JP3910830B2 - Method and apparatus for removing oxide film from silicon wafer - Google Patents

Method and apparatus for removing oxide film from silicon wafer Download PDF

Info

Publication number
JP3910830B2
JP3910830B2 JP2001348586A JP2001348586A JP3910830B2 JP 3910830 B2 JP3910830 B2 JP 3910830B2 JP 2001348586 A JP2001348586 A JP 2001348586A JP 2001348586 A JP2001348586 A JP 2001348586A JP 3910830 B2 JP3910830 B2 JP 3910830B2
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
wafer
oxide film
temperature
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001348586A
Other languages
Japanese (ja)
Other versions
JP2003151944A (en
Inventor
秀行 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001348586A priority Critical patent/JP3910830B2/en
Publication of JP2003151944A publication Critical patent/JP2003151944A/en
Application granted granted Critical
Publication of JP3910830B2 publication Critical patent/JP3910830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は半導体素子の製造などに使用されるシリコンウェーハの外面に形成された酸化膜を除去する方法およびその装置に関する。
【0002】
【従来の技術】
半導体素子の製造に使用されるシリコンウェーハ(以下単にウェーハという)の外面に自然に、もしくは人為的に形成されたケイ素の酸化物からなる薄層(以下、このケイ素の酸化物からなる薄層を単に酸化膜という)は、その後のウェーハを取り扱う過程で除去する必要が生じることがある。その場合に、酸化膜が接するシリコン単結晶の面の性状に影響を与えずに、かつ出来る限り均一に酸化膜を除去するための手段として、酸化膜にフッ酸蒸気(フッ化水素ガスと水蒸気の混合物)を作用させる方法が行われている。
【0003】
従来行われてきたこのフッ酸蒸気で酸化膜を除去する方法の一例を図7に示した摸式図によって説明する。密閉可能な反応容器63内に、複数枚のウェーハWを配列させて収容したバスケット62とフッ化水素酸水溶液(以下単にフッ酸という)61を入れたフッ酸容器64を配置して反応容器63を密閉し、所定の温度で所定の時間放置する。フッ酸から蒸発したフッ酸蒸気65が反応容器63内の空間を移動してウェーハWの外面に接触し、酸化膜と反応することによって、酸化膜が除去される。この方法では、一度に複数枚のウェーハを同時に処理することができるが、酸化膜をほぼ完全に除去するためには、自然酸化膜の場合には室温で30ないし40分、人為的に形成した酸化腹の場合、たとえばおよそ5000オングストロームの厚さの酸化膜を除去するには、同じく室温で12時間以上の時間を要していた。
【0004】
【発明が解決しようとする課題】
本発明はかかる従来の方法の問題点に鑑みてなされたもので、ウェーハの外面に形成された酸化膜を簡便、かつ速やかに除去する方法、および装置を提供することを目的とする。
【0005】
ケイ素酸化物とフッ化水素ガスとの間に起こる反応は〔化1〕、もしくは〔化2〕で示す反応式に従って進行すると推定される。
【化1】

Figure 0003910830
【化2】
Figure 0003910830
これらの反応の速度は、ウェーハ外面に到達するフッ酸蒸気の量によって影響される。このフッ酸蒸気はフッ化水素ガスと水蒸気の混合気体であって、フッ酸と共存する場合に空間中に存在するこれら気体のそれぞれの量は(1)フッ酸中のフッ化水素の濃度、(2)フッ酸と気体とから成る系全体の温度、および(3)空間における各気体の飽和の度合いによって定まる。
【0006】
一般に化学反応の速度は、与えられた条件の下においては、反応の活性化エネルギーの値と温度によって決まる速度を超えることはなく、今の場合、仮にこの最高の反応速度に見合う量以上の反応ガス(フッ酸蒸気)がウェーハ外面に供給されても、〔化1〕、ないしは〔化2〕の反応はこの速度以上で進むことはない。このような状況にある反応は反応律速の状態にあると言われる。
【0007】
これに反して、反応速度が反応物質の供給量によって決まる場合は供給律速の状態にあると言われる。酸化膜をフッ酸蒸気と反応させて除去する当該技術の場合には、反応速度はフッ酸蒸気の供給量によって影響され、その供給量が多い程、反応速度は速くなり、反応律速の状態に近づく。換言すれば、酸化膜の除去は速やかに進行する。したがって、酸化膜の除去を出来るだけ速やかに進めるには、出来る限り反応律速の状態に近づけることが望ましい。
【0008】
ところで、前記した従来から用いられている方法(装置)では、「発明の実施の形態」において詳しく説明するように、酸化膜を除去しようとするウェーハ(以下、被処理ウェーハという)とフッ酸を収容する容器(以下、フッ酸容器という)の容積、被処理ウェーハの総表面積、フッ酸蒸気が蒸発するフッ酸の液面(以下、単にフッ酸蒸発面という)の面積、フッ酸の温度等の条件、およびフッ酸蒸気の容器内における移動がほぼ自然対流に近い状況にあること等からみて、反応は供給律速の状態にあり、しかもフッ酸蒸気の供給量がかなり少ない状態にあると考えられる。このため、酸化膜の除去にかなりの長時間を必要とし、このことが、従来法の大きな欠点であった。
【0009】
この欠点を凌駕し、実質的に反応律速の状態で酸化膜の除去を実施する方法、およびそれを実現するための簡便な装置の開発を鋭意進めた結果、本願に記載する方法および装置を発明するに至った。
【0010】
【課題を解決するための手段】
本発明の酸化膜を除去する方法は、フッ酸蒸気の存在する空間を、ウェーハ被処理面、フッ酸蒸発面、および当該ウェーハを配置する容器の内壁面を用いて、実質的に形成し、前記フッ酸蒸発面に該フッ酸に対して耐蝕性を有し、かつフッ酸で濡れる多孔質材を配置することを特徴とする。
すなわち、本発明の方法は、従来の方法におけるウェーハ被処理面に供給されるフッ酸蒸気の量が、反応律速に見合う量に比べてかなり少なく、反応速度が極めて遅いことを改善し、実質的に反応律速の状態で反応させることを実現する。すなわち、この方法によると、フッ酸は毛細管現象によって該多孔質円板中の連通する細孔の中を通って多孔質円板の表面にしみ出し、フッ酸蒸発面を大幅に増大させることになるので、フッ酸蒸気の蒸発量はー段と増加して反応がさらに促進される。
【0011】
また、請求項2記載の発明は、フッ酸蒸気の存在する空間を、ウェーハ被処理面と当該ウェーハを配置する容器の内壁面を用いて実質的に形成し、前記空間内にネブライザによりフッ酸のミストを投入してフッ酸蒸気で飽和させることを特徴とする。
【0012】
【0013】
【0014】
記のように反応律速の状態で酸化膜の除去を進めるために、酸化膜と接触する空間はフッ酸蒸気で常に実質的に飽和されていて、あるいはウェーハ被処理面とフッ酸蒸発面とを実質的に密閉した空間内で接近させて対向させて配置して反応生成物である四フッ化ケイ素(SiF)、もしくはヘキサフルオロケイ酸(HSiF)が速やかにフッ酸に吸収されて酸化膜の表面から離脱されるような状況を実現することが必要である。実施例において説明するように、このような状況で酸化膜の除去を実施した時の除去速度と温度の間の関係を示すデータから除去の反応に対する見かけの活性化エネルギーの値を試算すると、約6キロカロリ/モルの値が得られ、この値は化学反応の活性化エネルギーとして妥当な値といえる。また、実施例における温度の範囲内では、酸化膜の除去速度の温度による変化(図9)は、フッ酸蒸気の平衡蒸気圧(飽和蒸気圧)の温度による変化、あるいは気体の拡散係数の温度による変化と比較して、一桁ないしは二桁大きいことからみても、本発明の方法においては、反応が実質的に反応律速の状態で進行していることが裏付けられる。
【0015】
ッ酸蒸気の存在する空間を、請求項2ではウェーハ被処理面と当該ウェーハを配置する容器の内壁面を用いて実質的に形成し、請求項1ではウェーハ被処理面、フッ酸蒸発面、および当該ウェーハを配置する容器の内壁面を用いて実質的に形成する。
【0016】
すなわち、図1に示す実施例のように、ウェーハWの被処理面(下面)と容器12の内壁面13、およびフッ酸14の液面(すなわち、フッ酸蒸発面)15とでフッ酸蒸気を含む空間11を形成して、フッ酸蒸発面15より蒸発したフッ酸蒸気がウェーハ被処理面に移動するようにするか、あるいは図4に示すように、ウェーハWの被処理面(下面)と容器12の内周壁13とで形成された空間にフッ酸蒸気を含む気体を別に設けた手段、たとえばネブライザ41等を用いて送入する。
【0017】
【0018】
【0019】
【0020】
【0021】
【0022】
【0023】
本発明の方法では、酸化膜の除去を摂氏20度以上の温度で実施することを特徴とする。
【0024】
図9に示すように、温度が高いほど一定の厚さの酸化膜を除去するに要する時間は短くなる、換言すると、除去の速度が速くなるので、少なくとも摂氏20度以上の温度で、装置の材料が使用し得る限り、あるいは処理の作業の安全面、その他の条件から可能な限りにおいて高い温度で実施することが効果的である。
【0025】
フッ酸を容器内に収容して行う場合には、フッ酸蒸気の突沸を避けるためにフッ酸の温度を沸点以下、好ましくは摂氏80度以下で行うのがよい。
【0026】
本発明のシリコンウェーハの酸化膜を除去する装置は、耐フッ酸材料で構成された有底容器であって、その内壁が、上端において外面に酸化膜を有するウェーハの径より大きく、下方に向かって該ウェーハの径より小さくなるように傾斜していて、その傾斜した内壁によってウェーハ処理面を下向きに、該容器内に収容したフッ酸蒸発面に対向して該ウェーハを保持することによって、実質的に密閉された空間をウェーハの被処理面、フッ酸蒸発面および該有底容器内壁を用いて形成し、前記フッ酸蒸発面に該フッ酸に対して耐蝕性を有し、かつフッ酸で濡れる多孔質材が配置されてなることを特徴とする。
【0027】
【0028】
【0029】
【0030】
【0031】
【0032】
【0033】
さらにまた、本発明のシリコンウェーハの酸化膜を除去する装置は、ウェーハ被処理面、あるいはフッ酸蒸気のそれぞれの温度を制御する手段を備えたことを特徴とする。
【0034】
これによって、酸化膜とフッ酸との反応を所定の温度で、かつ望ましい範囲内に制御しつつ行わせることが可能となる。
【0035】
本発明のシリコンウェーハの酸化膜を除去する装置の更なる特徴は、ウェーハ被処裏面、フッ酸、ないしはフッ酸蒸気のそれぞれの温度を制御する手段を備えていることである。
【0036】
このように、ウェーハ被処理面、フッ酸、ないしはフッ酸蒸気のそれぞれの温度を制御する手段を備えることによって、これらの各々を任意の温度に、かつ所望の範囲内に保つことが出来るので、より精密に反応を制御することが可能となる。
【0037】
たとえば、図3に摸式的に示したように、容器12を加熱手段31(たとえば、ヒータ)によってその下方から加熱してフッ酸14の温度を上昇させるように構成すると、加熱されたフッ酸からはフッ酸の温度に相応するフッ酸蒸気が蒸発するので、フッ酸蒸気のウェーハ面への供給量が増加する。またフッ酸蒸気の温度によってウェーハが加熱されるので、その分反応は促進されるが、ウェーハWの温度はフッ酸の温度よりは低くなる。そのため、フッ酸蒸気の一部はウェーハ被処理面にフッ酸として凝縮する。したがって、この場合にはこの凝縮したフッ酸と酸化膜との間でも反応が進行する。
【0038】
これに対して、ウェーハ被処理面、フッ酸、ないしはフッ酸蒸気のそれぞれの温度を制御する手段を備えることによって、これら各々をほぼ同じ温度に、あるいは、たとえばウェーハの温度をフッ酸の温度よりも高くすることも可能となる。したがって、より反応速度を高めることが可能となる。また、この場合には、先に述べたような、フッ酸蒸気がウェーハ被処理面に凝縮することはなく、反応を完全にフッ酸蒸気のみによって進行させることも可能となる。
【0039】
上に説明したように、フッ酸、フッ酸蒸気、およびウェーハ被処理面の内で、少なくともウェーハ被処理面と接触するフッ酸蒸気の温度がウェーハ被処理面の温度にほぼ等しいか、あるいはウェーハ被処理面の温度より高い場合には、フッ酸蒸気はウェーハ被処理面に凝縮することはないが、逆にウェーハ被処理面と接触するフッ酸蒸気の温度がウェーハ被処理面の温度より低い場合には、フッ酸蒸気はウェーハ被処理面に凝縮して、ウェーハ被処理面上にフッ酸の液滴、あるいは薄膜が生じることがあるが、本発明の方法、および装置はこのような状況をも含むものである。
【0040】
【発明の実施の形態】
以下に図面を参照しつつ本発明の実施の形態について説明するが、これらは本発明の技術思想を実現するための例であって、本発明はこれらに限定されるものではない。
なお、以下の比較例、おおび実施例ではいずれもフッ酸蒸気を含む空間内の全気体の圧力(全気圧)はほぼ常圧であるが、本発明の技術思想に合致する限りにおいて、該空間内の全気圧の値はとくには限定されない。すなわち、実用上の観点からみて最も望ましい速度で酸化膜を除去することができるように、処理操作における温度、フッ酸蒸気の組成(フッ化水素ガスと水蒸気の割合)等の条件のほかに、フッ酸蒸気を含む空間内の全気圧の値を適宜に選択すればよい。
【0041】
(比較例)
図7は従来から用いられている酸化膜を除去するための装置(以下、酸化膜を除去するための装置を単に酸化膜除去装置という)の一例の概略図である。63はフッ酸に対して耐蝕性を有する材料(以下、単に耐フッ酸材料という。例えばポリプロピレン、テフロンなど)で作製された密閉できる反応容器である。62は同様に耐フッ酸材料で作製されたウェーハバスケットで、複数枚のウェーハを垂直に近い状態で所定の間隔をおいて立てて収納できるようになっている。64はフッ酸を入れる容器で耐フッ酸材料で作成されている。自然酸化膜を有するウェーハW12枚を収納したウェーハバスケット62と、濃度50%のフッ酸61を入れたフッ酸容器64を反応容器63内に図示のように配置して反応容器63を密閉し、室温(約摂氏23度)で放置して酸化膜をフッ酸蒸気と反応させた。およそ30分から40分で酸化膜を除去することが出来た。また、人為的に形成した厚さおよそ5000オングストロームの酸化膜を有するウェーハW12枚を同様にウェーハバスケット62に入れて反応容器63内に密閉して酸化膜の除去を行った。除去に要した時間はおよそ12時間であった。
【0042】
本例においては、ウェーハ径に応じてそれぞれ容積の異なる反応容器63、およびフッ酸容器64を使用した。これらの数値は実施例における値と比較して後述する。
【0043】
(実施例1)
図1は本発明に基づく酸化膜除去装置の第一の例を示す概略図である。図1において、12は耐フッ酸材料(テフロン)で作製された円筒状容器でその内周壁13は、その上端から中心軸に向かって逆円錐台形に傾斜している。すなわち、容器内周壁の上端が作る円形の径は、被処理ウェーハWの径より大きく、下端の作る円形、すなわち容器内底面の径は被処理ウェーハWの径より小さいので、ウェーハWを図のように、容器内周壁13で保持することができる。該容器に濃度50%のフッ酸の所定量を注ぎ、ウェーハWの被処理面をフッ酸蒸発面15に対向するように下方に向けて水平になるように置いて、フッ酸蒸気に接触するようにした。
【0044】
自然酸化膜を有するウェーハWを室温(およそ摂氏23度)でこのような状態に保つと、およそ3秒で該酸化膜の除去が完了した。
【0045】
同様にして、厚さおよそ5000Åの酸化膜を形成したウェーハWを室温で処理すると、およそ3分で該酸化膜の除去が完了した。自然酸化膜の場合は、従来法の600〜800倍の速度で、また、厚さ5000オングストロームの酸化膜の場合は従来法のおよそ240倍の速度で酸化膜を除去することができた。
【0046】
なお、ウェーハWとフッ酸蒸発面15とは接触しない限りは接近しているほど酸化膜の除去には効果があるので、容器内周壁13の傾斜角度やフッ酸14の量等の条件を適宜変化させることによって、ウェーハWとフッ酸蒸発面15との間の距離を所望の値に設定することができる。
【0047】
また、本例では一枚のウェーハを処理する場合について説明したが、本発明の技術思想を適用する限りにおいて、複数のウェーハを同時に処理できる装置や、自動化された装置を工夫することも可能である。
【0048】
上述の比較例、および実施例1の方法で径が6インチと8インチのウェーハのそれぞれに適合する容器を作成して酸化膜の除去を行った。各場合の諸ディメンジョンを〔表1〕に比較して記載した。
【0049】
以下に示す〔表1〕の値から明らかなように、本発明の方法による実施例では、単位時間にウェーハ被処理面単位面積当りに供給されるフッ酸蒸気の量は反応を十分速く進行させるに十分な条件を備えていると推論される。たとえば、ウェーハ被処理面面積のフッ酸蒸発面面積に対する比の値を比較すると、本発明の方法は従来の方法に比較して50ないし60倍有利な数値となっている。実質空間容積(フッ酸蒸気の存在する空間)は本発明の方法では従来法の1/40から1/50に縮小され、ウェーハ被処理面とフッ酸蒸発面との間の距離は、本発明の方法ではおよそ10mmに設定されている。
【表1】
Figure 0003910830
【0050】
(実施例2)
径6インチのウェーハのそれぞれに、それぞれ異なる厚さの酸化膜を形成し、実施例1と同様の方法で処理して、それぞれの酸化膜の除去に要した時間を測定した。図8にその結果を示す。除去に要する時間は膜厚に正比例しており、膜の厚さにかかわらず、他の条件が同じであれば、除去の反応は同じ速度で進むことが知られる。
【0051】
(実施例3)
図2は本発明に基づく酸化膜除去装置の第二の例を示す概略図である。この例では、耐フッ酸材料製の多孔質円板21の円板をフッ酸に僅かに浸るように配置した以外は実施例1と同様である。該円板21の上面には毛細管現象でフッ酸14がしみ出てフッ酸蒸発面15を形成する。したがって、容器12の振動や傾斜によってフッ酸蒸発面が不安定になることを避けることが出来るので、フッ酸蒸発面15をウェーハ被処理面の至近まで接近させることが可能となり、反応進行に対する効果は極めて高い。この例では、3mmまで接近させて酸化膜を除去することが出来た。さらに、フッ酸蒸発面15の有効な面積も増大するので、フッ酸蒸気の蒸発量は一段と増加し、反応がさらに促進される。
【0052】
該多孔質円板21として、本例ではポロプロピレンの繊維を圧縮成型して円板状にしたものを用いたが、その他、フッ酸で濡れやすい耐フッ酸材料の連通した細孔を有する発泡体、もしくは織布等が用いられる。
【0053】
(実施例4)
図3は本発明に基づく酸化膜除去装置の第三の例の概略図である。この例では、容器12の下方に加熱手段31が設けられている。これにより、容器12を下方より加熱してフッ酸の温度を高めると、フッ酸蒸気の蒸発量を増加させることが出来ると共に、フッ酸蒸気の温度も高くなるので、フッ酸蒸気と接するウェーハ被処理面の温度もそれに伴って上昇し、反応速度が増大する。本例では、加熱手段31と、不図示の温度調節手段によってフッ酸の温度を変化させて、厚さおよそ5000オングストロームの酸化膜を有するウェーハを処理し、それぞれの温度において酸化膜の除去に要する時間を測定した。
その結果フッ酸14の温度が摂氏50度の時の所要時間は40秒、70度では5秒であった。
【0054】
実施例1における除去に要した時間(3分)と実施例4の結果を合わせて、図9に処理温度と所要時間の関係を示した。この図の関係から除去速度(単位時間当りの酸化膜厚さの減少量)を算出し、〔表2〕に示した。これらの価とフッ酸の温度(絶対温度)の逆数との間の関係は図10に示すように直線で近似されるので、この関係を用いて除去反応に対する見かけの活性化エネルギーを算出すると、およそ6キロカロリ/モルの値が得られた。
【表2】
Figure 0003910830
【0055】
(実施例5)
図4は本発明に基づく酸化膜除去装置の第四の例を示す概略図である。この例では、容器12内の空間11にネブライザ41によりフッ酸14のミストを送入し、該空間を実質的にフッ酸蒸気で飽和させた。
また、この変形として、フッ酸蒸気を直接該空間に供給するようにすることも可能である。この場合にはさらに、図示しない温度調節装置でフッ酸蒸気を任意の温度に加熱して該空間に送入することが出来るので、フッ酸蒸気の温度をウェーハの温度とは別個に変化させることが可能となり、反応速度を一層幅広く制御することが出来る。
【0056】
(実施例6)
図5は本発明に基づく酸化膜除去装置の第五の例を示す概略図である。この例では、オリエンテーションフラット52のついたウェーハW’を処理するために、ウェーハW’の円形から欠けた部分を覆うように容器51を作成した。すなわち、それによって、フッ酸蒸気をウェーハ(W’)被処理面と容器内壁面13とで、あるいはウェーハ(W’)被処理面、容器内壁面13、およびフッ酸蒸発面15とで有効に密閉するようにした。
【0057】
(実施例7)
図6は本発明に基づく酸化膜除去装置の第六の例を示す概略図である。この例ではウェーハの上方にさらに別の加熱手段32(この例では赤外線ランプ)を設けた。これにより、ウェーハWの温度をフッ酸14とは別に高めることができるので、たとえば、ウェーハW被処理面の温度をフッ酸14、あるいはフッ酸蒸気とほぼ同じ温度に、あるいはより高い温度とすることが可能となり、反応をより望ましい状態で進めることが出来る。
【0058】
なお、本明細書中で使用した下記の用語は次のように定義するものとする。すなわち、フッ酸とはフッ化水素酸の水溶液、フッ酸蒸気とはフッ化水素と水の混合気体、フッ酸蒸発面とはフッ酸の液面、すなわち空間と接し、フッ酸蒸気がこの液面から蒸発し、あるいはこの面に凝縮する面、酸化膜とはウェーハ外面の主としてケイ素の酸化物からなる薄層、ウェーハ被処理面とは本発明の方法によって酸化膜を除去するウェーハ外面、耐フッ酸材料とはフッ酸あるいはフッ酸蒸気に対して耐蝕性を有する材料とする。また、実質的、ないしは実質的にという表現は当該する状態が厳密な意味にほぼ近い状況にあることを意味する。
【0059】
【発明の効果】
以上説明したように、本発明により、簡便な方法及び装置により、従来に比べ格段に速く、シリコンウェーハ外面の酸化膜を除去することが可能となった。また、この酸化膜の除去を簡便に実施することができる。
【図面の簡単な説明】
【図1】 本発明に基づく酸化膜除去装置の第一の例を示す概略図
【図2】 本発明に基づく酸化膜除去装置の第二の例を示す概略図
【図3】 本発明に基づく酸化膜除去装置の第三の例を示す概略図
【図4】 本発明に基づく酸化膜除去装置の第四の例を示す概略図
【図5】 本発明に基づく酸化膜除去装置の第五の例を示す概略図
【図6】 本発明に基づく酸化膜除去装置の第六の例を示す概略図
【図7】 従来の酸化膜除去装置の一例を示す概略図
【図8】 酸化膜の厚さと除去に要する時間の関係を示すグラフ
【図9】 フッ酸の温度と除去に要する時間の関係を示すグラフ
【図10】 除去反応の速度と温度の逆数の関係を示すグラフ
【符号の説明】
11 フッ酸蒸気が存在する空間
12 耐フッ酸材料製容器
13 容器の内周壁、または内周壁面
14、61 フッ酸
15 フッ酸蒸発面
21 耐フッ酸材料製多孔質円板
31、32 加熱手段
41 ネブライザ
51 オリエンテーションフラット付きウェーハ用容器
52 オリエンテーションフラット
62 ウェーハバスケット
63 反応容器
64 フッ酸容器
65 フッ酸蒸気
W 酸化膜を外面に有するシリコンウェーハ
W’酸化膜を外面に有するオリエンテーションフラットのついたシリコンウェーハ[0001]
[Field of the Invention]
The present invention relates to a method and an apparatus for removing an oxide film formed on an outer surface of a silicon wafer used for manufacturing a semiconductor element.
[0002]
[Prior art]
A thin layer made of an oxide of silicon (hereinafter referred to as a thin layer made of an oxide of silicon) formed naturally or artificially on the outer surface of a silicon wafer (hereinafter simply referred to as a wafer) used for manufacturing a semiconductor device. It may be necessary to remove the oxide film (simply referred to simply as an oxide film) during the subsequent handling of the wafer. In that case, as a means for removing the oxide film as uniformly as possible without affecting the properties of the surface of the silicon single crystal with which the oxide film is in contact, hydrofluoric acid vapor (hydrogen fluoride gas and water vapor) The method of making the mixture act).
[0003]
One example of a conventional method for removing an oxide film with hydrofluoric acid vapor will be described with reference to a schematic diagram shown in FIG. A reaction vessel 63 in which a basket 62 in which a plurality of wafers W are arranged and accommodated and a hydrofluoric acid solution 64 containing a hydrofluoric acid aqueous solution (hereinafter simply referred to as hydrofluoric acid) 61 are arranged in a sealable reaction vessel 63. Is sealed and left at a predetermined temperature for a predetermined time. The hydrofluoric acid vapor 65 evaporated from the hydrofluoric acid moves through the space in the reaction vessel 63, contacts the outer surface of the wafer W, and reacts with the oxide film, whereby the oxide film is removed. In this method, a plurality of wafers can be processed at the same time. However, in order to remove the oxide film almost completely, in the case of a natural oxide film, it is artificially formed at room temperature for 30 to 40 minutes. In the case of an oxidized belly, for example, it took 12 hours or more at room temperature to remove an oxide film having a thickness of about 5000 angstroms.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the problems of the conventional method, and an object of the present invention is to provide a method and apparatus for easily and quickly removing an oxide film formed on the outer surface of a wafer.
[0005]
The reaction occurring between the silicon oxide and hydrogen fluoride gas is estimated to proceed according to the reaction formula shown in [Chemical Formula 1] or [Chemical Formula 2].
[Chemical 1]
Figure 0003910830
[Chemical 2]
Figure 0003910830
The rate of these reactions is affected by the amount of hydrofluoric acid vapor that reaches the outer surface of the wafer. This hydrofluoric acid vapor is a mixed gas of hydrogen fluoride gas and water vapor, and when coexisting with hydrofluoric acid, the amount of each of these gases present in the space is (1) the concentration of hydrogen fluoride in hydrofluoric acid, (2) It is determined by the temperature of the entire system composed of hydrofluoric acid and gas, and (3) the degree of saturation of each gas in the space.
[0006]
In general, the rate of chemical reaction does not exceed the rate determined by the activation energy value and temperature of the reaction under the given conditions. In this case, the reaction rate is more than the amount corresponding to this maximum reaction rate. Even if gas (hydrofluoric acid vapor) is supplied to the outer surface of the wafer, the reaction of [Chemical Formula 1] or [Chemical Formula 2] does not proceed at this rate or higher. A reaction in this situation is said to be in a reaction-controlled state.
[0007]
On the other hand, if the reaction rate is determined by the amount of reactant supplied, it is said to be in a rate-controlled state. In the case of this technology in which the oxide film is removed by reacting with hydrofluoric acid vapor, the reaction rate is affected by the supply amount of hydrofluoric acid vapor, and the higher the supply amount, the faster the reaction rate becomes, and the reaction rate is limited. Get closer. In other words, the removal of the oxide film proceeds promptly. Therefore, in order to proceed with the removal of the oxide film as quickly as possible, it is desirable to bring the reaction rate as close as possible.
[0008]
By the way, in the above-described conventional method (apparatus), as described in detail in “Embodiments of the Invention”, a wafer (hereinafter referred to as a wafer to be processed) from which an oxide film is to be removed and hydrofluoric acid are removed. Volume of container (hereinafter referred to as hydrofluoric acid container) to be accommodated, total surface area of wafer to be processed, hydrofluoric acid liquid surface where hydrofluoric acid vapor evaporates (hereinafter simply referred to as hydrofluoric acid evaporation surface), hydrofluoric acid temperature, etc. In view of the above conditions and the fact that the movement of hydrofluoric acid vapor in the vessel is almost close to natural convection, the reaction is in a rate-controlled state and the supply amount of hydrofluoric acid vapor is considered to be considerably small. It is done. For this reason, it takes a considerably long time to remove the oxide film, which is a major drawback of the conventional method.
[0009]
As a result of diligently developing a method for removing the oxide film in a reaction rate-determining state that has overcome this drawback and a simple apparatus for realizing the method, the method and apparatus described in the present application are invented. It came to do.
[0010]
[Means for Solving the Problems]
In the method for removing an oxide film of the present invention, a space in which hydrofluoric acid vapor exists is substantially formed by using a wafer processing surface, a hydrofluoric acid evaporation surface, and an inner wall surface of a container in which the wafer is placed, A porous material that is corrosion resistant to the hydrofluoric acid and wets with the hydrofluoric acid is disposed on the hydrofluoric acid evaporation surface .
That is, the method of the present invention improves the fact that the amount of hydrofluoric acid vapor supplied to the wafer processing surface in the conventional method is considerably smaller than the amount corresponding to the reaction rate limiting, and the reaction rate is extremely slow. To react in a reaction-controlled state. That is, according to this method, hydrofluoric acid oozes through the communicating pores in the porous disk by capillary action and oozes to the surface of the porous disk, thereby greatly increasing the hydrofluoric acid evaporation surface. Therefore, the amount of evaporation of hydrofluoric acid vapor increases further, and the reaction is further promoted.
[0011]
According to the second aspect of the present invention, a space in which hydrofluoric acid vapor exists is substantially formed by using a wafer processing surface and an inner wall surface of a container in which the wafer is placed, and a hydrofluoric acid is formed in the space by a nebulizer. And saturating with hydrofluoric acid vapor .
[0012]
[0013]
[0014]
To promote removal of the oxide film in the state of the reaction rate as before reporting, space in contact with the oxide film is always been substantially saturated with hydrofluoric acid vapor, or the wafer surface to be processed and hydrofluoric acid evaporation surface and Are placed close to each other in a substantially sealed space, and the reaction product, silicon tetrafluoride (SiF 4 ) or hexafluorosilicic acid (H 2 SiF 6 ), is quickly absorbed by hydrofluoric acid. Therefore, it is necessary to realize a situation where the oxide film is detached from the surface of the oxide film. As will be described in the examples, when the apparent activation energy value for the removal reaction is estimated from the data indicating the relationship between the removal rate and the temperature when the oxide film is removed in such a situation, about A value of 6 kilocalories / mole is obtained, which is a reasonable value for the activation energy of the chemical reaction. Further, within the temperature range in the embodiment, the change in the removal rate of the oxide film depending on the temperature (FIG. 9) is the change due to the temperature of the equilibrium vapor pressure (saturated vapor pressure) of hydrofluoric acid vapor, or the temperature of the gas diffusion coefficient. In view of the fact that it is one or two orders of magnitude larger than the change caused by the above, it is confirmed that the reaction proceeds in a reaction-controlled state in the method of the present invention.
[0015]
Off the existing space of Tsu acid vapor, substantially formed by an inner wall surface of the container to place the claim 2, the wafer surface to be processed and the wafer, the wafer surface to be processed in the claim 1, hydrofluoric acid evaporation surface , and you essentially formed by the inner wall surface of the container to place the wafer.
[0016]
That is, as in the embodiment shown in FIG. 1, hydrofluoric acid vapor is generated by the surface to be processed (lower surface) of the wafer W, the inner wall surface 13 of the container 12, and the liquid surface of hydrofluoric acid 14 (that is, hydrofluoric acid evaporation surface) 15. Is formed so that the hydrofluoric acid vapor evaporated from the hydrofluoric acid evaporation surface 15 moves to the wafer processing surface, or the processing surface (lower surface) of the wafer W as shown in FIG. And a means in which a gas containing hydrofluoric acid vapor is separately provided in a space formed by the inner peripheral wall 13 of the container 12, for example, nebulizer 41 or the like.
[0017]
[0018]
[0019]
[0020]
[0021]
[0022]
[0023]
The method of the present invention is characterized in that the oxide film is removed at a temperature of 20 degrees Celsius or higher.
[0024]
As shown in FIG. 9, the higher the temperature, the shorter the time required to remove the oxide film having a constant thickness. In other words, the removal speed increases, so that the temperature of the apparatus is at least 20 degrees Celsius or higher. It is effective to carry out at a high temperature as long as the material can be used, or as much as possible from the safety aspect of the processing operation and other conditions.
[0025]
When hydrofluoric acid is contained in a container, the temperature of the hydrofluoric acid is preferably not higher than the boiling point, preferably not higher than 80 degrees Celsius, in order to avoid sudden boiling of the hydrofluoric acid vapor.
[0026]
The apparatus for removing an oxide film of a silicon wafer according to the present invention is a bottomed container made of a hydrofluoric acid resistant material, the inner wall of which is larger than the diameter of the wafer having an oxide film on the outer surface at the upper end and faces downward. The wafer is inclined so as to be smaller than the diameter of the wafer, the wafer processing surface is held downward by the inclined inner wall, and the wafer is held in opposition to the hydrofluoric acid evaporation surface accommodated in the container. A sealed space is formed by using the surface to be processed of the wafer, the hydrofluoric acid evaporation surface and the inner wall of the bottomed container, and the hydrofluoric acid evaporation surface has corrosion resistance to the hydrofluoric acid, and the hydrofluoric acid It is characterized in that a porous material that gets wet is disposed .
[0027]
[0028]
[0029]
[0030]
[0031]
[0032]
[0033]
Furthermore, the apparatus for removing an oxide film from a silicon wafer according to the present invention is characterized by comprising means for controlling the temperature of the wafer processing surface or hydrofluoric acid vapor.
[0034]
As a result, the reaction between the oxide film and hydrofluoric acid can be performed at a predetermined temperature and within a desired range.
[0035]
A further feature of the apparatus for removing an oxide film from a silicon wafer according to the present invention is that it includes means for controlling the respective temperatures of the wafer back surface, hydrofluoric acid, or hydrofluoric acid vapor.
[0036]
Thus, by providing means for controlling the temperature of the wafer processing surface, hydrofluoric acid, or hydrofluoric acid vapor, each of these can be maintained at an arbitrary temperature and within a desired range. It becomes possible to control the reaction more precisely.
[0037]
For example, as schematically shown in FIG. 3, if the container 12 is heated from below by a heating means 31 (for example, a heater) to raise the temperature of the hydrofluoric acid 14, the heated hydrofluoric acid Since the hydrofluoric acid vapor corresponding to the hydrofluoric acid temperature evaporates, the supply amount of the hydrofluoric acid vapor to the wafer surface increases. Further, since the wafer is heated by the temperature of the hydrofluoric acid vapor, the reaction is accelerated by that amount, but the temperature of the wafer W is lower than the temperature of the hydrofluoric acid. Therefore, a part of the hydrofluoric acid vapor condenses as hydrofluoric acid on the wafer processing surface. Therefore, in this case, the reaction also proceeds between the condensed hydrofluoric acid and the oxide film.
[0038]
On the other hand, by providing means for controlling the temperatures of the wafer processing surface, hydrofluoric acid, or hydrofluoric acid vapor, each of them is set to substantially the same temperature, or for example, the temperature of the wafer is made higher than the temperature of hydrofluoric acid. Can also be increased. Therefore, the reaction rate can be further increased. In this case, the hydrofluoric acid vapor does not condense on the surface to be processed of the wafer as described above, and the reaction can be allowed to proceed completely with only the hydrofluoric acid vapor.
[0039]
As described above, the hydrofluoric acid, the hydrofluoric acid vapor, and the wafer processing surface, at least the temperature of the hydrofluoric acid vapor contacting the wafer processing surface is substantially equal to the temperature of the wafer processing surface, or the wafer When the temperature of the surface to be processed is higher, the hydrofluoric acid vapor does not condense on the surface to be processed of the wafer, but conversely, the temperature of the hydrofluoric acid vapor contacting the surface of the wafer to be processed is lower than the temperature of the surface to be processed of the wafer. In some cases, the hydrofluoric acid vapor may condense on the wafer processing surface, resulting in hydrofluoric acid droplets or thin films on the wafer processing surface. Is also included.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings, but these are examples for realizing the technical idea of the present invention, and the present invention is not limited thereto.
In the following comparative examples and examples, the pressure (total atmospheric pressure) of the total gas in the space containing hydrofluoric acid vapor is almost normal pressure, but as long as it meets the technical idea of the present invention, The value of the total atmospheric pressure in the space is not particularly limited. In other words, in order to be able to remove the oxide film at the most desirable rate from a practical point of view, in addition to conditions such as the temperature in the processing operation, the composition of hydrofluoric acid vapor (ratio of hydrogen fluoride gas and water vapor), What is necessary is just to select suitably the value of the total atmospheric pressure in the space containing hydrofluoric-acid vapor | steam.
[0041]
(Comparative example)
FIG. 7 is a schematic view of an example of a conventionally used apparatus for removing an oxide film (hereinafter, an apparatus for removing an oxide film is simply referred to as an oxide film removing apparatus). Reference numeral 63 denotes a sealable reaction vessel made of a material having corrosion resistance to hydrofluoric acid (hereinafter simply referred to as a hydrofluoric acid-resistant material, such as polypropylene or Teflon). Similarly, reference numeral 62 denotes a wafer basket made of a hydrofluoric acid resistant material, which can store a plurality of wafers upright at a predetermined interval in a state close to vertical. Reference numeral 64 denotes a container containing hydrofluoric acid, which is made of a hydrofluoric acid resistant material. A wafer basket 62 containing 12 wafers W having a natural oxide film and a hydrofluoric acid container 64 containing 50% hydrofluoric acid 61 are arranged in the reaction container 63 as shown in the figure to seal the reaction container 63, The oxide film was allowed to react with hydrofluoric acid vapor by being left at room temperature (about 23 degrees Celsius). The oxide film could be removed in about 30 to 40 minutes. Further, 12 wafers W having an artificially formed oxide film having a thickness of about 5000 angstroms were similarly placed in the wafer basket 62 and sealed in the reaction vessel 63 to remove the oxide film. The time required for removal was approximately 12 hours.
[0042]
In this example, a reaction vessel 63 and a hydrofluoric acid vessel 64 having different volumes according to the wafer diameter were used. These numerical values will be described later in comparison with the values in the examples.
[0043]
Example 1
FIG. 1 is a schematic view showing a first example of an oxide film removing apparatus according to the present invention. In FIG. 1, 12 is a cylindrical container made of a hydrofluoric acid resistant material (Teflon), and its inner peripheral wall 13 is inclined in an inverted frustoconical shape from its upper end toward the central axis. That is, the circular diameter formed by the upper end of the inner peripheral wall of the container is larger than the diameter of the wafer W to be processed, and the circular shape formed by the lower end, that is, the diameter of the bottom surface in the container is smaller than the diameter of the wafer W to be processed. In this way, it can be held by the container inner peripheral wall 13. A predetermined amount of hydrofluoric acid having a concentration of 50% is poured into the container, and the surface to be processed of the wafer W is placed horizontally so as to face the hydrofluoric acid evaporation surface 15 and is in contact with the hydrofluoric acid vapor. I did it.
[0044]
When the wafer W having the natural oxide film was kept in this state at room temperature (approximately 23 degrees Celsius), the removal of the oxide film was completed in approximately 3 seconds.
[0045]
Similarly, when a wafer W on which an oxide film having a thickness of about 5000 mm was formed was processed at room temperature, the removal of the oxide film was completed in about 3 minutes. In the case of a natural oxide film, the oxide film could be removed at a speed 600 to 800 times that of the conventional method, and in the case of an oxide film having a thickness of 5000 angstroms, the oxide film could be removed at a speed about 240 times that of the conventional method.
[0046]
As long as the wafer W and the hydrofluoric acid evaporation surface 15 are not in contact with each other, the closer the wafer W and the hydrofluoric acid evaporation surface 15 are, the more effective is the removal of the oxide film. By changing the distance, the distance between the wafer W and the hydrofluoric acid evaporation surface 15 can be set to a desired value.
[0047]
In this example, the case of processing a single wafer has been described. However, as long as the technical idea of the present invention is applied, it is possible to devise an apparatus that can process a plurality of wafers simultaneously or an automated apparatus. is there.
[0048]
Oxide films were removed by preparing containers suitable for the wafers having diameters of 6 inches and 8 inches by the above-described comparative example and the method of Example 1, respectively. The dimensions in each case are shown in comparison with [Table 1].
[0049]
As is apparent from the values shown in Table 1 below, in the embodiment according to the method of the present invention, the amount of hydrofluoric acid vapor supplied per unit area of the wafer processing surface per unit time makes the reaction proceed sufficiently fast. It is inferred that it has sufficient conditions. For example, when the value of the ratio of the wafer processing surface area to the hydrofluoric acid evaporation surface area is compared, the method of the present invention is a value that is 50 to 60 times more advantageous than the conventional method. In the method of the present invention, the substantial space volume (the space where hydrofluoric acid vapor exists) is reduced from 1/40 to 1/50 of the conventional method, and the distance between the wafer processing surface and the hydrofluoric acid evaporation surface is the present invention. In this method, it is set to about 10 mm.
[Table 1]
Figure 0003910830
[0050]
(Example 2)
Oxide films with different thicknesses were formed on each 6-inch diameter wafer and processed in the same manner as in Example 1, and the time required to remove each oxide film was measured. FIG. 8 shows the result. The time required for removal is directly proportional to the film thickness, and it is known that the removal reaction proceeds at the same speed if other conditions are the same regardless of the film thickness.
[0051]
(Example 3)
FIG. 2 is a schematic view showing a second example of the oxide film removing apparatus according to the present invention. This example is the same as Example 1 except that the porous disc 21 made of a hydrofluoric acid resistant material is disposed so as to be slightly immersed in hydrofluoric acid. The hydrofluoric acid 14 oozes out on the upper surface of the disk 21 by capillary action to form a hydrofluoric acid evaporation surface 15. Accordingly, it is possible to avoid the hydrofluoric acid evaporation surface from becoming unstable due to the vibration or inclination of the container 12, and therefore the hydrofluoric acid evaporation surface 15 can be brought close to the wafer processing surface, which is effective for the reaction progress. Is extremely expensive. In this example, the oxide film could be removed by approaching to 3 mm. Furthermore, since the effective area of the hydrofluoric acid evaporation surface 15 is also increased, the evaporation amount of hydrofluoric acid vapor is further increased and the reaction is further promoted.
[0052]
In the present example, the porous disk 21 is formed by compression-molding a polypropylene resin fiber into a disk shape, but other foams having continuous pores made of a hydrofluoric acid-resistant material that easily wets with hydrofluoric acid. A body or a woven fabric is used.
[0053]
Example 4
FIG. 3 is a schematic view of a third example of the oxide film removing apparatus according to the present invention. In this example, a heating means 31 is provided below the container 12. As a result, when the container 12 is heated from below to increase the hydrofluoric acid temperature, the amount of hydrofluoric acid vapor can be increased and the hydrofluoric acid vapor temperature also increases. The temperature of the treatment surface also increases with this, and the reaction rate increases. In this example, the temperature of hydrofluoric acid is changed by a heating means 31 and a temperature adjusting means (not shown) to process a wafer having an oxide film with a thickness of about 5000 angstroms, and it is necessary to remove the oxide film at each temperature. Time was measured.
As a result, the required time when the temperature of the hydrofluoric acid 14 was 50 degrees Celsius was 40 seconds, and when the temperature was 70 degrees Celsius, it was 5 seconds.
[0054]
The time required for removal in Example 1 (3 minutes) and the result of Example 4 are combined, and FIG. 9 shows the relationship between the processing temperature and the required time. The removal rate (the amount of decrease in the oxide film thickness per unit time) was calculated from the relationship of this figure, and is shown in [Table 2]. Since the relationship between these values and the reciprocal of the hydrofluoric acid temperature (absolute temperature) is approximated by a straight line as shown in FIG. 10, when the apparent activation energy for the removal reaction is calculated using this relationship, A value of approximately 6 kilocalories / mol was obtained.
[Table 2]
Figure 0003910830
[0055]
(Example 5)
FIG. 4 is a schematic view showing a fourth example of the oxide film removing apparatus according to the present invention. In this example, a mist of hydrofluoric acid 14 was fed into the space 11 in the container 12 by the nebulizer 41, and the space was substantially saturated with hydrofluoric acid vapor.
In addition, as a modification, it is possible to supply hydrofluoric acid vapor directly to the space. In this case, furthermore, the hydrofluoric acid vapor can be heated to an arbitrary temperature and sent into the space by a temperature control device (not shown), so that the hydrofluoric acid vapor temperature is changed separately from the wafer temperature. And the reaction rate can be controlled more widely.
[0056]
(Example 6)
FIG. 5 is a schematic view showing a fifth example of the oxide film removing apparatus according to the present invention. In this example, in order to process the wafer W ′ with the orientation flat 52, the container 51 is formed so as to cover a portion lacking from the circle of the wafer W ′. In other words, hydrofluoric acid vapor is effectively applied to the wafer (W ′) surface to be processed and the inner wall surface 13 of the wafer, or to the wafer (W ′) surface to be processed, the inner wall surface 13 of the container, and the hydrofluoric acid evaporation surface 15. It was made to seal.
[0057]
(Example 7)
FIG. 6 is a schematic view showing a sixth example of the oxide film removing apparatus according to the present invention. In this example, another heating means 32 (in this example, an infrared lamp) is provided above the wafer. As a result, the temperature of the wafer W can be raised separately from the hydrofluoric acid 14, so that, for example, the temperature of the surface to be processed of the wafer W is set to a temperature substantially equal to or higher than the hydrofluoric acid 14 or hydrofluoric acid vapor. And the reaction can proceed in a more desirable state.
[0058]
In addition, the following terms used in this specification shall be defined as follows. That is, hydrofluoric acid is an aqueous solution of hydrofluoric acid, hydrofluoric acid vapor is a mixed gas of hydrogen fluoride and water, and the hydrofluoric acid evaporation surface is in contact with the liquid surface of hydrofluoric acid, that is, the space. The surface that evaporates or condenses on this surface, the oxide film is a thin layer mainly composed of silicon oxide on the wafer outer surface, the wafer processing surface is the wafer outer surface from which the oxide film is removed by the method of the present invention, The hydrofluoric acid material is a material having corrosion resistance to hydrofluoric acid or hydrofluoric acid vapor. In addition, the expression “substantially” or “substantially” means that the corresponding state is almost in a strict sense.
[0059]
【The invention's effect】
As described above, according to the present invention, the oxide film on the outer surface of the silicon wafer can be removed with a simple method and apparatus much faster than conventional methods. Further, the removal of the oxide film can be easily performed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first example of an oxide film removing apparatus according to the present invention. FIG. 2 is a schematic diagram showing a second example of an oxide film removing apparatus according to the present invention. FIG. 4 is a schematic diagram showing a fourth example of the oxide film removing apparatus according to the present invention. FIG. 5 is a schematic diagram showing the fourth example of the oxide film removing apparatus according to the present invention. FIG. 6 is a schematic diagram showing a sixth example of an oxide film removing apparatus according to the present invention. FIG. 7 is a schematic diagram showing an example of a conventional oxide film removing apparatus. FIG. [Figure 9] Graph showing the relationship between the temperature of hydrofluoric acid and the time required for removal [Fig. 10] Graph showing the relationship between the rate of the removal reaction and the reciprocal of temperature [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Space where hydrofluoric acid vapor exists 12 Container 13 made of hydrofluoric acid material 13 Inner peripheral wall or inner peripheral wall 14, 61 of hydrofluoric acid 15 Hydrofluoric acid evaporation surface 21 Porous discs 31, 32 made of hydrofluoric acid material 41 nebulizer 51 wafer container 52 with orientation flat orientation flat 62 wafer basket 63 reaction container 64 hydrofluoric acid container 65 hydrofluoric acid vapor W silicon wafer having an oxide film on the outer surface W 'silicon wafer having an orientation flat having an oxide film on the outer surface

Claims (9)

フッ酸蒸気の存在する空間を、ウェーハ被処理面、フッ酸蒸発面、および当該ウェーハを配置する容器の内壁面を用いて、実質的に形成し、前記フッ酸蒸発面に該フッ酸に対して耐蝕性を有し、かつフッ酸で濡れる多孔質材を配置することを特徴とするシリコンウェーハの酸化膜を除去する方法。 A space in which hydrofluoric acid vapor exists is substantially formed by using the wafer processing surface, the hydrofluoric acid evaporation surface, and the inner wall surface of the container in which the wafer is placed, and the hydrofluoric acid evaporation surface is in contact with the hydrofluoric acid. A method for removing an oxide film from a silicon wafer, comprising disposing a porous material that is corrosion resistant and wets with hydrofluoric acid . フッ酸蒸気の存在する空間を、ウェーハ被処理面と当該ウェーハを配置する容器の内壁面を用いて実質的に形成し、前記空間内にネブライザによりフッ酸のミストを投入してフッ酸蒸気で飽和させることを特徴とするシリコンウェーハの酸化膜を除去する方法。 A space where hydrofluoric acid vapor exists is substantially formed using the wafer processing surface and the inner wall surface of the container in which the wafer is placed, and a mist of hydrofluoric acid is introduced into the space by a nebulizer to generate hydrofluoric acid vapor. A method of removing an oxide film from a silicon wafer characterized by saturation . 摂氏20度以上の温度で実施することを特徴とする請求項1または2のいずれかに記載するシリコンウェーハの酸化膜を除去する方法。 3. The method for removing an oxide film from a silicon wafer according to claim 1, wherein the method is performed at a temperature of 20 degrees Celsius or more . フッ酸の温度が摂氏20度以上沸点以下であることを特徴とする請求項3に記載するシリコンウェーハの酸化膜を除去する方法。 4. The method for removing an oxide film from a silicon wafer according to claim 3, wherein the temperature of hydrofluoric acid is not less than 20 degrees Celsius and not more than the boiling point . フッ酸の温度が摂氏20度以上80度以下であることを特徴とする請求項4に記載するシリコンウェーハの酸化膜を除去する方法。 5. The method for removing an oxide film from a silicon wafer according to claim 4, wherein the temperature of hydrofluoric acid is 20 degrees centigrade or more and 80 degrees centigrade or less . 耐フッ酸材料で構成された有底容器であって、その内壁が、上端において外面に酸化膜を有するウェーハの径より大きく、下方に向かって該ウェーハの径より小さくなるように傾斜していて、その傾斜した内壁によってウェーハ処理面を下向きに、該容器内に収容したフッ酸蒸発面に対向して該ウェーハを保持することによって、実質的に密閉された空間をウェーハの被処理面、フッ酸蒸発面および該有底容器内壁を用いて形成し、前記フッ酸蒸発面に該フッ酸に対して耐蝕性を有し、かつフッ酸で濡れる多孔質材が配置されてなることを特徴とするシリコンウェーハの酸化膜を除去する装置。A bottomed container made of a hydrofluoric acid-resistant material, the inner wall of which is inclined to be larger than the diameter of the wafer having an oxide film on the outer surface at the upper end and smaller than the diameter of the wafer toward the lower side. By holding the wafer with the inclined inner wall facing down the wafer processing surface and facing the hydrofluoric acid evaporation surface accommodated in the container, the substantially sealed space is held in the wafer processing surface, It is formed using an acid evaporation surface and an inner wall of the bottomed container, and a porous material that is corrosion resistant to the hydrofluoric acid and wets with the hydrofluoric acid is disposed on the hydrofluoric acid evaporation surface. A device that removes oxide film from silicon wafers. 耐フッ酸材料で構成された有底容器であって、その内壁が、上端において外面に酸化膜を有するウェーハの径より大きく、下方に向かって該ウェーハの径より小さくなるよう傾斜していて、その傾斜した内壁によって該ウェーハをその被処理面を下向きにして容器内に保持することによって、実質的に密閉された空間をウェーハ被処理面と該有底容器内壁とを用いて形成し、前記空間内にネブライザによりフッ酸のミストを投入してフッ酸蒸気で飽和されて構成されることを特徴とするシリコンウェーハの酸化膜を除去する装置。A bottomed container made of a hydrofluoric acid resistant material, the inner wall of which is inclined to be larger than the diameter of the wafer having an oxide film on the outer surface at the upper end and smaller than the diameter of the wafer toward the lower side, By holding the wafer in the container with the surface to be processed downward by the inclined inner wall, a substantially sealed space is formed using the wafer processed surface and the inner wall of the bottomed container, An apparatus for removing an oxide film from a silicon wafer, characterized in that a mist of hydrofluoric acid is introduced into a space by a nebulizer and saturated with hydrofluoric acid vapor. ウェーハ被処理面、あるいはフッ酸蒸気のそれぞれの温度を制御する手段を備えたことを特徴とする請求項7に記載するシリコンウェーハの酸化膜を除去する装置。8. The apparatus for removing an oxide film from a silicon wafer according to claim 7, further comprising means for controlling the temperature of the wafer processing surface or each of hydrofluoric acid vapor. ウェーハ被処理面、フッ酸、あるいはフッ酸蒸気のそれぞれの温度を制御する手段を備えたことを特徴とする請求項6に記載するシリコンウェーハの酸化膜を除去する装置。7. The apparatus for removing an oxide film from a silicon wafer according to claim 6, further comprising means for controlling the temperatures of the wafer processing surface, hydrofluoric acid, and hydrofluoric acid vapor.
JP2001348586A 2001-11-14 2001-11-14 Method and apparatus for removing oxide film from silicon wafer Expired - Lifetime JP3910830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348586A JP3910830B2 (en) 2001-11-14 2001-11-14 Method and apparatus for removing oxide film from silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348586A JP3910830B2 (en) 2001-11-14 2001-11-14 Method and apparatus for removing oxide film from silicon wafer

Publications (2)

Publication Number Publication Date
JP2003151944A JP2003151944A (en) 2003-05-23
JP3910830B2 true JP3910830B2 (en) 2007-04-25

Family

ID=19161385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348586A Expired - Lifetime JP3910830B2 (en) 2001-11-14 2001-11-14 Method and apparatus for removing oxide film from silicon wafer

Country Status (1)

Country Link
JP (1) JP3910830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062166A1 (en) * 2010-11-30 2012-05-31 Thin Materials Ag Method for treating wafers and microplates

Also Published As

Publication number Publication date
JP2003151944A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
US5279705A (en) Gaseous process for selectively removing silicon nitride film
JP6199744B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and vaporizing apparatus
KR102104728B1 (en) Substrate processing device, manufacturing method of semiconductor device and recording medium
TWI355032B (en) A method of forming an oxide layer
JP5605464B2 (en) Film forming apparatus and cleaning method thereof
CN102917996A (en) Method of producing porous glass
KR20120028923A (en) Methods of making an article of semiconducting material on a mold comprising semiconducting material
JP2006332201A (en) Cleaning method and apparatus of nitride semiconductor manufacturing apparatus
JPH0613358A (en) Method for selectively etching oxide
JPH09293701A (en) Manufacture of semiconductor
JP3910830B2 (en) Method and apparatus for removing oxide film from silicon wafer
US6558559B1 (en) Method of manufacturing micromechanical surface structures by vapor-phase etching
US3962391A (en) Disc support structure and method of producing the same
JP2000031113A (en) Wet etching device for manufacturing semiconductor element and wet etching method for semiconductor element using the same
KR20120030091A (en) Methods of making an article of semiconducting material on a mold comprising particles of a semiconducting material
US4093201A (en) Disc support structure
WO2018230377A1 (en) Substrate processing method
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JPH10209106A (en) Method and equipment for cleaning semiconductor substrate
US9812334B2 (en) Corrosion method of passivation layer of silicon wafer
JP2014500220A (en) Method for producing unsupported semiconductor material using thermally active mold
JP7443953B2 (en) Method and system for removing phosphorus-doped silicon film
JP5452884B2 (en) Processing method for processing oxide film of silicon wafer
JP7092087B2 (en) Gas phase decomposition method for semiconductor substrates
JPS61134027A (en) Wet processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070125

R150 Certificate of patent or registration of utility model

Ref document number: 3910830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term