishing Of manufacturing a superjunction semiconductor element.
JP2002024779A 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method Expired - Lifetime JP3913564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024779A JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024779A JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003229569A JP2003229569A (en) 2003-08-15
JP3913564B2 true JP3913564B2 (en) 2007-05-09

Family

ID=27747122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024779A Expired - Lifetime JP3913564B2 (en) 2002-01-31 2002-01-31 Superjunction semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3913564B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342660A (en) 2003-05-13 2004-12-02 Toshiba Corp Semiconductor device and its manufacturing method
JP4773716B2 (en) 2004-03-31 2011-09-14 株式会社デンソー Manufacturing method of semiconductor substrate
JP4790237B2 (en) * 2004-07-22 2011-10-12 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
EP1742249A1 (en) * 2005-07-08 2007-01-10 STMicroelectronics S.r.l. Power field effect transistor and manufacturing method thereof
JP4788519B2 (en) * 2006-08-07 2011-10-05 株式会社デンソー Manufacturing method of semiconductor substrate
US20090273102A1 (en) 2005-10-06 2009-11-05 Syouji Nogami Semiconductor Substrate and Method for Manufacturing the Same
JP5369372B2 (en) * 2005-11-28 2013-12-18 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5671777B2 (en) * 2008-04-30 2015-02-18 富士電機株式会社 Manufacturing method of semiconductor device
US20150171169A1 (en) * 2012-05-31 2015-06-18 National Institute Of Advanced Industrial Science And Technology Semiconductor device
JP6253885B2 (en) 2013-01-07 2017-12-27 ルネサスエレクトロニクス株式会社 Vertical power MOSFET
CN106505094A (en) * 2016-11-11 2017-03-15 电子科技大学 Wafer and preparation method thereof
CN106409763A (en) * 2016-11-11 2017-02-15 电子科技大学 Wafer and preparation method thereof
JP7318553B2 (en) * 2020-02-10 2023-08-01 株式会社デンソー Method for manufacturing switching element
JPWO2023286235A1 (en) * 2021-07-15 2023-01-19

Also Published As

Publication number Publication date
JP2003229569A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP4695824B2 (en) Manufacturing method of semiconductor wafer
JP4932701B2 (en) Trench type semiconductor device and manufacturing method thereof
JP6848317B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US7459365B2 (en) Method for fabricating a semiconductor component
US6495421B2 (en) Manufacture of semiconductor material and devices using that material
JP3913564B2 (en) Superjunction semiconductor device manufacturing method
WO2017043607A1 (en) Device for annealing trench of vertical silicon carbide semiconductor device, method for manufacturing vertical silicon carbide semiconductor device, and vertical silicon carbide semiconductor device
US8080846B2 (en) Semiconductor device having improved breakdown voltage and method of manufacturing the same
US7230298B2 (en) Transistor having narrow trench filled with epitaxially-grown filling material free of voids
US6974750B2 (en) Process for forming a trench power MOS device suitable for large diameter wafers
US9293549B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
KR20190013400A (en) Epitaxy source/drain regions of finfets and method forming same
JP2009141307A (en) Method of manufacturing semiconductor device
JP2018142682A (en) Silicon carbide semiconductor device and manufacturing method of the silicon carbide semiconductor device
US7391077B2 (en) Vertical type semiconductor device
US20200303539A1 (en) Transistor Having at Least One Transistor Cell with a Field Electrode
JP4783975B2 (en) MIS semiconductor device and manufacturing method thereof
JP5439768B2 (en) Manufacturing method of semiconductor device
JP2002353451A (en) Method for manufacturing super junction semiconductor element
JP4304034B2 (en) Superjunction semiconductor device manufacturing method
JP4127064B2 (en) Manufacturing method of semiconductor device
JP5055687B2 (en) Manufacturing method of semiconductor wafer
JP2004253576A (en) Method of manufacturing semiconductor device
US11348838B2 (en) Method for forming a superjunction transistor device
JP5671777B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R150 Certificate of patent or registration of utility model

Ref document number: 3913564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term