JP3912302B2 - Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board - Google Patents

Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board Download PDF

Info

Publication number
JP3912302B2
JP3912302B2 JP2003076512A JP2003076512A JP3912302B2 JP 3912302 B2 JP3912302 B2 JP 3912302B2 JP 2003076512 A JP2003076512 A JP 2003076512A JP 2003076512 A JP2003076512 A JP 2003076512A JP 3912302 B2 JP3912302 B2 JP 3912302B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
prepreg
resin varnish
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003076512A
Other languages
Japanese (ja)
Other versions
JP2004285126A (en
Inventor
玄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003076512A priority Critical patent/JP3912302B2/en
Publication of JP2004285126A publication Critical patent/JP2004285126A/en
Application granted granted Critical
Publication of JP3912302B2 publication Critical patent/JP3912302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、難溶性の硬化剤を配合するエポキシ樹脂ワニスの製造法に関する。また、このワニスを用いたプリプレグの製造法、さらには、当該プリプレグにより構成される積層板ないしはプリント配線板の製造法に関する。
【0002】
【従来の技術】
現在、エポキシ樹脂の硬化剤としては、アミン系硬化剤、ポリアミン系硬化剤、酸無水物系硬化剤、フェノールノボラック系硬化剤、重合型硬化剤、潜在性硬化剤などが使用されている。これらの硬化剤は、常温で液体であればそのままで、もしくは、有機溶剤に溶解して使用されている。
【0003】
上記エポキシ樹脂は、電気絶縁用の積層板やプリント配線板の絶縁層として多用されている。近年、プリント配線板の実装技術の進歩や使用環境の変化に伴い、積層板、プリント配線板には、熱的・強度的に、より高い特性を求められるようになってきた。これらの要求に応えて、よりガラス転移温度や物理的強度の高いエポキシ樹脂硬化物を得るためには、硬化剤は、剛直な分子構造を有し架橋密度を高める反応点を多くもつものが必要になる。しかし、そのような硬化剤は、融点が高く有機溶剤への溶解性も悪い。従って、このような高融点硬化剤をエポキシ樹脂モノマと均一に混合しワニスを調製するためには、高温での溶解が必要である。
【0004】
例えば、特許文献1には、硬化剤を溶剤に加え加熱して溶解させ、この溶液を室温に冷却した後、液状エポキシ樹脂を加えて攪拌しワニスを調製することが開示されている。しかし、前記硬化剤は、高温で溶剤に溶解させると一旦は溶解するが室温に戻せば再結晶するため、均一に分散したワニスを調製することは難しい。また、硬化剤をエポキシ樹脂と高温で混合してワニスを調製することも考えられるが、高温ではエポキシ樹脂の硬化反応が急速に進み、調製したエポキシ樹脂ワニスのゲル化時間が短くなるため、混合操作の条件は厳しく制限され取り扱いが難しい。
【0005】
【特許文献1】
特開平9−241353号公報(段落番号0019)
【特許文献2】
特開2000−239415号公報(段落番号0015、0016)
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、溶剤に難溶な高融点硬化剤を配合したエポキシ樹脂ワニスを調製するに当たり、硬化剤をワニス中に均一に分散させ取り扱い性のよいエポキシ樹脂ワニスを製造することである。また、このワニスを使用してプリプレグを製造することである。さらには、前記プリプレグによる積層板ないしはプリント配線板を製造することである。
【0007】
【課題を解決するための手段】
上記課題を達成するための、本発明の要旨は以下のとおりである。
本発明は、エポキシ樹脂モノマと硬化剤を混合してエポキシ樹脂ワニスを調製するに当って、溶解のために加熱する必要ある高融点の硬化剤を用いるエポキシ樹脂ワニスの製造を対象とする。ここで、溶解のために加熱する必要ある高融点の硬化剤とは、室温では溶剤に難溶の硬化剤をいう。
本発明に係る製造法では、加熱しながら、前記高融点硬化剤を溶剤に溶解する。このとき、平均粒径1μm以下の微小無機粉末を一緒に混合する。そして、このように準備した高融点硬化剤と微小無機粉末の混合液を、微小無機粉末の配合量が、エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100質量部に対し0.5〜10質量部となるようにエポキシ樹脂モノマと混合してエポキシ樹脂ワニスを製造する。
【0008】
上記のように調製したエポキシ樹脂ワニスは、その貯蔵中における硬化剤の結晶成長が抑制される。その理由は、平均粒子径を1μm以下に限定した微小無機充填材が次の(1)(2)の作用を発揮しているためと考えられる。
(1)硬化剤にとって不純物である微小無機粉末の存在が系中を結晶化しにくい環境にしている。
(2)微小無機粉末が硬化剤の周囲を覆い結晶の成長を阻害している。
また、このように結晶性が悪いため、結晶が凝集しても撹拌羽根などで撹拌することにより容易に粉砕でき、均一に分散した状態に戻せる。前記微小無機粉末の配合量が少ないと、硬化剤は結晶が成長して溶け残り、ワニスに均一分散しにくくなる。プリプレグ製造において含浸ムラなど外観上の問題が現われ、金属箔張り積層板の製造に適用したときには、金属箔の接着強度にばらつきを生じやすくなる。一方、微小無機粉末の配合量が多いと、ワニスの粘性が増大しシート状繊維基材への含浸作業性が低下してくる。以上の結果、本発明に係る方法によれば、硬化剤の結晶成長が抑制され、硬化剤が均一に分散したエポキシ樹脂ワニスを調製することが可能となる。
【0009】
上記のように製造したエポキシ樹脂ワニスをシート状繊維基材に含浸し乾燥してプリプレグを製造すると、含浸ムラや未溶の硬化剤がシート状繊維基材に保持されることがなくなる。本発明に係る方法により製造したエポキシ樹脂ワニスは、プリプレグ製造への適用が容易になるわけである。
【0010】
本発明に係る積層板の製造法は、一体に加熱加圧成形するプリプレグ層の全層ないしは一部の層として、上述したプリプレグを用いることを特徴とする。また、本発明に係るプリント配線板の製造法は、上述したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とする
【0011】
尚、特許文献2には、エポキシ樹脂と硬化剤の配合ワニスに微小無機粉末を配合して、エポキシ樹脂ワニスを調製することが開示されている。しかし、これは、硬化剤の溶解を加熱して実施することを開示していないし、各成分の混合の手順についても具体的に開示していない。そして、引用文献2の技術においては、微小無機粉末が、当該エポキシ樹脂ワニスを適用して製造したプリプレグの加熱加圧成形時の圧縮量を稼ぐ作用をしており、その作用は、本願発明における微小無機粉末の作用とは全く相違している。
【0012】
【発明の実施の形態】
本発明においては、溶解のために加熱する必要ある高融点の硬化剤を、溶剤中で、平均粒子径1μm以下の微小無機粉末と予め加熱混合しておくことが重要である。これを、エポキシ樹脂モノマと混合して、エポキシ樹脂ワニスを調製する。前記平均粒子径1μm以下の微小無機粉末は、結晶抑制効果を有し、例えば、アエロジル(高純度微粒子無水シリカ)、タルク、石綿、コロイド性含水ケイ酸アルミニウム/有機複合体など電気絶縁性の微小無機粉末であればよい。
【0013】
本発明において対象としている溶解のために加熱する必要ある高融点の硬化剤は、例えば、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体などである。アミン系硬化剤としては、4,4’−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルメタンのような室温では溶剤に難溶の化合物およびその誘導体がある。これらの硬化剤は、2種類以上を併用してもよい。本発明は、室温では溶剤に難溶の高融点硬化剤の取り扱いを容易にすることが趣旨であるので、このような概念に含まれ、エポキシ樹脂モノマの硬化反応を進行させるために用いられる硬化剤が全て対象となる。
エポキシ樹脂モノマと硬化剤の反応を促進するために硬化促進剤を使用することができ、これは通常用いられているものを使用できる。例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などである。
【0014】
エポキシ樹脂モノマの種類は特に限定するものではないが、次の(式1)で示されるエポキシ樹脂モノマを使用することにより、その硬化物の熱伝導率を向上させることができる。
【0015】
【化2】

Figure 0003912302
【0016】
本発明に係る方法で製造したエポキシ樹脂ワニスには、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を含むことができる。このエポキシ樹脂ワニスをシート状繊維基材に含浸し乾燥してプリプレグを製造する際、必要に応じて溶剤を追加することができる。これら溶剤の追加が硬化物の性質に影響を与えることはない。
【0017】
さらに、上記エポキシ樹脂ワニスには、金属酸化物又は水酸化物、あるいは無機セラミックス、その他の充填材を含むことができる。例えば、アルミナ、シリカ、酸化マグネシウム、水酸化アルミニウム等の無機粉末充填材、ガラス繊維、パルプ繊維、合成樹脂繊維、セラミックス繊維等の繊維質充填材、着色剤等を添加することができる。これら充填材の形状は、粉末(塊状、球状)、短繊維、長繊維等いずれであってもよい。
【0018】
本発明に係るプリプレグの製造法は、上記のエポキシ樹脂ワニスを、ガラス繊維や有機繊維で構成されたシート状繊維基材(織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態とする。そして、積層板の製造法は、前記プリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形することを特徴とし、必要に応じて前記加熱加圧成形により片面あるいは両面に銅箔等の金属箔を一体に貼り合せる。さらに、プリント配線板の製造法は、前記のプリプレグ層を加熱加圧成形して絶縁層を形成することを特徴とし、その対象は、片面プリント配線板、両面プリント配線板、さらには、内層にプリント配線を有する多層プリント配線板である。
【0019】
以上のように製造されたプリント配線板は、絶縁層の機械的強度が良好で優れた物理特性を有する。自動車機器用のプリント配線板、パソコン等の高密度実装プリント配線板に好適である。
【0020】
【実施例】
以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。
【0021】
実施例1
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)21部、微小無機粉末としてアエロジル(日本アエロジル製「アエロジル」,平均粒子径9nm)0.6部を用意し、これらをメチルイソブチルケトン(MIBK,和光純薬製)100部に100℃で溶解し、室温に戻した。
エポキシ樹脂モノマ成分としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「Ep828」,エポキシ当量185)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスにし、さらに充填材として酸化マグネシウム(MgO,協和化学製,平均粒子径:5μm)297部を加えて混練しエポキシ樹脂ワニスを調製した。
このエポキシ樹脂ワニスを、厚さ0.2mmのガラス繊維織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ4枚とその両側に銅箔を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚さ0.8mmの積層板を得た。
【0022】
実施例1で得た積層板について、銅箔引き剥がし強さ、ガラス転移温度と貯蔵弾性率、熱伝導率の各特性を測定した結果を、エポキシ樹脂ワニスの配合組成と共に表1にまとめて示す。各特性の測定方法は、次のとおりである。
銅箔引き剥がし強さ:25mm×100mmの板状試料を切り出し、オートグラフを用い室温で測定した。
ガラス転移温度と貯蔵弾性率:5mm×30mmの板状試料を切り出し、動的粘弾性測定装置(DMA)により動的粘弾性を測定して求めた。
熱伝導率:50mm×120mmの板状試料を切り出し、プローブ法に準拠して室温で測定した。
【0023】
比較例1
実施例1において、アエロジルを用いることなく硬化剤溶液を調製し、それ以外は実施例1と同様にしてプリプレグおよび積層板を得た。
プリプレグには、溶け残った硬化剤が付着しており、これを加熱加圧成形した積層板は、前記硬化剤付着箇所だけが黒く変色して斑模様になった。
銅箔引き剥がし強さは、エポキシ樹脂ワニスの含浸ムラによって大きくばらつき、エポキシ樹脂ワニスの含浸が不十分な箇所では小さくなっていた。
【0024】
実施例2
実施例1において、エポキシ樹脂モノマ成分として「Ep828」の代わりに、ビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)を用い、それ以外は実施例1と同様にしてプリプレグおよび積層板を得た。尚、「YL6121H」は、上述した分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマとR=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
この積層板の熱伝導率は、1.2W/m・Kであり実施例1より高い値となった。
【0025】
比較例2
実施例1において、硬化剤として「1,5−DAN」の代わりに常温で液状のフェノールノボラック樹脂(ジャパンエポキシレジン製「YLH987」,水酸基当量116)66部を用い、アエロジルを用いることなく常温で硬化剤溶液を調製した。それ以外は、実施例1と同様にしてプリプレグおよび積層板を得た。
この積層板の熱伝導率は、0.6W/m・Kであった。銅箔引き剥がし強さは1.1kN/mであったが、ガラス転移温度は149℃、貯蔵弾性率は11MPaであり、実施例1より大きく減少した。
【0026】
比較例3
実施例1において、硬化剤として「1,5−DAN」の代わりに常温で液状のフェノールノボラック樹脂(ジャパンエポキシレジン製「YLH987」,水酸基当量116)66部を用い、常温で硬化剤溶液を調製した。それ以外は、実施例1と同様にしてプリプレグおよび積層板を得た。
【0027】
この積層板は、熱伝導率0.5W/m・K、銅箔引き剥がし強さ1.1kN/m、ガラス転移温度155℃、貯蔵弾性率20MPaであり、アエロジルを配合した効果はほとんど見られなかった(比較例2との対比)。
【0028】
実施例3〜5
エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100部に対するアエロジルの配合量を表1に示すように変えたエポキシ樹脂ワニスを用い、それ以外は、実施例1と同様にしてプリプレグおよび積層板を得た。
実施例3〜5における積層板の特性は、実施例1における積層板の特性と遜色なく、樹脂固形分100部に対するアエロジル(微小無機粉末)の配合が0.5〜10部の範囲では良い特性が得られることが分かった。
【0029】
比較例4、5
エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100部に対するアエロジルの配合量を表1に示すように変えたエポキシ樹脂ワニスを用い、それ以外は、実施例1と同様にしてプリプレグおよび積層板を得た。樹脂固形分100部に対するアエロジルの(微小無機粉末)の配合が0.5部より少なくなると、比較例1の場合と同様にプリプレグに含浸ムラが確認でき(比較例4)、10部より多くなると、樹脂ワニスの粘性が高くなりすぎて、シート状繊維基材に均一に含浸できなかったため積層板は得られなかった(比較例5)。
【0030】
【表1】
Figure 0003912302
【0031】
【発明の効果】
以上詳述したように、本発明によれば、溶剤に難溶の高融点硬化剤を用いて分散の均一なエポキシ樹脂ワニスを調製することができ、外観の良いプリプレグを製造することが可能となる。このプリプレグを適用して加熱加圧成形した積層板ないしプリント配線板は、金属箔との接着強度が大きく、硬化樹脂のガラス転移温度が高く、物理的強度も高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an epoxy resin varnish to formulate a hardening agent poorly soluble. The production method of prepreg using the varnish, and further relates to a process for the production of laminates or printed wiring board composed of the prepreg.
[0002]
[Prior art]
Currently, amine curing agents, polyamine curing agents, acid anhydride curing agents, phenol novolac curing agents, polymerization curing agents, latent curing agents, and the like are used as curing agents for epoxy resins. These curing agents are used as they are if they are liquid at room temperature or dissolved in an organic solvent.
[0003]
The epoxy resin is often used as an insulating layer for laminated boards for electrical insulation and printed wiring boards. In recent years, with the progress of mounting technology for printed wiring boards and changes in usage environment, it has become necessary for laminated boards and printed wiring boards to have higher characteristics in terms of heat and strength. In order to meet these requirements and obtain a cured epoxy resin with a higher glass transition temperature and higher physical strength, a curing agent must have a rigid molecular structure and many reactive points that increase the crosslink density. become. However, such a curing agent has a high melting point and poor solubility in an organic solvent. Therefore, in order to prepare such a varnish by uniformly mixing such a high melting point curing agent with an epoxy resin monomer, it is necessary to dissolve at a high temperature.
[0004]
For example, Patent Literature 1 discloses that a curing agent is added to a solvent and dissolved by heating, the solution is cooled to room temperature, and then a liquid epoxy resin is added and stirred to prepare a varnish. However, the curing agent dissolves once in a solvent at a high temperature, but recrystallizes when it is returned to room temperature. Therefore, it is difficult to prepare a uniformly dispersed varnish. It is also possible to prepare a varnish by mixing a curing agent with an epoxy resin at a high temperature. However, at a high temperature, the curing reaction of the epoxy resin proceeds rapidly, and the gelation time of the prepared epoxy resin varnish is shortened. Operating conditions are severely limited and difficult to handle.
[0005]
[Patent Document 1]
JP-A-9-241353 (paragraph number 0019)
[Patent Document 2]
JP 2000-239415 A (paragraph numbers 0015 and 0016)
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prepare an epoxy resin varnish having good handleability by uniformly dispersing the curing agent in the varnish when preparing an epoxy resin varnish containing a high melting point curing agent that is hardly soluble in a solvent. That is. Moreover, it is manufacturing a prepreg using this varnish. Furthermore, it is to manufacture a laminated board or a printed wiring board by the prepreg.
[0007]
[Means for Solving the Problems]
The gist of the present invention for achieving the above-mentioned problems is as follows.
The present invention is directed to the production of an epoxy resin varnish using a high melting point curing agent that needs to be heated for dissolution in preparing an epoxy resin varnish by mixing an epoxy resin monomer and a curing agent. Here, the high-melting-point curing agent that needs to be heated for dissolution refers to a curing agent that is hardly soluble in a solvent at room temperature.
In the production method according to the present invention, the high melting point curing agent is dissolved in a solvent while heating. At this time, fine inorganic powders having an average particle size of 1 μm or less are mixed together. The mixture of the high melting point curing agent and the fine inorganic powder prepared in this way has a blending amount of the fine inorganic powder of 0.5 to 10 parts by weight with respect to 100 parts by mass of the resin solid content obtained by combining the epoxy resin monomer and the curing agent. An epoxy resin varnish is produced by mixing with an epoxy resin monomer so as to be part by mass.
[0008]
The epoxy resin varnish prepared as described above suppresses crystal growth of the curing agent during storage. The reason is considered that the fine inorganic filler whose average particle diameter is limited to 1 μm or less exhibits the following effects (1) and (2).
(1) The presence of fine inorganic powder, which is an impurity for the curing agent, makes the system difficult to crystallize.
(2) The fine inorganic powder covers the periphery of the curing agent and inhibits crystal growth.
Further, since the crystallinity is poor as described above, even if the crystals are aggregated, they can be easily pulverized by stirring with a stirring blade or the like, and can be returned to a uniformly dispersed state. If the blending amount of the fine inorganic powder is small, the curing agent will grow and remain in the crystal, making it difficult to uniformly disperse in the varnish. In prepreg manufacturing, appearance problems such as impregnation unevenness appear, and when applied to the manufacture of a metal foil-clad laminate, the adhesive strength of the metal foil tends to vary. On the other hand, when the blending amount of the fine inorganic powder is large, the viscosity of the varnish increases and the workability of impregnation into the sheet-like fiber base material decreases. As a result, according to the method of the present invention, it is possible to prepare an epoxy resin varnish in which crystal growth of the curing agent is suppressed and the curing agent is uniformly dispersed.
[0009]
When the epoxy resin varnish produced as described above is impregnated into a sheet-like fiber base material and dried to produce a prepreg, impregnation unevenness and undissolved curing agent are not retained on the sheet-like fiber base material. The epoxy resin varnish produced by the method according to the present invention can be easily applied to prepreg production.
[0010]
Preparation of a laminated plate according to the present invention, as all layers or part of the layers of the prepreg layer to heat and pressure molded integrally, characterized by using the above-mentioned prepreg. Moreover, the method for producing a printed wiring board according to the present invention is characterized in that an insulating layer is formed by heating and pressing the above-described prepreg layer.
[0011]
Patent Document 2 discloses that an epoxy resin varnish is prepared by blending a fine inorganic powder into a blend varnish of an epoxy resin and a curing agent. However, this does not disclose that the dissolution of the curing agent is carried out by heating, nor does it specifically disclose the procedure of mixing each component. And in the technique of the cited reference 2, the fine inorganic powder has the effect | action which earns the compression amount at the time of the heat press molding of the prepreg manufactured by applying the said epoxy resin varnish, The effect | action is in this invention. This is completely different from the action of the fine inorganic powder.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is important that a high melting point curing agent that needs to be heated for dissolution is previously heated and mixed in a solvent with a fine inorganic powder having an average particle diameter of 1 μm or less. This is mixed with an epoxy resin monomer to prepare an epoxy resin varnish. The fine inorganic powder having an average particle size of 1 μm or less has a crystal suppressing effect, and is an electrically insulating fine powder such as aerosil (high purity fine particle anhydrous silica), talc, asbestos, colloidal hydrous aluminum silicate / organic composite. Any inorganic powder may be used.
[0013]
Examples of the high melting point curing agent that needs to be heated for dissolution in the present invention include amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, and the like. Examples of the amine curing agent include compounds that are hardly soluble in solvents at room temperature, such as 4,4′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, and 4,4′-diaminodiphenylmethane, and derivatives thereof. Two or more kinds of these curing agents may be used in combination. The purpose of the present invention is to facilitate the handling of a high melting point curing agent that is hardly soluble in a solvent at room temperature. Therefore, the present invention is included in such a concept, and is used to advance the curing reaction of an epoxy resin monomer. All agents are targeted.
In order to accelerate | stimulate reaction of an epoxy resin monomer and a hardening | curing agent, a hardening accelerator can be used and this can use what is used normally. For example, triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof, and the like.
[0014]
Although the kind of epoxy resin monomer is not particularly limited, the thermal conductivity of the cured product can be improved by using an epoxy resin monomer represented by the following (formula 1).
[0015]
[Chemical 2]
Figure 0003912302
[0016]
The epoxy resin varnish produced by the method according to the present invention can contain a flame retardant, a diluent, a plasticizer, a coupling agent, and the like as necessary. When the prepreg is produced by impregnating the sheet-like fiber base material with this epoxy resin varnish and drying, a solvent can be added as necessary. The addition of these solvents does not affect the properties of the cured product.
[0017]
Further, the epoxy resin varnish can contain a metal oxide or hydroxide, inorganic ceramics, or other filler. For example, inorganic powder fillers such as alumina, silica, magnesium oxide, and aluminum hydroxide, fiber fillers such as glass fibers, pulp fibers, synthetic resin fibers, and ceramic fibers, colorants, and the like can be added. The shape of these fillers may be any of powder (bulk shape, spherical shape), short fiber, long fiber and the like.
[0018]
The method for producing a prepreg according to the present invention comprises impregnating the above-mentioned epoxy resin varnish into a sheet-like fiber base material (woven fabric or non-woven fabric) made of glass fiber or organic fiber, followed by drying by heating, so that the epoxy resin is semi-cured. State. And the manufacturing method of a laminated board WHEREIN: The said prepreg is heat-press-molded as the whole layer or one part layer of a prepreg layer, and it is copper foil on one side or both surfaces by the said heat-press molding as needed. A metal foil such as is bonded together. Furthermore, the method for producing a printed wiring board is characterized in that the prepreg layer is formed by heating and pressing to form an insulating layer, and the target is a single-sided printed wiring board, a double-sided printed wiring board, and further an inner layer. A multilayer printed wiring board having printed wiring.
[0019]
The printed wiring board manufactured as described above has excellent mechanical properties with good mechanical strength of the insulating layer. It is suitable for printed wiring boards for automobile equipment and high-density mounting printed wiring boards such as personal computers.
[0020]
【Example】
Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.
[0021]
Example 1
21 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, amine equivalent 40) as a curing agent, and Aerosil (“Aerosil” manufactured by Nippon Aerosil, average particle diameter 9 nm) 0.6 as a fine inorganic powder Parts were prepared, and these were dissolved in 100 parts of methyl isobutyl ketone (MIBK, manufactured by Wako Pure Chemical Industries, Ltd.) at 100 ° C. and returned to room temperature.
As an epoxy resin monomer component, 100 parts of a bisphenol A type epoxy resin (Japan Epoxy Resin “Ep828”, epoxy equivalent 185) is prepared and dissolved in 100 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.) at 100 ° C. Returned to.
Mix and stir the above epoxy resin monomer solution and curing agent solution to make a uniform varnish, and add 297 parts of magnesium oxide (MgO, manufactured by Kyowa Chemical Co., Ltd., average particle size: 5 μm) as a filler and knead and knead the epoxy resin varnish Was prepared.
This epoxy resin varnish was impregnated into a 0.2 mm thick glass fiber woven fabric and dried by heating to obtain a prepreg. Four prepregs and a copper foil were laminated on both sides thereof, integrated by heating and pressurizing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, to obtain a laminate having a thickness of 0.8 mm.
[0022]
About the laminated board obtained in Example 1, the result of having measured each characteristic of copper foil peeling strength, glass transition temperature, storage elastic modulus, and thermal conductivity is shown in Table 1 together with the composition of the epoxy resin varnish. . The measuring method of each characteristic is as follows.
Copper foil peeling strength: A plate-like sample of 25 mm × 100 mm was cut out and measured at room temperature using an autograph.
Glass transition temperature and storage elastic modulus: A plate-like sample having a size of 5 mm × 30 mm was cut out, and the dynamic viscoelasticity was measured by a dynamic viscoelasticity measuring device (DMA).
Thermal conductivity: A plate-like sample of 50 mm × 120 mm was cut out and measured at room temperature in accordance with the probe method.
[0023]
Comparative Example 1
In Example 1, a curing agent solution was prepared without using Aerosil, and otherwise, a prepreg and a laminate were obtained in the same manner as in Example 1.
The undissolved curing agent was adhered to the prepreg, and the laminate obtained by heat-pressing the prepreg was discolored in black only at the portion where the curing agent was adhered, resulting in a spotted pattern.
The peel strength of the copper foil greatly varied depending on the impregnation unevenness of the epoxy resin varnish, and was small at the location where the impregnation of the epoxy resin varnish was insufficient.
[0024]
Example 2
In Example 1, instead of “Ep828” as an epoxy resin monomer component, an epoxy resin monomer having a biphenyl skeleton (“YL6121H” manufactured by Japan Epoxy Resin, epoxy equivalent of 175) was used, and the others were the same as in Example 1. A prepreg and a laminate were obtained. “YL6121H” means an epoxy resin monomer in which R = —CH 3 , n = 0.1 and an epoxy resin monomer in which R = —H, n = 0.1 in the molecular structural formula (formula 1) described above. Is an epoxy resin monomer containing an equimolar amount.
The thermal conductivity of this laminate was 1.2 W / m · K, which was higher than that of Example 1.
[0025]
Comparative Example 2
In Example 1, instead of “1,5-DAN”, 66 parts of a phenol novolak resin (“YLH987” manufactured by Japan Epoxy Resin, hydroxyl equivalent 116), which is liquid at room temperature, is used as the curing agent at room temperature without using Aerosil. A curing agent solution was prepared. Other than that was carried out similarly to Example 1, and obtained the prepreg and the laminated board.
The heat conductivity of this laminated board was 0.6 W / m · K. The copper foil peel strength was 1.1 kN / m, but the glass transition temperature was 149 ° C. and the storage elastic modulus was 11 MPa, which was greatly reduced from that in Example 1.
[0026]
Comparative Example 3
In Example 1, instead of “1,5-DAN”, 66 parts of phenol novolac resin (“YLH987” manufactured by Japan Epoxy Resin, hydroxyl equivalent 116), which is liquid at room temperature, is used as a curing agent to prepare a curing agent solution at room temperature. did. Other than that was carried out similarly to Example 1, and obtained the prepreg and the laminated board.
[0027]
This laminated board has a thermal conductivity of 0.5 W / m · K, a copper foil peel strength of 1.1 kN / m, a glass transition temperature of 155 ° C., and a storage elastic modulus of 20 MPa. There was no (contrast with Comparative Example 2).
[0028]
Examples 3-5
Using the epoxy resin varnish in which the compounding amount of Aerosil with respect to 100 parts of the resin solid content combining the epoxy resin monomer and the curing agent was changed as shown in Table 1, except that, the prepreg and the laminate were prepared in the same manner as in Example 1. Obtained.
The characteristics of the laminates in Examples 3 to 5 are not inferior to those of the laminate in Example 1, and are good in the range where the composition of Aerosil (fine inorganic powder) with respect to 100 parts of resin solids is 0.5 to 10 parts. Was found to be obtained.
[0029]
Comparative Examples 4 and 5
Using the epoxy resin varnish in which the compounding amount of Aerosil with respect to 100 parts of the resin solid content combining the epoxy resin monomer and the curing agent was changed as shown in Table 1, except that, the prepreg and the laminate were prepared in the same manner as in Example 1. Obtained. When the blend of Aerosil (fine inorganic powder) with respect to 100 parts of the resin solid content is less than 0.5 part, the impregnation unevenness can be confirmed in the prepreg as in Comparative Example 1 (Comparative Example 4). Since the viscosity of the resin varnish became too high and the sheet-like fiber base material could not be uniformly impregnated, a laminate was not obtained (Comparative Example 5).
[0030]
[Table 1]
Figure 0003912302
[0031]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to prepare a uniformly dispersed epoxy resin varnish using a high melting point curing agent hardly soluble in a solvent, and to produce a prepreg having a good appearance. Become. A laminated board or printed wiring board formed by heating and pressing using this prepreg has a high adhesive strength with a metal foil, a high glass transition temperature of a cured resin, and a high physical strength.

Claims (5)

エポキシ樹脂モノマと硬化剤を混合してエポキシ樹脂ワニスを調製するに当って溶解のために加熱する必要がある高融点の硬化剤を用いるエポキシ樹脂ワニスの製造において、
前記高融点硬化剤を、加熱した溶剤中で平均粒径1μm以下の微小無機粉末と混合して、溶剤に溶解し、
この高融点硬化剤と微小無機粉末の混合液を、微小無機粉末の配合量が、エポキシ樹脂モノマと硬化剤を合せた樹脂固形分100質量部に対し0.5〜10質量部となるようにエポキシ樹脂モノマと混合することを特徴とするエポキシ樹脂ワニスの製造法。
In the production of an epoxy resin varnish using a high melting point curing agent that needs to be heated for dissolution in preparing an epoxy resin varnish by mixing an epoxy resin monomer and a curing agent,
The high melting point curing agent is mixed with a fine inorganic powder having an average particle size of 1 μm or less in a heated solvent, dissolved in the solvent,
The mixture of the high-melting-point curing agent and the fine inorganic powder is such that the blending amount of the fine inorganic powder is 0.5 to 10 parts by mass with respect to 100 parts by mass of the resin solid content obtained by combining the epoxy resin monomer and the curing agent. A method for producing an epoxy resin varnish characterized by mixing with an epoxy resin monomer.
エポキシ樹脂モノマが、下記(式1)で示される分子構造式であることを特徴とする請求項1記載のエポキシ樹脂ワニスの製造法。
Figure 0003912302
The method for producing an epoxy resin varnish according to claim 1, wherein the epoxy resin monomer has a molecular structure represented by the following (formula 1).
Figure 0003912302
請求項1又は2のいずれかの方法により得たエポキシ樹脂ワニスをシート状繊維基材に含浸し乾燥することを特徴とする電気絶縁用プリプレグの製造法。A method for producing a prepreg for electrical insulation, comprising impregnating a sheet-like fiber base material with the epoxy resin varnish obtained by the method according to claim 1 or 2 and drying. 請求項3記載の方法により製造したプリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形することを特徴とする積層板の製造法The claim 3 prepreg was prepared by the method of method for producing a laminated board, which comprises all the layers or hot pressing as part of the layer of the prepreg layer. 請求項3記載の方法により製造したプリプレグの層を加熱加圧成形して絶縁層を形成することを特徴とするプリント配線板の製造法A method for producing a printed wiring board , comprising forming an insulating layer by heating and pressing a prepreg layer produced by the method according to claim 3.
JP2003076512A 2003-03-19 2003-03-19 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board Expired - Fee Related JP3912302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076512A JP3912302B2 (en) 2003-03-19 2003-03-19 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076512A JP3912302B2 (en) 2003-03-19 2003-03-19 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Publications (2)

Publication Number Publication Date
JP2004285126A JP2004285126A (en) 2004-10-14
JP3912302B2 true JP3912302B2 (en) 2007-05-09

Family

ID=33291552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076512A Expired - Fee Related JP3912302B2 (en) 2003-03-19 2003-03-19 Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board

Country Status (1)

Country Link
JP (1) JP3912302B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010112B2 (en) * 2004-07-26 2012-08-29 新神戸電機株式会社 Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP2006299189A (en) * 2005-04-25 2006-11-02 Hitachi Chem Co Ltd Prepreg sheet, metal foil-clad laminate, circuit board, and method for manufacturing circuit board
JP2010093036A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Superconducting coil, superconducting magnet, epoxy resin varnish and method for manufacturing them

Also Published As

Publication number Publication date
JP2004285126A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP5010112B2 (en) Manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
JP6501211B2 (en) Thermosetting resin composition for semiconductor package and prepreg using the same
JP6221634B2 (en) Resin composition, resin sheet, cured resin and substrate
JP6309264B2 (en) Insulating material, insulating layer composition containing the same, and substrate using the insulating layer composition
TW201010531A (en) High thermal conductivity, high glass transition temperature (Tg) resin composition and its pre-impregnated and coating materials for printed circuit boards
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
WO2017092471A1 (en) Thermosetting alkyl polyol glycidyl ether resin composition and application thereof
JP5549183B2 (en) Method for producing epoxy resin composition, method for producing prepreg, method for producing laminated board and wiring board
WO2015154314A1 (en) Thermoset resin composition
WO2015075906A1 (en) Insulating resin composition and article comprising same
JP2004002573A (en) Prepreg, laminated board and printed circuit board
JP4793277B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and wiring board
JP2006143973A (en) Epoxy resin composition and prepreg, laminate and printed wiring board
TWI496824B (en) Epoxy resin composition, and prepreg and printed wiring board using the same
JP6422230B2 (en) Insulating resin composition for printed circuit board and product using the same
JP3912302B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
TWI699392B (en) High thermal conductivity prepreg and uses of the same
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP5712488B2 (en) Insulating resin film and laminated board and wiring board using the same
JP2010090182A (en) Flame-retardant epoxy resin composition, prepreg, laminate sheet, and wiring board
JP5169155B2 (en) Method for producing resin composition
JP4301044B2 (en) Prepreg and laminate manufacturing method
JP2000239419A (en) Printed-wiring board prepreg and printed-wiring board using same
JP2005281487A (en) Manufacturing process of prepreg and laminate
JP2004059704A (en) Epoxy resin composition for printed wiring board, prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees