JP3912115B2 - Coke oven gas combustion method - Google Patents

Coke oven gas combustion method Download PDF

Info

Publication number
JP3912115B2
JP3912115B2 JP2002007233A JP2002007233A JP3912115B2 JP 3912115 B2 JP3912115 B2 JP 3912115B2 JP 2002007233 A JP2002007233 A JP 2002007233A JP 2002007233 A JP2002007233 A JP 2002007233A JP 3912115 B2 JP3912115 B2 JP 3912115B2
Authority
JP
Japan
Prior art keywords
gas
air
combustion
coke oven
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002007233A
Other languages
Japanese (ja)
Other versions
JP2003206486A (en
Inventor
達也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002007233A priority Critical patent/JP3912115B2/en
Publication of JP2003206486A publication Critical patent/JP2003206486A/en
Application granted granted Critical
Publication of JP3912115B2 publication Critical patent/JP3912115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はコークス炉のガス燃焼方法に関し、さらに詳しくはコークス炉の燃焼排ガスから微細なダストを除去する技術に関する。
【0002】
【従来の技術】
コークス炉は燃焼室と炭化室が1枚のレンガで仕切られている。コークス炉の老朽化に伴い、このレンガの目地が切れ、この目地切れ部を通って炭化室から燃焼室へ発生ガスが漏洩する。漏洩したガスにより燃焼室の空燃比が乱れ、不完全燃焼により煤が生じる。この煤がそのまま煙突から排出されると煙突黒煙となり、環境上問題である。なお、このような煙突黒煙は、炭化室内圧力が上昇する石炭装入直後に発生する。
【0003】
この煙突黒煙に対し、煙突の上流側に煙道集塵機を設ける対策がある。この対策では、煙突黒煙の発生はゼロになるものの、投資額が膨大であるという問題点がある。
【0004】
これに対し、特開平06−063334号公報では、コークス炉の廃気弁の下流側で、新設の集塵系と既設の煙道系に分岐させ、装入窯の排ガスのみを集塵機に導くようにしたものである。このようにすれば、新設の集塵ダクトを小径化することができ、集塵機も小型化できるので、コスト的には安価になる。しかし、廃気弁の下流側にスペースがない場合は、集塵系と煙道系の切替ダンパと集塵ダクトを設置することができない。また、多くの門数から構成される炉団では、切替ダンパの個数が多くなるため、総体的に考えると必ずしも安価になるとは限らない。
【0005】
他の従来技術としては、特開平06−256764号公報に開示されているように、石炭装入時に装入窯に隣接する燃焼室への燃料ガス流量をコントロールすることによって、漏洩ガスを燃焼させる技術がある。このようにすれば、漏洩ガスは燃焼するものの、空気過剰な状態を長く続けると、レンガの目地に入っているカーボンも燃焼してしまい、目地切れを助長してしまう。このように、効果はあるが、漏洩ガスを燃焼させるだけの空気比になるように燃料ガス流量をコントロールすることは非常に難しい。
【0006】
さらに、他の従来技術である特開平10−168459号公報では、炉上の燃焼室覗き穴から空気を吹き込み、漏洩ガスを燃焼させる技術が開示されている。これも同様な理由で吹き込み空気の流量コントロールが非常に難しい。
【0007】
【発明が解決しようとする課題】
本発明は、簡単な操作によって、燃焼室の目地に付着した炭素を焼失させることなく、燃焼ガス中の黒煙となる微細な炭素を効果的に除去することができる、好適なコークス炉のガス燃焼方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、コークス炉の燃焼室におけるガス燃焼方法であって、石炭を装入する炭化室の両隣にある燃焼室の、廃気側の富ガス供給路より空気を供給することを特徴とするコークス炉のガス燃焼方法である。この場合に、前記炭化室への石炭装入開始から少なくとも10分間、廃気側の富ガス供給路より空気を供給することとすれば好適である。
【0009】
【発明の実施の形態】
以下、図面を参照して、カールスチル式コークス炉を例にとって本発明の実施の形態を説明する。2分割式のカールスチル式コークス炉においては、コークス炉のほぼ中央で、押出機側(マシンサイド)と消火車側(コークスサイド)に蓄熱室及び燃焼室が2分割されている。燃料ガスの燃焼は一定時間(20〜30分)の燃焼を押出機側と消火車側とで交互に繰り返している。なお、室炉式コークス炉には燃料ガスと空気の流通経路を様々に変形した各種タイプの炉、例えば、コッパース式、オットー式等が使用されている。いずれのタイプの炉でも、燃料ガスとしてコークス炉ガス(Cガス)(富ガス)を使用する富ガス燃焼を行う単式炉と、富ガス燃焼と燃料ガスとしてコークス炉ガスと高炉ガスを混合した混合ガス(Mガス)(貧ガス)を使用することもできる複式炉とがある。いずれの炉においても富ガス(コークス炉ガス:Cガス)を燃焼するための富ガス供給路がある。
【0010】
例えば複式コークス炉10は、図1に示すように、燃料供給部11、燃焼室21、炭化室24、蓄熱室31、廃気経路41を備えている。燃料供給部11は炉の前後から交互に燃料を供給することができるように、押出機側と消火車側にそれぞれCガス配管12、Mガス配管13が設けられている。炭化室24と燃焼室21とは多数列が交互に隣接して炉団を形成しており、その上面には石炭装入口22、覗き穴23が設けられている。
【0011】
図1に例示されるように、室炉コークス炉10の燃焼室21には燃料ガスと空気を流通する複雑な流路が形成されている。燃焼排熱を利用するために、燃焼室21の下方に蓄熱室31を設けてある。燃焼排ガスはガス流32で示すように蓄熱室31内を経由して、蓄熱室31を形成するレンガに熱を伝え、その後、小煙道42、大煙道43などの廃気経路41を経て煙突44から外気に排出される。
【0012】
そして貧ガス(混合ガス:Mガス)燃焼時には、Mガス配管に燃料ガスを送り、空気吸入口14から空気を送り、燃料ガスと燃焼用空気は別々に蓄熱室31を経由して高温のレンガと熱交換して昇温された後、燃焼室21内で合流し、燃焼する。こうして燃焼ガスの顕熱を有効に利用することができる。
【0013】
一方、富ガス(コークス炉ガス:Cガス)燃焼時には、燃焼用空気は空気吸入口14から蓄熱室31に入り、ここで昇温されて燃焼室21へ供給され、Cガスは蓄熱室31を経由せずに直接燃焼室21のバーナへ供給される。CガスはMガスに比べて発熱量が高いため予熱の必要はないし、また各種の炭化水素ガスを含んでおり、高温に保持すると分解して煤を生じる恐れがあるため、通常、予熱せずに燃焼させる。
【0014】
本発明に係るコークス炉10では、廃気側(煙突44側)に配設された富ガス供給路(Cガス支管12b)に、空気15を送る経路が接続されている。本発明では、貧ガス(混合ガス:Mガス)燃焼時には炭化室24の両隣にある燃焼室21の下部にある廃気側の富ガス供給支管12bから空気15を供給する。こうすることにより燃焼排ガス中に黒煙となる微細な炭素が混入している場合においても、この微細な炭素を蓄熱室31中で燃焼させることが可能となる。本発明では廃気側の燃焼室21の下部で空気を供給し、微細な炭素を蓄熱室31内で燃焼焼失させるので、燃焼室21の目地に存在する炭素を燃焼させることがなく、レンガの目地切れを助長させる心配はない。従って、空気の供給量を細かく調整する必要はなく一定量を一定時間供給するという簡単な操作によって微細な炭素を蓄熱室内で燃焼焼失させるという効果を達成することができる。
【0015】
本発明では全窯の燃焼室21で排気側の燃焼室21の下部へ空気を供給してもよい。こうすることによって、炭化室24から燃焼室21ヘガスが漏洩することにより発生する微細な炭素を確実に燃焼焼失させることができる。炭化室24から燃焼室21へのガス漏洩は、通常、炭化室24へ石炭の装入を開始してから10分間がもっとも多く、それ以降は炭化室24内での発生ガス量がほぼ安定化し、炭化室24から燃焼室21へのガス漏洩はほとんど無視できる程度となる。従って、その後は、必ずしも廃気側燃焼室21の下部へ空気を供給する必要はない。以上の観点から排気側の燃焼室21下部への空気供給は、石炭を装入する窯の石炭装入開始時から少なくとも10分間とすることに限定してもよい。こうすると、空気供給量を低減することができると共に、微細な炭素がほとんど含まれていない排ガスを安定的に排出することができる。
【0016】
空気供給量は燃焼室からの煤塵の発生量と排ガス中のCOガス濃度に応じて決定することができる。例えば排ガス流量がV[m3(標準状態)/h]、排ガス中の煤塵濃度がα[mg/m3(標準状態)]、排ガス中のCOガス濃度がβ[体積%]の場合、煤塵がすべて炭素と仮定すると、この煤塵とCOガスを燃焼するのに必要な空気量は、燃焼室1室当たり
(8.89×10-6+2.38×10-2β)V[m3(標準状態)/h]
で計算できる。これは理論値であるので、適宜過剰空気比として1〜1.2程度の係数を掛けた数値に相当する量を供給しても良い。
【0017】
煤塵の発生量と排ガス中のCOガス濃度は図1に位置を示したガス採取管51から排ガスを等速吸引法でサンプリングし、このサンプリングガス中の煤塵量とCOガス量から計算すればよい。また、簡便には煙道集塵機入口側で各燃焼炉の排ガスが集合している位置で等速吸引法によりサンプリングしたときの煤塵濃度、排ガス中CO濃度を測定して使用してもよい。この場合は煤塵濃度は各燃焼炉からの排ガスが集合しているところでサンプリングしているが、煤塵の発生は炭化室への石炭装入直後がもっとも多く、その後10分程度で1/10以下程度まで低下するので、煙道集塵機入口で採取される煤塵のほとんどは一つの炭化室に隣接する燃焼室から発生しているものと考えても良いので、集塵機入口での煤塵濃度に燃焼室の門数を掛けた数値が一つの燃焼室から発生している煤塵濃度と考えて良い。
【0018】
本発明を実施するには、上記のように各燃焼室からの煤塵発生量を測定し、これを基に前記式を用いて空気送給量を決定することができる。このとき、煤塵発生量は石炭装入開始時をピークとして漸減するが、煙突からの黒煙の発生を防ぐために、このピーク時の煤塵発生量を基に空気送給量を決定することが好ましい。
【0019】
また、より簡便には煙突からの黒煙発生を監視し、黒煙の発生が生じる場合にはその黒煙発生時点における石炭装入窯に隣接する炭化室の空気送給を行うことができる。この場合には、空気送給量は煙突からの黒煙に状態をみながら適宜調整すれば良い。
【0020】
【実施例】
炭化室92門を有するカールスチル式コークス炉の操業に本発明を適応した。本発明の実施にあたっては、石炭装入を行う炭化室の両側の燃焼室で廃気側の富ガス供給路に空気を供給した。図2に石炭装入開始時の排気ガス中の煤塵濃度を1としたときの、以後時間経過に対応した排気ガス中の煤塵濃度の比率を推移図として示す。なお、装入後経過時間で30分の時点で燃焼室の燃料ガスの供給を反対側へ切り替えたので、煤塵濃度測定のサンプリングも反対側へ切り替えて、常に廃気側の富ガス供給路でのサンプリングを行った。
【0021】
図2中に示す比較例は、従来と同様に廃気側の富ガス供給路へ空気供給を行わずに燃焼を行い、廃気側でサンプリングした結果を示す。
【0022】
図2から分かるように、石炭装入直後の煤塵濃度は、比較例に比べて実施例では1/10以下の煤塵濃度となっており、本発明の効果による煤塵抑制が達成されていることが分かる。また、従来の方法を行った比較例において、石炭装入開始後10分程度経過した時点で煤塵濃度は石炭装入直後の1/10程度に低下していることから、本発明において、富ガス供給路への空気供給は石炭装入開始時からその10分後までの範囲を含む期間行えば、石炭装入時の煤塵発生を有効に低減できることが分かる。図2に示す実施例は上記比較例の燃焼室において、石炭装入開始時から60分間、廃気側の富ガス供給路から空気を270m3(標準状態)/h送給した結果を示す。この実施例から本発明の実施により煤塵濃度は比較例に比べてピーク時でも1/10以下に低減できていることが分かる。
【0023】
【発明の効果】
本発明の適用により、コークス炉の燃焼排ガスに混入する微細な炭素を、空気により燃焼させることができ、煙道集塵機を使用せずとも煙突からの放出粉塵量を極めて低レベルに保持することができる。しかも、空気の供給量を細かく調整せずとも燃焼室内の目地部に付着滞留している炭素を燃焼焼失することがないので、極めて簡便な制御で空気送給することが可能である。
【図面の簡単な説明】
【図1】実施例のコークス炉の説明図である。
【図2】排気ガス中の煤塵濃度比率の推移図である。
【符号の説明】
10 カールスチル式コークス炉
11 燃料供給部
12 Cガス配管
12b Cガス支管
13 Mガス配管
14 空気吸入口
15 空気
21 燃焼室
22 石炭装入口
23 覗き穴
24 炭化室
31 蓄熱室
32 ガス流
41 廃気経路
42 小煙道
43 大煙道
44 煙突
51 ガス採取管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas combustion method for a coke oven, and more particularly to a technique for removing fine dust from the combustion exhaust gas of a coke oven.
[0002]
[Prior art]
In the coke oven, the combustion chamber and the carbonization chamber are separated by a single brick. As the coke oven ages, the brick joints are cut, and the generated gas leaks from the carbonization chamber to the combustion chamber through the joints. The air-fuel ratio in the combustion chamber is disturbed by the leaked gas, and soot is generated by incomplete combustion. If this soot is discharged directly from the chimney, it becomes a chimney black smoke, which is an environmental problem. Such chimney black smoke is generated immediately after the coal charging in which the pressure in the carbonization chamber rises.
[0003]
For this black smoke, there is a measure to install a flue dust collector on the upstream side of the chimney. This measure has the problem that the amount of investment is enormous, although the generation of black smoke in the chimney is zero.
[0004]
On the other hand, in Japanese Patent Application Laid-Open No. 06-063334, a new dust collection system and an existing flue system are branched downstream of the coke oven waste air valve so that only the exhaust gas from the charging furnace is guided to the dust collector. It is a thing. In this way, the diameter of the newly installed dust collection duct can be reduced, and the dust collector can also be reduced in size. However, when there is no space downstream of the waste air valve, it is not possible to install a dust collection system / flue system switching damper and a dust collection duct. In addition, in a furnace group composed of a large number of gates, the number of switching dampers is large, so that it is not always cheaper when considered overall.
[0005]
As another prior art, as disclosed in Japanese Patent Laid-Open No. 06-256664, the leakage gas is burned by controlling the flow rate of the fuel gas to the combustion chamber adjacent to the charging furnace when charging coal. There is technology. In this way, although the leaked gas burns, if the air-excessive state continues for a long time, the carbon contained in the joints of the bricks will also burn and promote joint breakage. Thus, although effective, it is very difficult to control the fuel gas flow rate so that the air ratio is sufficient to burn the leaked gas.
[0006]
Furthermore, Japanese Patent Laid-Open No. 10-168459, which is another conventional technique, discloses a technique in which air is blown from a combustion chamber viewing hole on a furnace to burn a leaked gas. For the same reason, it is very difficult to control the flow rate of the blown air.
[0007]
[Problems to be solved by the invention]
The present invention is a suitable coke oven gas capable of effectively removing fine carbon that becomes black smoke in combustion gas without burning off carbon adhering to the joints of the combustion chamber by simple operation. An object is to provide a combustion method.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problem, and is a gas combustion method in a combustion chamber of a coke oven, which is a rich gas on the waste air side of a combustion chamber on both sides of a carbonization chamber charged with coal. A gas combustion method for a coke oven, wherein air is supplied from a supply path. In this case, it is preferable to supply air from the rich gas supply path on the waste air side for at least 10 minutes from the start of charging the coal into the carbonization chamber.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, taking a Karl Still coke oven as an example. In a two-split type Karl Still coke oven, a heat storage chamber and a combustion chamber are divided into two on the extruder side (machine side) and the fire extinguisher side (coke side) at substantially the center of the coke oven. The combustion of the fuel gas repeats combustion for a certain time (20 to 30 minutes) alternately on the extruder side and the fire extinguisher side. Note that various types of furnaces in which the flow paths of fuel gas and air are variously modified, such as the Coppers type and the Otto type, are used for the chamber type coke oven. In any type of furnace, coke oven gas (C gas) (rich gas) is used as the fuel gas, a single furnace that performs rich gas combustion, and a mixture of coke oven gas and blast furnace gas as rich gas combustion and fuel gas There is a dual furnace that can also use gas (M gas) (poor gas). Each furnace has a rich gas supply path for burning rich gas (coke oven gas: C gas).
[0010]
For example, as shown in FIG. 1, the dual coke oven 10 includes a fuel supply unit 11, a combustion chamber 21, a carbonization chamber 24, a heat storage chamber 31, and a waste air path 41. The fuel supply unit 11 is provided with a C gas pipe 12 and an M gas pipe 13 on the extruder side and the fire extinguisher side, respectively, so that fuel can be supplied alternately from the front and back of the furnace. The carbonization chamber 24 and the combustion chamber 21 are alternately adjacent to each other to form a furnace group, and a coal charging port 22 and a peephole 23 are provided on the upper surface thereof.
[0011]
As illustrated in FIG. 1, the combustion chamber 21 of the chamber furnace coke oven 10 is formed with a complicated flow path for circulating fuel gas and air. In order to utilize the combustion exhaust heat, a heat storage chamber 31 is provided below the combustion chamber 21. The combustion exhaust gas passes through the heat storage chamber 31 as shown by the gas flow 32 and transfers heat to the bricks forming the heat storage chamber 31, and then passes through the waste air path 41 such as the small flue 42 and the large flue 43. It is discharged from the chimney 44 to the outside air.
[0012]
When the poor gas (mixed gas: M gas) is combusted, the fuel gas is sent to the M gas pipe, the air is sent from the air inlet 14, and the fuel gas and the combustion air separately pass through the heat storage chamber 31 and are heated to a high temperature. After the temperature is raised by exchanging heat with the gas, they merge in the combustion chamber 21 and burn. Thus, the sensible heat of the combustion gas can be used effectively.
[0013]
On the other hand, at the time of combustion of rich gas (coke oven gas: C gas), combustion air enters the heat storage chamber 31 from the air inlet 14, where the temperature is raised and supplied to the combustion chamber 21, and C gas passes through the heat storage chamber 31. Directly supplied to the burner of the combustion chamber 21 without going through. Since C gas has a higher calorific value than M gas, preheating is not necessary, and it contains various hydrocarbon gases, and if kept at a high temperature, it may decompose and generate soot. To burn.
[0014]
In the coke oven 10 according to the present invention, a path for sending air 15 is connected to a rich gas supply path (C gas branch pipe 12b) disposed on the waste air side (chimney 44 side). In the present invention, the air 15 is supplied from the waste gas-side rich gas supply branch 12b at the lower part of the combustion chamber 21 on both sides of the carbonization chamber 24 at the time of poor gas (mixed gas: M gas) combustion. Thus, even when fine carbon that becomes black smoke is mixed in the combustion exhaust gas, the fine carbon can be burned in the heat storage chamber 31. In the present invention, air is supplied in the lower part of the combustion chamber 21 on the waste air side, and fine carbon is burned and burned out in the heat storage chamber 31, so that the carbon present in the joints of the combustion chamber 21 is not burned and the bricks are not burned. There is no worry of promoting joint breaks. Therefore, it is not necessary to finely adjust the supply amount of air, and an effect of burning and burning fine carbon in the heat storage chamber can be achieved by a simple operation of supplying a constant amount for a predetermined time.
[0015]
In the present invention, air may be supplied to the lower part of the combustion chamber 21 on the exhaust side in the combustion chamber 21 of all kilns. By doing so, the fine carbon generated by the gas leakage from the carbonization chamber 24 to the combustion chamber 21 can be surely burnt down. The gas leakage from the carbonization chamber 24 to the combustion chamber 21 is usually the largest for 10 minutes after the start of charging coal into the carbonization chamber 24, and thereafter, the amount of gas generated in the carbonization chamber 24 is almost stabilized. Gas leakage from the carbonization chamber 24 to the combustion chamber 21 is almost negligible. Therefore, after that, it is not always necessary to supply air to the lower part of the waste-side combustion chamber 21. From the above viewpoint, the air supply to the lower part of the combustion chamber 21 on the exhaust side may be limited to at least 10 minutes from the start of coal charging in the kiln for charging coal. If it carries out like this, while being able to reduce an air supply amount, the waste gas which hardly contains fine carbon can be discharged | emitted stably.
[0016]
The air supply amount can be determined according to the generation amount of dust from the combustion chamber and the CO gas concentration in the exhaust gas. For example, when the exhaust gas flow rate is V [m 3 (standard state) / h], the dust concentration in the exhaust gas is α [mg / m 3 (standard state)], and the CO gas concentration in the exhaust gas is β [volume%] Is all carbon, the amount of air necessary to burn the dust and CO gas is (8.89 × 10 −6 + 2.38 × 10 −2 β) V [m 3 ( Standard state) / h]
It can be calculated with Since this is a theoretical value, an amount corresponding to a numerical value obtained by multiplying the excess air ratio by a coefficient of about 1 to 1.2 may be supplied as appropriate.
[0017]
The amount of generated dust and the concentration of CO gas in the exhaust gas may be calculated from the amount of dust and CO gas in the sampling gas by sampling the exhaust gas from the gas sampling pipe 51 shown in FIG. . In addition, the dust concentration and CO concentration in the exhaust gas may be measured and used when sampling is performed by the constant velocity suction method at the position where the exhaust gas of each combustion furnace is gathered on the inlet side of the flue dust collector. In this case, the soot concentration is sampled where the exhaust gas from each combustion furnace is gathered, but the soot is most often generated immediately after charging the coal into the carbonization chamber, and after that about 10 minutes, about 1/10 or less. Therefore, it can be considered that most of the soot collected at the flue dust collector inlet is generated from the combustion chamber adjacent to one carbonization chamber. The numerical value multiplied by the number can be considered as the dust concentration generated from one combustion chamber.
[0018]
In order to carry out the present invention, the amount of dust generated from each combustion chamber is measured as described above, and the air supply amount can be determined based on this by using the above formula. At this time, the dust generation amount gradually decreases with a peak at the start of coal charging, but in order to prevent the generation of black smoke from the chimney, it is preferable to determine the air supply amount based on the dust generation amount at this peak. .
[0019]
In addition, the generation of black smoke from the chimney can be monitored more simply, and when black smoke is generated, air can be supplied to the carbonization chamber adjacent to the coal charging kiln at the time when the black smoke is generated. In this case, the air supply amount may be adjusted as appropriate while checking the state of black smoke from the chimney.
[0020]
【Example】
The present invention was applied to the operation of a Karlstilt coke oven having 92 coking chambers. In carrying out the present invention, air was supplied to the rich gas supply path on the waste air side in the combustion chambers on both sides of the carbonization chamber where the coal was charged. FIG. 2 shows, as a transition diagram, the ratio of the soot concentration in the exhaust gas corresponding to the passage of time when the soot concentration in the exhaust gas at the start of coal charging is 1. In addition, since the fuel gas supply in the combustion chamber was switched to the opposite side at 30 minutes after the charging, the sampling for dust concentration measurement was also switched to the opposite side, and the exhaust gas supply channel on the waste air side was always used. Sampling.
[0021]
The comparative example shown in FIG. 2 shows the result of performing sampling without supplying air to the rich gas supply path on the waste air side and sampling on the waste air side as in the prior art.
[0022]
As can be seen from FIG. 2, the soot concentration immediately after charging the coal is 1/10 or less soot concentration compared to the comparative example, and the soot suppression by the effect of the present invention is achieved. I understand. Moreover, in the comparative example which performed the conventional method, since about 10 minutes have passed since the start of coal charging, the soot concentration has decreased to about 1/10 immediately after coal charging. It can be seen that if the air supply to the supply path is performed for a period including the range from the start of coal charging to 10 minutes after that, the generation of soot at the time of coal charging can be effectively reduced. The example shown in FIG. 2 shows the result of supplying air from the rich gas supply path on the waste air side for 270 m 3 (standard state) / h for 60 minutes from the start of coal charging in the combustion chamber of the above comparative example. From this example, it can be seen that by carrying out the present invention, the dust concentration can be reduced to 1/10 or less even at the peak compared to the comparative example.
[0023]
【The invention's effect】
By applying the present invention, fine carbon mixed in the combustion exhaust gas of the coke oven can be burned by air, and the amount of dust discharged from the chimney can be kept at a very low level without using a flue dust collector. it can. In addition, the carbon adhering and staying on the joints in the combustion chamber does not burn and burn out without finely adjusting the supply amount of air, so that air can be supplied with extremely simple control.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a coke oven according to an embodiment.
FIG. 2 is a transition diagram of dust concentration ratio in exhaust gas.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Carl still type coke oven 11 Fuel supply part 12 C gas piping 12b C gas branch 13 M gas piping 14 Air inlet 15 Air 21 Combustion chamber 22 Coal inlet 23 Peephole 24 Carbonization chamber 31 Heat storage chamber 32 Gas flow 41 Waste air Path 42 Small flue 43 Large flue 44 Chimney 51 Gas sampling pipe

Claims (2)

コークス炉の燃焼室におけるガス燃焼方法であって、石炭を装入する炭化室の両隣にある燃焼室の、廃気側の富ガス供給路より空気を供給することを特徴とするコークス炉のガス燃焼方法。A gas combustion method in a combustion chamber of a coke oven, wherein air is supplied from a rich gas supply path on a waste air side of a combustion chamber adjacent to a carbonization chamber charged with coal. Combustion method. 前記炭化室への石炭装入開始から少なくとも10分間、廃気側の富ガス供給路より空気を供給することを特徴とする請求項1記載のコークス炉のガス燃焼方法。The gas combustion method for a coke oven according to claim 1, wherein air is supplied from the rich gas supply path on the waste air side for at least 10 minutes from the start of charging the coal into the carbonization chamber.
JP2002007233A 2002-01-16 2002-01-16 Coke oven gas combustion method Expired - Fee Related JP3912115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007233A JP3912115B2 (en) 2002-01-16 2002-01-16 Coke oven gas combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007233A JP3912115B2 (en) 2002-01-16 2002-01-16 Coke oven gas combustion method

Publications (2)

Publication Number Publication Date
JP2003206486A JP2003206486A (en) 2003-07-22
JP3912115B2 true JP3912115B2 (en) 2007-05-09

Family

ID=27645796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007233A Expired - Fee Related JP3912115B2 (en) 2002-01-16 2002-01-16 Coke oven gas combustion method

Country Status (1)

Country Link
JP (1) JP3912115B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045871A (en) * 2005-08-08 2007-02-22 Jfe Steel Kk Method for burning soot dust in coke oven
JP5135947B2 (en) * 2007-08-15 2013-02-06 Jfeスチール株式会社 Coke oven temperature distribution adjustment method
WO2022270193A1 (en) * 2021-06-23 2022-12-29 Jfeスチール株式会社 Coke oven, method for regulating temperature distribution in coke oven, method for operating coke oven, and method for producing coke
BR112023026903A2 (en) * 2021-06-23 2024-03-05 Jfe Steel Corp COKE OVEN, METHOD FOR REGULATING TEMPERATURE DISTRIBUTION IN A COKE OVEN, METHOD FOR OPERATING COKE OVEN AND METHOD FOR PRODUCING COKE

Also Published As

Publication number Publication date
JP2003206486A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3948347B2 (en) Coke oven gas combustion control method and apparatus
CN101545630B (en) Coal fired boiler capable of controlling flue gas oxygen content
JP6653862B2 (en) Method and ignition device for combustion management in an ignition device
KR890001113B1 (en) Method of reducing nox and sox emission
CN213066123U (en) Circulating fluidized bed incineration boiler for burning solid wastes
JPS58120003A (en) Furnace combustion method
MX2008005691A (en) Solid fuel combustion for industrial melting with a slagging combustor.
JP3912115B2 (en) Coke oven gas combustion method
JP2007045871A (en) Method for burning soot dust in coke oven
JP3948346B2 (en) Coke oven gas combustion method
CN210153806U (en) Coke oven gas low-nitrogen burner
CN106402844A (en) Efficient and energy-saving biomass gasification combustion boiler and application thereof
EP0025219A3 (en) Improved wall fired duct heater and method for operating same
CN105650618A (en) Water gas production and combustion integrated combustion method and equipment
JPS6017611A (en) Combustion of solid fuel and device therefor
CN107490296A (en) A kind of method and device that hot wind ignition is carried out using high-temperature waste flue gas
CN203454183U (en) Burner assembly for converter waste heat recovery boiler
CN106090893A (en) A kind of high performance clean burning method of coal-burning boiler
CN206176368U (en) Pure oxygen combustor
CN112664953A (en) Circulating fluidized bed incineration boiler for burning solid waste
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JP3638170B2 (en) High temperature furnace oxygen gas burner
CN104673335B (en) Stepped heat storage co-firing chamber smoke suppressing energy saving vehicle
CN221036208U (en) Biomass-fired hot blast stove
CN103292333B (en) System for utilizing waste heat of low-concentration combustible material in tail gas of Slapple furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees