JP3912801B2 - Optical spectrum measuring device - Google Patents

Optical spectrum measuring device Download PDF

Info

Publication number
JP3912801B2
JP3912801B2 JP16584494A JP16584494A JP3912801B2 JP 3912801 B2 JP3912801 B2 JP 3912801B2 JP 16584494 A JP16584494 A JP 16584494A JP 16584494 A JP16584494 A JP 16584494A JP 3912801 B2 JP3912801 B2 JP 3912801B2
Authority
JP
Japan
Prior art keywords
light
output
photodetector
spectroscope
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16584494A
Other languages
Japanese (ja)
Other versions
JPH0815012A (en
Inventor
隆志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP16584494A priority Critical patent/JP3912801B2/en
Publication of JPH0815012A publication Critical patent/JPH0815012A/en
Application granted granted Critical
Publication of JP3912801B2 publication Critical patent/JP3912801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、光源の光スペクトル特性を測定する、光スペクトル測定装置についてのものである。
【0002】
【従来の技術】
次に、従来の光スペクトル測定装置を図5により説明する。図5の1は光源、2は分光器、3は光検出器、4は増幅回路、5はA/D変換器、6は制御部、7は表示部である。
【0003】
図5では、光源1の光1Aは分光器2に入力される。分光器2は入力光のうちの特定の波長成分だけを取り出す。光検出器3は分光器2の出射光2Aを受光し、出射光2Aの光強度に比例した電気信号に変換する。増幅回路4は光検出器3の出力をA/D変換器5の入力に適した電圧まで増幅する。A/D変換器5は増幅回路4の出力をディジタル信号に変換する。
【0004】
制御部6は分光器2を制御し、分光器2の通過波長を可変し、出射光2Aの光強度をA/D変換器5の出力より取り込む。制御部6は、分光器2の通過波長を掃引しながら繰り返し得られた波長−光強度特性を光スペクトルとして表示部7に表示させる。
【0005】
次に、分光器2の内部構成を図6により説明する。図6の21は入口スリット、22は凹面鏡、23は回折格子、24は凹面鏡、25は出口スリットである。図6はツェルニー・ターナー形分光器といわれる分散形分光器である。
【0006】
図6では、光源1から出た光1Aは、分光器2の入口スリット21に入射する。スリット21の通過光は凹面鏡22により平行光に変換され、回折格子23に入射する。回折格子23は多数の溝が形成され、前記溝に平行な軸を中心として、回転機構23Aにより任意の角度に可変する。
【0007】
前記平行光は、回折格子23により、任意の角度によって決まる特定の波長成分だけの回折光を凹面鏡24の方向に反射する。凹面鏡24は、回折光を出口スリット25上に結像させる。そして、出口スリット25の横幅の範囲内となる波長成分だけが出口スリット25を通過し、分光器2の出射光2Aとなる。
【0008】
【発明が解決しようとする課題】
次に、分光器2の波長−透過率特性を図7により説明する。図7の横軸は分光器2の通過波長であり、縦軸は分光器2の通過波長に対する透過率である。図5に示されるように、分光器2の透過率は通過波長により異なる。これは、回折格子23の反射率が波長により異なるためである。例えば、測定波長 400nmでは、透過率が10%以下に減衰してしまうので、光源1の光は測定波長 400nmで出射光2Aが10%以下に減衰するので測定光強度を補正しなければならないという問題がある。
【0009】
分光器2は図7に示された特性があるため、図5の光スペクトル測定装置は、次に示される解決手段を採用している。すなわち、制御部6に分光器2の各波長毎の透過率を予め記憶させておく。光を測定するときは、各波長毎の光強度の測定値に対し、記憶された透過率に基づいて補正した後、表示部7に表示させる。
【0010】
また、測定波長によっては、出射光2Aの光強度が著しく低減するため、増幅回路4の出力電圧がA/D変換器5の入力に適した電圧範囲内にならないという問題もある。このため、図5の制御部6は増幅回路4の増幅率を適正に制御する必要がある。
【0011】
前述の課題を解決するため、各設定波長点ごとに増幅回路4の増幅率を設定する第1の方法が考えられる。すなわち、第1の測定でA/D変換器5により通過する光強度をいったん、測定し、測定値が適切な範囲内であるかどうかを判定する。適切な範囲内でない場合には、増幅回路4の増幅率を修正する。第2の測定でA/D変換器5により通過光強度を測定する。前記手順を全測定測定波長点に対して適用する。
【0012】
第1の方法によれば、すべての設定波長点に対し、増幅回路4の増幅率を適切に設定することができるので、測定できる光強度範囲が広くなる。しかし、各波長点ごとに、回折格子23の回転角度を制動しなければならないため、測定波長帯が広くなると測定に時間がかかるという問題がある。実機では、例えば、図7の測定波長帯では約10秒要する。
【0013】
第1の方法に変わるものてして、増幅回路4の増幅率を固定する第2の方法がある。まず、測定しようとする光強度範囲をあらかじめ定めておく。次に、光強度の最大値に対して、A/D変換器5に入力される電圧が適切な範囲の上限となるような増幅回路4の増幅率を測定前に設定する。ここで、分光器2の透過率は波長により異なるため、測定波長範囲内で透過率が最大となる波長に対して増幅率が適切となるよう設定する。
【0014】
第2の方法によれば、各波長点ごとにA/D変換器5の出力が適切な範囲であるか判定をせず、測定中に増幅率を変更することがない。このため、回折格子23を一定速度で回転させて測定でき、第1の方法に比べて測定時間が短縮されるという利点がある。一方、測定できる強度範囲は、A/D変換器5の性能により制限を受けるという欠点もある。
【0015】
次に、光検出器3の特性を図8により説明する。光検出器には、一般にフォトダイオードが用いられる。図8は、フォトダイオードの入力光強度に対する出力電流の関係を示したものであり、横軸は入力光の強度、縦軸は出力電流を示す。
【0016】
図8に示されるように、入力光の強度が一定のレベル以上になると、フォトダイオードの出力電流は飽和するという特性がある。このため、図5の光スペクトル測定装置は、入力光の強度が強いと光スペクトルの光強度を測定できないという問題がある。
【0017】
また、増幅回路4の増幅率を固定とする場合は、波長により分光器2の透過率が異なるため、ある波長では問題がないが、他の波長ではフォトダイオードが飽和する。このため、同様に光スペクトルの光強度を測定できないという問題がある。
【0018】
第1の発明は、分光器の出射光を可変する光減衰手段を設け、光検出器への入射光の強度が、光検出器を飽和させない範囲となるように光減衰手段で分光器の出射光の減衰量を制御することで、測定感度を損なうとすることなく、入力光の強度が大きい場合でも正しい光スペクトルを測定できる光スペクトル測定装置を提供することを目的とする。
【0019】
第2の発明は、分光器の通過波長を変化させたときの透過率変化を補償するように光減衰手段で出射光の減衰量を制御することにより、増幅器の増幅率を固定とした場合に、正しい光スペクトルを高速で測定できる光スペクトル測定装置を提供することを目的とする。
【0020】
第1と第2の光減衰手段は、分光器の出射光の光減衰を要不要に多段階に切り替える第1の減衰手段と、第1の減衰手段に付加して分光器の不要出射光を除去する第2の減衰手段を提供することを目的とする。
【0021】
【課題を解決するための手段】
この目的を達成するため、第1の発明は、光源(1)の光(1A)を分光器(2)に入射し、分光器(2)は光(1A)の内の特定波長成分を取り出し、光検出器(3)は分光器(2)の出射光(2A)を受光して光強度に比例した電気信号を出力し、増幅回路(4)は光検出器(3)の出力を増幅し、A/D変換器(5)は増幅回路(4)の出力をディジタル信号に変換して光源の光スペクトル特性を測定する光スペクトル測定装置において、
光源(1)と分光器(2)との光路間あるいは分光器(2)と光検出器(3)との光路間に配置され、
光検出器(3)の出力電流が非飽和最大出力より大きい場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰可能に可変する第1の状態と、
光検出器(3)の出力電流が非飽和最大出力以下の場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰させずに通過させる第2の状態とに切り替えられる光減衰手段(8)と、
光検出器(3)の前記非飽和最大出力の値を記憶し、光検出器(3)の出力値を読み取り、前記記憶値と比較し、光検出器(3)の出力値が前記非飽和最大出力値以上のとき、光減衰手段(8)を前記第1の状態に切り替える制御部(6)とを備える。
【0022】
第2の発明は、
光源(1)の光(1A)を分光器(2)に入射し、分光器(2)は光(1A)の内の特定波長成分を取り出し、光検出器(3)は分光器(2)の出射光(2A)を受光して光強度に比例した電気信号を出力し、増幅回路(4)は光検出器(3)の出力を増幅し、A/D変換器(5)は増幅回路(4)の出力をディジタル信号に変換して光源の光スペクトル特性を測定する光スペクトル測定装置において、
光源(1)と分光器(2)との光路間あるいは分光器(2)と光検出器(3)との光路間に配置され、
光検出器(3)の出力電流が非飽和最大出力より大きい場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰可能に可変する第1の状態と、
光検出器(3)の出力電流が非飽和最大出力以下の場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰させずに通過させる第2の状態とに切り替えられる光減衰手段(8)と、
前記分光器(2)の波長透過率特性を記憶し、この特性により、測定しようとする強度範囲と波長範囲から、光検出器(3)の出力が前記非飽和最大出力を超える可能性がある区間を求め、この区間を測定するときだけ、前記光減衰手段(8)を前記第1の状態に切り替える制御部(6)、
とを備える。
【0023】
第3の発明は、請求項1又は2記載の発明において、光減衰手段(8)は、光源(1)の光(1A)あるいは分光器(2)の出射光(2A)の光強度を減衰する複数のNDフィルタ(81)に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)の特定波長帯域をろ過する複数の第1の帯域フィルタ(82)を重ね合わせた複数の複合フィルタ配列するとともに、
複数の第2の帯域フィルタ(82)を配列し、
光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を前記複合フィルタで減衰する第1の状態と、
光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を第2の帯域フィルタ(82)でろ過する第2の状態に切り替える。
【0025】
【作用】
次に、この発明による光スペクトル測定装置を図1により説明する。図1の8は光減衰手段であり、その他は図5と同じものである。すなわち、図1は図5に光減衰手段8を追加したものである。
【0026】
次に、図1の作用を説明する。なお、図1で図5と同じ構成部分では作用が同じであるので、説明は省略する。図1では、光減衰手段8は分光器2と光検出器3の間に配置され、分光器2の出射光2Aを減衰させる。制御部6は光減衰手段8による光減衰量を制御する。
【0027】
次に、各波長点ごとに増幅回路4の増幅率を設定する場合に、制御部6による光減衰手段8の第1の制御方法を説明する。制御部6に光検出器3の使用可能な最大出力電流を予め記憶させておく。測定の際には、まず、光強度をA/D変換器5により測定し、適切な出力電流範囲内であるかどうかを判定する。また、A/D変換器5の出力値と増幅器4の増幅率より、光検出器3の出力電流を求め、最大出力電流を超えていないかどうかを判定する。
【0028】
最大出力電流を超えている場合は、光減衰手段8で減衰するように制御部6は指令する。すでに、光減衰手段8により出射光2Aが減衰させられており、光検出器3の出力電流が最大出力電流より十分に小さい場合には、逆に光減衰手段8を、減衰しないよう制御部6は指令する。また、A/D変換器5の出力値が適切な範囲にない場合は、従来技術と同様に増幅回路4の増幅率を設定し直す。光減衰手段8の減衰量、または増幅回路4の増幅率を変更した場合は、再度A/D変換器5により光強度を測定する。この手順を全波長点に対して行う。
【0029】
前述の第1の方法によれば、光検出器3の出力電流が使用可能な最大出力電流を超える場合だけ光減衰手段8により光を減衰させるので、測定感度を損なうことなく、入力光の強度が大きい場合でも正しい光スペクトルを測定することができる。
【0030】
次に、増幅回路4の増幅率を固定とする場合の、制御部6による光減衰手段8の第2の制御方法について説明する。測定しようとする波長範囲での分光器2の透過率の変化を調べ、測定しようとする強度範囲の最大値を測定した場合に、光検出器の出力電流が最大出力電流を超える波長区間を求める。そして、この波長区間を、光検出器の出力電流が最大出力電流を超えないよう、光減衰手段8により光を減衰させる区間とする。次に、測定しようとする強度範囲の最大値に対し、A/D変換器5の入力電圧が適切な範囲の上限となるように、増幅回路4の増幅率を設定する。このとき、光を減衰させる区間の内外で別々に増幅率を設定する。
【0031】
測定の際は、先に求めた波長区間の前後で回折格子23の回転を停止させ、光減衰手段8の減衰量を変更する。すなわち、先に求めた区間を測定するときだけ光減衰手段8により光を減衰させるようにする。これに合わせて増幅率の設定を変更する。
【0032】
第2の方法では、光検出器3の出力が最大出力電流を超える可能性のある波長区間を測定するときだけ光減衰手段8により光を減衰させている。つまり、分光器2の通過波長を変化させたときの透過率変化を補償するように光減衰手段8の減衰量を制御している。このため、分光器2の損失が大きく、光検出器3の出力が最大出力電流を超えるおそれのない区間の感度を悪化させることがない。また、測定中に回折格子23の回転を停止させるのは先に求めた区間の前後だけなので、測定時間の増加は最小限に抑えられる。
【0033】
ここでは、光減衰手段8の減衰量を2段階に制御するものとして説明したが、多段階に制御することもできる。
【0034】
【実施例】
次に、光減衰手段8の構成を図2により説明する。図2の8Aは回転板、8Bは回転板8Aを回転する手段となるモータである。回転板8Aの円周上には、分光器2の出射光2Aを通過させる穴80が形成されると共に、回転板8Aの円周上に出射光2Aを減衰させる複数の光減衰板81が取り付けられる。回転板8Aとモータ8Bと光減衰板81で光減衰手段8を構成する。また、レンズL1は回転板8Aと出口スリット25間に配置され、分光器2の出射光2Aを平行光にして光減衰板81に入射する。レンズL2は回転板8Aと光検出器3間に配置され、前記平行光を集光して光検出器3に入射する。
【0035】
図2では、回転板8Aには光減衰板81が取り付けられる穴と、入射光2Aをそのまま通過させる穴があけられている。モータ8Bで回転板8Aを回転させることにより、回転板8Aにあけられた複数の穴のうちの1つが入射光2Aの光路に挿入される。モータ8Bで回転板8Aの回転角度を制御することにより、光減衰板81を光路に挿入する第1の状態と、光減衰板81を光路に挿入しない第2状態とを切り替えることができる。
【0036】
次に、光減衰手段8による光減衰量を多段階にする場合の実施例を図3により説明する。図3では、3種類の異なる減衰量をもつNDフィルタ板81A〜81Cを回転板18に取り付けている。設定する減衰量に応じてNDフィルタ板の1枚、または光を透過させる穴80を光路に挿入すれば良い。
【0037】
また、分光器2から出力される高次回折光、低次回切光などの不要光を抑圧するため、波長区間ごとに異なる特性の帯域フィルタ板を光路に挿入する場合がある。例えば 400〜1750nmの波長範囲を測定するとき、 400〜 700nmを通過する第1の帯域フィルタ板、 700〜1200nmを通過する第2の帯域フィルタ板、1200〜1750nmを通過する第3の帯域フィルタ板の3種類を測定波長に対応させて使い分けることで、高次回折光を抑圧することができる。このような場合に、前述のNDフィルタ板に帯域フィルタ板を重ね、回転板の円周上に配置して多段階に切り替えできる。
【0038】
図4は、前述の場合の実施例による回転板である。帯域フィルタ板82A・82B・82Cは互いに異なる波長帯域をろ過し、光強度を減衰するNDフィルタ板81A〜81Cに重ねて複合フィルタとし、回転板19上に配列される。また、帯域フィルタ板82A〜82Cは単独で回転板19の円周上に配列される。
【0039】
図4の回転板19をこの発明による光スペクトル測定装置で測定の際には、帯域フィルタ板82A〜82Cの内、測定波長に対応した帯域フィルタ板を選び、さらに光を減衰の有無に応じて、NDフィルタが組み合わされた複合フィルタ板と、単独の帯域フィルタ板のどちらかを出射光2Aの光路中に挿入する。
【0040】
この発明では、分光器2に回折格子を使用した場合を説明したが、ファブリペロー共振器などの干渉形の分光器でもよい。また、図1では光減衰手段8を分光器2と光検出器3の間に配置したが、光源1から光検出器3までの間光路間であれば、他の配置でもよい。また、分光器2と光減衰手段8および光検出器3の相互の接続は空間結合によるものとして説明したが、光ファイバを介して接続してもよい。
【0041】
【発明の効果】
第1の発明は、光検出器への入力光強度が、光検出器を飽和させない範囲となるように光減衰手段で光強度の減衰量を制御するので、入力光の強度が大きい場合でも正しい光スペクトルを測定できる。
【0042】
第2の発明は、分光器の通過波長を変化させたときの透過率変化を補償するように光減衰手段で入射光の減衰量を制御することにより、増幅器の増幅率を固定で使用した場合に、正しい光スペクトルを高速で測定できる。
【0043】
この発明による光減衰手段は、回転板の円周上に光強度を減衰する光減衰板を配置し、回転板を回転制御する簡易な構成となっており、分光器の不要光を除去するための帯域フィルタ板の切り替えも可能となっている。
【図面の簡単な説明】
【図1】この発明による光スペクトル測定装置の構成図である。
【図2】図1の光減衰手段8の構成図である。
【図3】第1の光減衰手段8の構成図である。
【図4】第2の光減衰手段8の構成図である。
【図5】従来の光スペクトル測定装置の構成図である。
【図6】図5の分光器2の構成図である。
【図7】図5の分光器2の波長−透過率特性を示す図である。
【図8】図5の光検出器3の光強度−出力電流特性を示す図である。
【符号の説明】
1 光源
2 分光器
3 光検出器
4 増幅回路
5 A/D変換器
6 制御部
7 表示部
8 光減衰手段
8A 回転板
8B モータ
18 回転板
19 回転板
80 穴
81 NDフィルタ
82 帯域フィルタ
[0001]
[Industrial application fields]
The present invention relates to an optical spectrum measuring apparatus for measuring optical spectrum characteristics of a light source.
[0002]
[Prior art]
Next, a conventional optical spectrum measuring apparatus will be described with reference to FIG. In FIG. 5, 1 is a light source, 2 is a spectroscope, 3 is a photodetector, 4 is an amplifier circuit, 5 is an A / D converter, 6 is a control unit, and 7 is a display unit.
[0003]
In FIG. 5, the light 1 </ b> A of the light source 1 is input to the spectrometer 2. The spectroscope 2 extracts only a specific wavelength component from the input light. The photodetector 3 receives the outgoing light 2A from the spectroscope 2 and converts it into an electrical signal proportional to the light intensity of the outgoing light 2A. The amplifier circuit 4 amplifies the output of the photodetector 3 to a voltage suitable for the input of the A / D converter 5. The A / D converter 5 converts the output of the amplifier circuit 4 into a digital signal.
[0004]
The control unit 6 controls the spectroscope 2, varies the passing wavelength of the spectroscope 2, and captures the light intensity of the emitted light 2 </ b> A from the output of the A / D converter 5. The control unit 6 causes the display unit 7 to display the wavelength-light intensity characteristic repeatedly obtained while sweeping the passing wavelength of the spectrometer 2 as an optical spectrum.
[0005]
Next, the internal configuration of the spectrometer 2 will be described with reference to FIG. In FIG. 6, 21 is an entrance slit, 22 is a concave mirror, 23 is a diffraction grating, 24 is a concave mirror, and 25 is an exit slit. FIG. 6 shows a dispersive spectrometer called a Czerny-Turner spectrometer.
[0006]
In FIG. 6, the light 1 </ b> A emitted from the light source 1 enters the entrance slit 21 of the spectrometer 2. The light passing through the slit 21 is converted into parallel light by the concave mirror 22 and enters the diffraction grating 23. The diffraction grating 23 is formed with a large number of grooves, and can be changed to an arbitrary angle by a rotation mechanism 23A around an axis parallel to the grooves.
[0007]
The parallel light reflects the diffracted light having a specific wavelength component determined by an arbitrary angle by the diffraction grating 23 in the direction of the concave mirror 24. The concave mirror 24 images the diffracted light on the exit slit 25. Then, only the wavelength component that falls within the width of the exit slit 25 passes through the exit slit 25 and becomes the output light 2 </ b> A of the spectrometer 2.
[0008]
[Problems to be solved by the invention]
Next, the wavelength-transmittance characteristics of the spectrometer 2 will be described with reference to FIG. The horizontal axis in FIG. 7 is the pass wavelength of the spectroscope 2, and the vertical axis is the transmittance with respect to the pass wavelength of the spectroscope 2. As shown in FIG. 5, the transmittance of the spectroscope 2 varies depending on the passing wavelength. This is because the reflectance of the diffraction grating 23 varies depending on the wavelength. For example, since the transmittance is attenuated to 10% or less at the measurement wavelength of 400 nm, the light from the light source 1 is attenuated to 10% or less at the measurement wavelength of 400 nm, so the measurement light intensity must be corrected. There's a problem.
[0009]
Since the spectroscope 2 has the characteristics shown in FIG. 7, the optical spectrum measuring apparatus shown in FIG. 5 employs the following solution. That is, the transmittance for each wavelength of the spectroscope 2 is stored in the control unit 6 in advance. When measuring light, the measured value of the light intensity for each wavelength is corrected based on the stored transmittance, and then displayed on the display unit 7.
[0010]
Further, depending on the measurement wavelength, the light intensity of the emitted light 2 </ b> A is remarkably reduced, so that there is a problem that the output voltage of the amplifier circuit 4 does not fall within the voltage range suitable for the input of the A / D converter 5. Therefore, the control unit 6 in FIG. 5 needs to appropriately control the amplification factor of the amplifier circuit 4.
[0011]
In order to solve the above-described problem, a first method for setting the amplification factor of the amplifier circuit 4 for each set wavelength point is conceivable. That is, the light intensity passing through the A / D converter 5 in the first measurement is once measured, and it is determined whether or not the measured value is within an appropriate range. If not within the appropriate range, the amplification factor of the amplifier circuit 4 is corrected. In the second measurement, the passing light intensity is measured by the A / D converter 5. The above procedure is applied to all measurement measurement wavelength points.
[0012]
According to the first method, the amplification factor of the amplifier circuit 4 can be set appropriately for all the set wavelength points, so that the light intensity range that can be measured is widened. However, since the rotation angle of the diffraction grating 23 has to be damped for each wavelength point, there is a problem that it takes time for measurement when the measurement wavelength band is widened. In an actual machine, for example, it takes about 10 seconds in the measurement wavelength band of FIG.
[0013]
In place of the first method, there is a second method for fixing the amplification factor of the amplifier circuit 4. First, the light intensity range to be measured is determined in advance. Next, the amplification factor of the amplifier circuit 4 is set before measurement so that the voltage input to the A / D converter 5 becomes the upper limit of an appropriate range with respect to the maximum value of the light intensity. Here, since the transmittance of the spectroscope 2 differs depending on the wavelength, the amplification factor is set to be appropriate for the wavelength at which the transmittance is maximum within the measurement wavelength range.
[0014]
According to the second method, it is not determined whether the output of the A / D converter 5 is in an appropriate range for each wavelength point, and the amplification factor is not changed during measurement. For this reason, the diffraction grating 23 can be measured by rotating it at a constant speed, and there is an advantage that the measurement time is shortened compared with the first method. On the other hand, the measurable intensity range is also limited by the performance of the A / D converter 5.
[0015]
Next, the characteristics of the photodetector 3 will be described with reference to FIG. A photodiode is generally used for the photodetector. FIG. 8 shows the relationship of the output current to the input light intensity of the photodiode. The horizontal axis represents the input light intensity and the vertical axis represents the output current.
[0016]
As shown in FIG. 8, there is a characteristic that the output current of the photodiode saturates when the intensity of the input light exceeds a certain level. For this reason, the optical spectrum measuring apparatus of FIG. 5 has a problem that the intensity of the optical spectrum cannot be measured if the intensity of the input light is strong.
[0017]
Further, when the amplification factor of the amplifier circuit 4 is fixed, there is no problem at a certain wavelength because the transmittance of the spectroscope 2 differs depending on the wavelength, but the photodiode is saturated at other wavelengths. For this reason, there is a problem that the light intensity of the optical spectrum cannot be measured similarly.
[0018]
The first invention is provided with an optical attenuating means for changing the light emitted from the spectroscope, and the optical attenuating means outputs the spectroscope so that the intensity of the incident light on the optical detector is in a range that does not saturate the optical detector. An object of the present invention is to provide an optical spectrum measuring apparatus capable of measuring a correct optical spectrum even when the intensity of input light is high without controlling the measurement sensitivity by controlling the attenuation amount of incident light.
[0019]
According to a second aspect of the present invention, when the amplification factor of the amplifier is fixed by controlling the attenuation amount of the emitted light by the light attenuation means so as to compensate for the transmittance change when the passing wavelength of the spectrometer is changed. An object of the present invention is to provide an optical spectrum measuring apparatus capable of measuring a correct optical spectrum at high speed.
[0020]
The first and second light attenuating means are a first attenuating means for switching the light attenuation of the emitted light from the spectrometer in unnecessary steps, and the unnecessary light emitted from the spectrometer is added to the first attenuating means. It aims at providing the 2nd attenuation means to remove.
[0021]
[Means for Solving the Problems]
In order to achieve this object, the first invention makes light (1A) of the light source (1) incident on the spectroscope (2), and the spectroscope (2) extracts a specific wavelength component of the light (1A). The photodetector (3) receives the output light (2A) from the spectrometer (2) and outputs an electrical signal proportional to the light intensity, and the amplifier circuit (4) amplifies the output of the photodetector (3). The A / D converter (5) converts the output of the amplifier circuit (4) into a digital signal and measures the optical spectrum characteristics of the light source .
Between the optical path between the light source (1) and the spectroscope (2) or between the optical path between the spectroscope (2) and the photodetector (3),
A first state in which the light (1A) of the light source (1) or the emitted light (2A) of the spectroscope (2) is variable to be attenuated when the output current of the photodetector (3) is greater than the maximum unsaturated output; ,
Second state where light (1A) from light source (1) or light (2A) emitted from spectroscope (2) passes without being attenuated when the output current of photodetector (3) is less than the maximum unsaturated output A light attenuating means (8) that can be switched to
The value of the non-saturated maximum output of the photodetector (3) is stored, the output value of the photodetector (3) is read, compared with the stored value, and the output value of the photodetector (3) is not saturated. A control unit (6) for switching the light attenuating means (8) to the first state when the output value is equal to or greater than the maximum output value;
[0022]
The second invention is
The light (1A) from the light source (1) is incident on the spectrometer (2), the spectrometer (2) extracts a specific wavelength component of the light (1A), and the photodetector (3) is the spectrometer (2). Output light (2A) is received and an electrical signal proportional to the light intensity is output, the amplifier circuit (4) amplifies the output of the photodetector (3), and the A / D converter (5) is an amplifier circuit In the optical spectrum measuring device that measures the optical spectral characteristics of the light source by converting the output of (4) into a digital signal,
Between the optical path between the light source (1) and the spectroscope (2) or between the optical path between the spectroscope (2) and the photodetector (3),
A first state in which the light (1A) of the light source (1) or the emitted light (2A) of the spectroscope (2) is variable to be attenuated when the output current of the photodetector (3) is greater than the maximum unsaturated output; ,
Second state where light (1A) from light source (1) or light (2A) emitted from spectroscope (2) passes without being attenuated when the output current of photodetector (3) is less than the maximum unsaturated output A light attenuating means (8) that can be switched to
The wavelength transmittance characteristic of the spectroscope (2) is stored, and this characteristic may cause the output of the photodetector (3) to exceed the unsaturated maximum output from the intensity range and wavelength range to be measured. A controller (6) for determining the section and switching the light attenuation means (8) to the first state only when measuring the section;
With.
[0023]
According to a third aspect of the present invention, the light attenuating means (8) attenuates the light intensity of the light (1A) of the light source (1) or the outgoing light (2A) of the spectroscope (2). A plurality of first band filters (82) for filtering a specific wavelength band of the light (1A) of the light source (1) or the output light (2A) of the spectroscope (2) are superimposed on the plurality of ND filters (81) And arranging multiple composite filters
Arranging a plurality of second bandpass filters (82);
A first state where the light (1A) of the light source (1) or the outgoing light (2A) of the spectroscope (2) is attenuated by the composite filter;
Switch to the second state where the light (1A) of the light source (1) or the outgoing light (2A) of the spectroscope (2) is filtered by the second bandpass filter (82).
[0025]
[Action]
Next, an optical spectrum measuring apparatus according to the present invention will be described with reference to FIG. Reference numeral 8 in FIG. 1 denotes a light attenuating means, and the others are the same as those in FIG. That is, FIG. 1 is obtained by adding a light attenuating means 8 to FIG.
[0026]
Next, the operation of FIG. 1 will be described. In FIG. 1, the same components as in FIG. In FIG. 1, the light attenuating means 8 is disposed between the spectrometer 2 and the photodetector 3 and attenuates the emitted light 2 </ b> A of the spectrometer 2. The controller 6 controls the amount of light attenuation by the light attenuation means 8.
[0027]
Next, a first control method of the light attenuating means 8 by the control unit 6 when setting the amplification factor of the amplifier circuit 4 for each wavelength point will be described. The maximum output current that can be used by the photodetector 3 is stored in the controller 6 in advance. In the measurement, first, the light intensity is measured by the A / D converter 5 to determine whether or not it is within an appropriate output current range. Further, the output current of the photodetector 3 is obtained from the output value of the A / D converter 5 and the amplification factor of the amplifier 4, and it is determined whether or not the maximum output current is exceeded.
[0028]
If the maximum output current is exceeded, the control unit 6 commands the light attenuating means 8 to attenuate. If the output light 2A has already been attenuated by the light attenuating means 8 and the output current of the photodetector 3 is sufficiently smaller than the maximum output current, conversely, the controller 6 prevents the light attenuating means 8 from being attenuated. Command. Further, when the output value of the A / D converter 5 is not in an appropriate range, the amplification factor of the amplifier circuit 4 is reset as in the conventional technique. When the attenuation amount of the light attenuating means 8 or the amplification factor of the amplifier circuit 4 is changed, the light intensity is measured again by the A / D converter 5. This procedure is performed for all wavelength points.
[0029]
According to the first method described above, the light is attenuated by the light attenuating means 8 only when the output current of the photodetector 3 exceeds the maximum usable output current. Therefore, the intensity of the input light can be obtained without impairing the measurement sensitivity. Even when is large, a correct optical spectrum can be measured.
[0030]
Next, a second control method of the light attenuating means 8 by the control unit 6 when the amplification factor of the amplifier circuit 4 is fixed will be described. When the change in transmittance of the spectroscope 2 in the wavelength range to be measured is examined, and the maximum value of the intensity range to be measured is measured, the wavelength section where the output current of the photodetector exceeds the maximum output current is obtained. . This wavelength section is a section in which light is attenuated by the light attenuating means 8 so that the output current of the photodetector does not exceed the maximum output current. Next, the amplification factor of the amplifier circuit 4 is set so that the input voltage of the A / D converter 5 becomes an upper limit of an appropriate range with respect to the maximum value of the intensity range to be measured. At this time, the amplification factor is set separately inside and outside the section in which light is attenuated.
[0031]
At the time of measurement, the rotation of the diffraction grating 23 is stopped before and after the previously obtained wavelength section, and the attenuation amount of the light attenuation means 8 is changed. That is, the light is attenuated by the light attenuating means 8 only when the previously obtained section is measured. The amplification factor setting is changed accordingly.
[0032]
In the second method, the light is attenuated by the light attenuating means 8 only when the wavelength section in which the output of the photodetector 3 may exceed the maximum output current is measured. That is, the attenuation amount of the light attenuating means 8 is controlled so as to compensate for the transmittance change when the passing wavelength of the spectrometer 2 is changed. For this reason, the loss of the spectroscope 2 is large, and the sensitivity of the section in which the output of the photodetector 3 is not likely to exceed the maximum output current is not deteriorated. Further, since the rotation of the diffraction grating 23 is stopped only before and after the previously obtained section during the measurement, an increase in the measurement time can be minimized.
[0033]
Here, the attenuation amount of the light attenuating means 8 has been described as being controlled in two stages, but it can also be controlled in multiple stages.
[0034]
【Example】
Next, the configuration of the light attenuating means 8 will be described with reference to FIG. In FIG. 2, 8A is a rotating plate, and 8B is a motor that serves as means for rotating the rotating plate 8A. A hole 80 through which the emitted light 2A of the spectroscope 2 passes is formed on the circumference of the rotating plate 8A, and a plurality of light attenuating plates 81 for attenuating the emitted light 2A are attached on the circumference of the rotating plate 8A. It is done. The rotating plate 8A, the motor 8B, and the light attenuating plate 81 constitute the light attenuating means 8. The lens L1 is disposed between the rotating plate 8A and the exit slit 25, and enters the light attenuating plate 81 with the emitted light 2A of the spectroscope 2 as parallel light. The lens L <b> 2 is disposed between the rotating plate 8 </ b> A and the photodetector 3, collects the parallel light, and enters the photodetector 3.
[0035]
In FIG. 2, the rotating plate 8A has a hole for attaching the light attenuating plate 81 and a hole for allowing the incident light 2A to pass through as it is. By rotating the rotating plate 8A by the motor 8B, one of the plurality of holes formed in the rotating plate 8A is inserted into the optical path of the incident light 2A. By controlling the rotation angle of the rotating plate 8A with the motor 8B, it is possible to switch between the first state in which the light attenuating plate 81 is inserted into the optical path and the second state in which the light attenuating plate 81 is not inserted into the optical path.
[0036]
Next, an embodiment in which the amount of light attenuation by the light attenuating means 8 is multistage will be described with reference to FIG. In FIG. 3, ND filter plates 81 </ b> A to 81 </ b> C having three different attenuation amounts are attached to the rotating plate 18. Depending on the attenuation amount to be set, one of the ND filter plates or the hole 80 for transmitting light may be inserted into the optical path.
[0037]
In addition, in order to suppress unnecessary light such as high-order diffracted light and low next-order cut-out light output from the spectroscope 2, band-pass filter plates having different characteristics for each wavelength section may be inserted in the optical path. For example, when measuring a wavelength range of 400 to 1750 nm, a first band filter plate that passes 400 to 700 nm, a second band filter plate that passes 700 to 1200 nm, and a third band filter plate that passes 1200 to 1750 nm High-order diffracted light can be suppressed by properly using these three types corresponding to the measurement wavelength. In such a case, the band-pass filter plate can be overlaid on the ND filter plate described above and arranged on the circumference of the rotating plate, so that it can be switched in multiple stages.
[0038]
FIG. 4 shows a rotating plate according to the embodiment described above. The band-pass filter plates 82A, 82B, and 82C are arranged on the rotary plate 19 as a composite filter by filtering different wavelength bands and overlapping the ND filter plates 81A to 81C that attenuate the light intensity. The band filter plates 82A to 82C are arranged on the circumference of the rotary plate 19 alone.
[0039]
When the rotary plate 19 of FIG. 4 is measured by the optical spectrum measuring apparatus according to the present invention, the band filter plate corresponding to the measurement wavelength is selected from the band filter plates 82A to 82C, and the light is further attenuated according to the presence or absence of attenuation. The composite filter plate combined with the ND filter and the single band filter plate are inserted into the optical path of the outgoing light 2A.
[0040]
In the present invention, the case where a diffraction grating is used for the spectroscope 2 has been described. However, an interference type spectroscope such as a Fabry-Perot resonator may be used. In FIG. 1, the light attenuating means 8 is disposed between the spectroscope 2 and the light detector 3. However, any other arrangement may be used as long as it is between the light source 1 and the light detector 3. Moreover, although the mutual connection of the spectroscope 2, the light attenuating means 8, and the photodetector 3 has been described as being based on spatial coupling, they may be connected via an optical fiber.
[0041]
【The invention's effect】
In the first invention, the amount of attenuation of the light intensity is controlled by the light attenuating means so that the intensity of the input light to the photodetector is in a range that does not saturate the photodetector. Therefore, even if the intensity of the input light is large, The optical spectrum can be measured.
[0042]
In the second invention, when the amplification factor of the amplifier is fixedly used by controlling the attenuation amount of the incident light by the light attenuating means so as to compensate the transmittance change when the passing wavelength of the spectrometer is changed. In addition, the correct optical spectrum can be measured at high speed.
[0043]
The light attenuating means according to the present invention has a simple configuration in which a light attenuating plate for attenuating the light intensity is arranged on the circumference of the rotating plate, and the rotating plate is rotationally controlled, so as to remove unnecessary light from the spectrometer. The band filter plate can be switched.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an optical spectrum measuring apparatus according to the present invention.
2 is a block diagram of the light attenuating means 8 of FIG.
FIG. 3 is a configuration diagram of first light attenuating means 8;
FIG. 4 is a configuration diagram of second light attenuating means 8;
FIG. 5 is a configuration diagram of a conventional optical spectrum measuring apparatus.
6 is a configuration diagram of the spectroscope 2 of FIG. 5;
7 is a diagram showing the wavelength-transmittance characteristics of the spectrometer 2 in FIG. 5. FIG.
8 is a diagram showing light intensity-output current characteristics of the photodetector 3 in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source 2 Spectrometer 3 Optical detector 4 Amplifying circuit 5 A / D converter 6 Control part 7 Display part 8 Optical attenuation means 8A Rotating plate 8B Motor 18 Rotating plate 19 Rotating plate 80 Hole 81 ND filter 82 Band filter

Claims (3)

光源(1)の光(1A)を分光器(2)に入射し、分光器(2)は光(1A)の内の特定波長成分を取り出し、光検出器(3)は分光器(2)の出射光(2A)を受光して光強度に比例した電気信号を出力し、増幅回路(4)は光検出器(3)の出力を増幅し、A/D変換器(5)は増幅回路(4)の出力をディジタル信号に変換して、光源の光スペクトル特性を測定する光スペクトル測定装置において、
光源(1)と分光器(2)との光路間あるいは分光器(2)と光検出器(3)との光路間に配置され、
光検出器(3)の出力電流が非飽和最大出力より大きい場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰可能に可変する第1の状態と、
光検出器(3)の出力電流が非飽和最大出力以下の場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰させずに通過させる第2の状態とに切り替えられる光減衰手段(8)と、
光検出器(3)の前記非飽和最大出力の値を記憶し、光検出器(3)の出力値を読み取り、前記記憶値と比較し、光検出器(3)の出力値が前記非飽和最大出力値以上のとき、光減衰手段(8)を前記第1の状態に切り替える制御部(6)と
を備えることを特徴とする光スペクトル測定装置。
The light (1A) from the light source (1) is incident on the spectrometer (2), the spectrometer (2) extracts a specific wavelength component of the light (1A), and the photodetector (3) is the spectrometer (2). Output light (2A) is received and an electrical signal proportional to the light intensity is output, the amplifier circuit (4) amplifies the output of the photodetector (3), and the A / D converter (5) is an amplifier circuit In the optical spectrum measurement device that converts the output of (4) into a digital signal and measures the optical spectrum characteristics of the light source ,
Between the optical path between the light source (1) and the spectroscope (2) or between the optical path between the spectroscope (2) and the photodetector (3),
A first state in which the light (1A) of the light source (1) or the emitted light (2A) of the spectroscope (2) is variable to be attenuated when the output current of the photodetector (3) is greater than the maximum unsaturated output; ,
Second state where light (1A) from light source (1) or light (2A) emitted from spectroscope (2) passes without being attenuated when the output current of photodetector (3) is less than the maximum unsaturated output A light attenuating means (8) that can be switched to
The value of the non-saturated maximum output of the photodetector (3) is stored, the output value of the photodetector (3) is read, compared with the stored value, and the output value of the photodetector (3) is not saturated. And a controller (6) for switching the light attenuating means (8) to the first state when the output power is equal to or greater than the maximum output value.
光源(1)の光(1A)を分光器(2)に入射し、分光器(2)は光(1A)の内の特定波長成分を取り出し、光検出器(3)は分光器(2)の出射光(2A)を受光して光強度に比例した電気信号を出力し、増幅回路(4)は光検出器(3)の出力を増幅し、A/D変換器(5)は増幅回路(4)の出力をディジタル信号に変換して光源の光スペクトル特性を測定する光スペクトル測定装置において、
光源(1)と分光器(2)との光路間あるいは分光器(2)と光検出器(3)との光路間に配置され、
光検出器(3)の出力電流が非飽和最大出力より大きい場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰可能に可変する第1の状態と、
光検出器(3)の出力電流が非飽和最大出力以下の場合に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を減衰させずに通過させる第2の状態とに切り替えられる光減衰手段(8)と、
前記分光器(2)の波長透過率特性を記憶し、この特性により、測定しようとする強度範囲と波長範囲から、光検出器(3)の出力が前記非飽和最大出力を超える可能性がある区間を求め、この区間を測定するときだけ、前記光減衰手段(8)を前記第1の状態に切り替える制御部(6)と、
を備えることを特徴とする光スペクトル測定装置。
The light (1A) from the light source (1) is incident on the spectrometer (2), the spectrometer (2) extracts a specific wavelength component of the light (1A), and the photodetector (3) is the spectrometer (2). Output light (2A) is received and an electrical signal proportional to the light intensity is output, the amplifier circuit (4) amplifies the output of the photodetector (3), and the A / D converter (5) is an amplifier circuit In the optical spectrum measuring device that measures the optical spectral characteristics of the light source by converting the output of (4) into a digital signal,
Between the optical path between the light source (1) and the spectroscope (2) or between the optical path between the spectroscope (2) and the photodetector (3),
A first state in which the light (1A) of the light source (1) or the emitted light (2A) of the spectroscope (2) is variable to be attenuated when the output current of the photodetector (3) is greater than the maximum unsaturated output; ,
Second state where light (1A) from light source (1) or light (2A) emitted from spectroscope (2) passes without being attenuated when the output current of photodetector (3) is less than the maximum unsaturated output A light attenuating means (8) that can be switched to
The wavelength transmittance characteristic of the spectroscope (2) is stored, and this characteristic may cause the output of the photodetector (3) to exceed the unsaturated maximum output from the intensity range and wavelength range to be measured. A control unit (6) that obtains a section and switches the light attenuating means (8) to the first state only when measuring the section;
An optical spectrum measuring apparatus comprising:
光減衰手段(8)は、光源(1)の光(1A)あるいは分光器(2)の出射光(2A)の光強度を減衰する複数のNDフィルタ(81)に光源(1)の光(1A)あるいは分光器(2)の出射光(2A)の特定波長帯域をろ過する複数の第1の帯域フィルタ(82)を重ね合わせた複数の複合フィルタを配列するとともに、
複数の第2の帯域フィルタ(82)を配列し、
光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を前記複合フィルタで減衰する第1の状態と、
光源(1)の光(1A)あるいは分光器(2)の出射光(2A)を第2の帯域フィルタ(82)でろ過する第2の状態に切り替えることを特徴とする請求項1又は2記載の光スペクトル測定装置。
The light attenuating means (8) includes a plurality of ND filters (81) for attenuating the light intensity of the light (1A) of the light source (1) or the output light (2A) of the spectroscope (2). 1A) or a plurality of composite filters in which a plurality of first band-pass filters (82) for filtering a specific wavelength band of the output light (2A) of the spectroscope (2) are superposed,
Arranging a plurality of second bandpass filters (82);
A first state where the light (1A) of the light source (1) or the outgoing light (2A) of the spectroscope (2) is attenuated by the composite filter;
3. Switch to a second state in which the light (1A) of the light source (1) or the outgoing light (2A) of the spectroscope (2) is filtered by the second bandpass filter (82). Optical spectrum measuring device.
JP16584494A 1994-06-27 1994-06-27 Optical spectrum measuring device Expired - Fee Related JP3912801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16584494A JP3912801B2 (en) 1994-06-27 1994-06-27 Optical spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16584494A JP3912801B2 (en) 1994-06-27 1994-06-27 Optical spectrum measuring device

Publications (2)

Publication Number Publication Date
JPH0815012A JPH0815012A (en) 1996-01-19
JP3912801B2 true JP3912801B2 (en) 2007-05-09

Family

ID=15820077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16584494A Expired - Fee Related JP3912801B2 (en) 1994-06-27 1994-06-27 Optical spectrum measuring device

Country Status (1)

Country Link
JP (1) JP3912801B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL185942B1 (en) * 1997-04-09 2003-09-30 Roland Eckgold Apparatus for machining extermally profiled workpieces
JP2000007429A (en) 1998-06-16 2000-01-11 Ngk Spark Plug Co Ltd Dielectric material and its production
JP4930175B2 (en) 2007-04-27 2012-05-16 富士通株式会社 Node control device for transferring signal light
JP2012002672A (en) * 2010-06-17 2012-01-05 Shimadzu Corp Spectroscope
JP2013113583A (en) * 2011-11-24 2013-06-10 Shimadzu Corp Spectroscope
JP6653617B2 (en) * 2016-05-09 2020-02-26 日本電信電話株式会社 Optical pulse test apparatus and optical pulse test method

Also Published As

Publication number Publication date
JPH0815012A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
US4909633A (en) Multi-channel spectral light measuring device
JPH05224158A (en) Optical filter and light amplifier using the same
JP3912801B2 (en) Optical spectrum measuring device
JP6941107B2 (en) System for performing spectroscopy
JPS5913922A (en) Grating spectrometer
EP1130815A2 (en) Wavelength-selective polarization-diverse optical heterodyne receiver
US6256103B1 (en) System and method for optical heterodyne detection of an optical signal
US5825484A (en) Optical spectrum measuring device
US5627648A (en) Method and apparatus for use in the measurement of the wavelength or frequency of an optical signal
US6535289B1 (en) System and method for optical heterodyne detection of an optical signal
US20060278897A1 (en) Multispectral Energy/Power Meter For Laser Sources
JPH03146833A (en) Multi-wavelength spectroscope
JP2007178258A (en) Optical spectrum analyzer and optical fiber sensor system using same
US6614527B2 (en) Spectral bandwidth calibration of an optical spectrum analyzer
JP3572681B2 (en) Multi-channel spectrophotometer
JP2022053088A (en) Optical filter, spectroscopic module, and spectrometric method
KR100387288B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of an optical signal in wavelength-division multiplexing optical communications
JP2564009Y2 (en) Spectrometer
JP2004205271A (en) Wavemeter and fbg sensing apparatus using the same
US6765665B2 (en) Optical bit rate detector
SU972248A1 (en) Spectrometer
JPH03144323A (en) Measuring apparatus for laser wavelength
JP5901916B2 (en) Optical spectrum measurement device
JPH0531534Y2 (en)
JP4715215B2 (en) Wide wavelength range compact spectrometer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041104

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees