JP3910222B2 - Fatigue measuring device - Google Patents

Fatigue measuring device Download PDF

Info

Publication number
JP3910222B2
JP3910222B2 JP07990095A JP7990095A JP3910222B2 JP 3910222 B2 JP3910222 B2 JP 3910222B2 JP 07990095 A JP07990095 A JP 07990095A JP 7990095 A JP7990095 A JP 7990095A JP 3910222 B2 JP3910222 B2 JP 3910222B2
Authority
JP
Japan
Prior art keywords
fatigue
phase
excitation
detection
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07990095A
Other languages
Japanese (ja)
Other versions
JPH08248004A (en
Inventor
隆幸 加藤
和正 鷲見
嘉久 小松
孝志 寒河江
康二 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP07990095A priority Critical patent/JP3910222B2/en
Publication of JPH08248004A publication Critical patent/JPH08248004A/en
Application granted granted Critical
Publication of JP3910222B2 publication Critical patent/JP3910222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、オーステナイト系ステンレス鋼製の部品が疲労により亀裂を生じる前にその疲労度を測定する装置に関するものである。
【0002】
【従来の技術】
従来、金属疲労を検出する方法として最も一般的に行なわれているのは、金属内部に超音波を投入し、その反射波を検出する方法(超音波検出法)である。これは、検出部の近傍に亀裂が存在する場合、その亀裂の表面により超音波が反射されるため亀裂の検出が可能となるものであるが、このような検出原理のため、亀裂が相当程度大きくないと検出ができないという欠点がある。また、応力集中部等の亀裂の発生が予想される箇所に一定の直流又は交流電流を流しておき、その両端の電圧の変化により亀裂の発生を検出する方法(電位差法)もある。この方法によると、超音波検出法よりは微小な亀裂を検出することが可能である。さらに、励磁コイルにより交番磁界を印加しておき、フラックスゲート磁束計で磁界の微小変化を検出することにより亀裂を検出する方法(フラックスゲート磁束計法。特開平6−308092号公報)も考案されている。
【0003】
【発明が解決しようとする課題】
以上説明した従来の疲労検出装置はいずれも、亀裂が発生した後にそれを検出するものであった。このため、疲労が予想され、しかも疲労による破壊が極めて重大な問題となる部品では、亀裂が検出可能な程度にまで大きくなっても部品の破壊が発生しないように、非常に大きな安全率を見込む必要があった。また、金属疲労では一般に亀裂が発生するまでは非常に長い時間又は繰り返し数が必要であるが、一旦亀裂が発生すると、その後の亀裂の成長は非常に速いため、検査間隔を十分短くとる必要があった。さらに、破壊よりもむしろ内部のガスや液体等の漏れが問題となる場合には、亀裂の存在自体が許されない場合もあり得る。なお、フラックスゲート磁束計法については、フラックスゲート磁束計が外部磁界に対しても極めて敏感であるため、不要な雑音磁界によって検出精度が悪化するという問題もある。
【0004】
本発明はこのような課題を解決するために成されたものであり、オーステナイト系ステンレス鋼製の部品について、疲労により亀裂が発生する前に、その疲労度を測定することができる装置を開発したものである。
【0005】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る疲労度測定装置は、
a)1本の強磁性体棒、強磁性体棒の略中央に巻かれた1つの励磁コイル、及び、その両側に巻かれた2つの検出コイルから成る検出部と、
b)上記励磁コイルに交流励磁電流を供給する励磁回路部と、
c)上記2つの検出コイルを差動変圧器構成に接続し、その出力信号を励磁電流の位相に基づいて位相解析することにより、オーステナイト系ステンレス鋼製の被検査物の透磁率に応じた電気信号を取り出す処理回路部と、
d) 鋼種毎の疲労度と透磁率の変化の関係を示すデータを格納したメモリと、
e)処理回路部から取り出される、被検査物の疲労に伴う透磁率変化に応じた電気信号の変化に基づき、前記メモリを参照することによりオーステナイト系ステンレス鋼製の被検査物の疲労度を算出する疲労度算出部と、
を備えることを特徴とするものである。
【0006】
【作用】
本発明の疲労度測定装置の構成及び作用を図1及び図2により説明する。検出部2は図2に示すように1本の強磁性体棒21、その略中央に巻かれた1つの励磁コイル22、及び、その両側に巻かれた2つの検出コイル23、24から成る。励磁コイルは励磁回路部4に接続され、励磁回路部4より交流励磁電流の供給を受ける。2つの検出コイル23、24は、励磁コイル22と共に差動変圧器構成となるように処理回路部3に接続されている。なお、処理回路部3は励磁回路部4から励磁電流の位相を表わす信号を受け取る。
【0007】
励磁回路部4から検出部2の励磁コイル22に交流の励磁電流を供給すると、検出部2の強磁性体棒21の両端からは交番磁束が放出される。この検出部2の一端を疲労していないオーステナイト系ステンレス鋼製の被検査物1の表面に接触させると、被検査物1の表面には渦電流が生成され、検出コイル23、24の両端には渦電流により起電力が生成される。処理回路部3は、励磁電流の位相に基づいて検出コイル23、24の出力の位相解析を行なうことにより、被検査物1の透磁率に応じた電気信号を取り出す。
【0008】
被検査物1に多数回の繰り返し応力が加わり、疲労が進むと、被検査物1のオーステナイト相が加工変態によりマルテンサイト相に変化する。これにより被検査物1の透磁率が変化し、検出コイル23、24の出力の位相状態が変化する。処理回路部3はこの位相状態の変化を検出し、疲労度算出部5はこの変化に基づいて被検査物1の疲労度を算出する。なお、本発明に係る疲労度測定装置はこのような原理を利用するものであるため、被検査物1の材質としてはマルテンサイト相への加工変態が生じやすい準オーステナイト相を有するステンレス鋼が望ましい。
【0009】
【発明の効果】
本発明に係る疲労度測定装置では、オーステナイト系ステンレス鋼製の被検査物の相変化による透磁率の変化を検出し、それに基づいて疲労度を測定するため、被検査物に亀裂が入る前に疲労が蓄積していることを検出することができる。すなわち、破壊が発生する前にその可能性を検出することができるため、亀裂の存在を前提とした無駄に大きい安全率を設定する必要がない。また、疲労蓄積が検出された場合でも、実際に微小な亀裂が発生する迄には長い時間がかかるため、検査間隔を比較的長くとることができる。さらに、本発明に係る疲労度測定装置は、亀裂自体が問題となるような部品に対しても有効に対処することができる。
【0010】
【実施例】
本発明の一実施例を図3に示す。本実施例の疲労度測定装置の基本的構成は図1及び2に示したものと同じであるため、同じ要素には同じ記号を使用する。本実施例では、検出部2の強磁性体棒21としては、直径1mm、長さ15mmの軟鉄棒を使用する。処理回路部3は、検出部2の2つの検出コイル23、24からの電圧信号を加算し、増幅する入力回路31、位相検波回路32及びローパスフィルタ33から構成される。励磁回路部4は正弦波電流発生回路41と移相回路42から構成される。また、疲労度算出部5は、処理回路部3のアナログ出力信号をデジタル値に変換するA/D変換器51、被検査物1の透磁率に応じた信号によって被検査物1の疲労度を算出するためのCPU52、及び、予め鋼種毎の試験片等を用いて計測した、透磁率変化に応じた出力値と疲労度との関係のデータを格納しておくメモリ53から構成される。
【0011】
本実施例の疲労度測定装置の作用は次の通りである。まず、検出部2を被検査物1から遠く離した状態で、正弦波電流発生回路41から励磁コイル22に交流電流を流し、2つの検出コイル23、24に誘起される電圧の絶対値が同じになるように入力回路31をバランスさせて入力回路31の出力電圧がゼロとなるようにする。その後、検出部2の強磁性体棒21の一端を疲労していないオーステナイト系ステンレス鋼製の被検査物1の表面に接触させる。被検査物1は導電体であるため、励磁コイル22によって発生する交流磁界に誘起されて、接触部を中心とした渦電流が生成される。この渦電流の影響により上記バランスが崩れ、2つの検出コイル23、24の入力回路31の出力電圧はゼロではなくなる。入力回路31の出力電圧は位相検波回路32に送られ、そこで移相回路42からの基準ベクトル電圧信号を基に位相解析される。このとき、位相検波回路32の出力がゼロとなるように位相検波回路32のパラメータ調整を行なっておく。
【0012】
次に、上記被検査物1に多数回の繰り返し負荷を加えて疲労させた後、強磁性体棒21の上記一端を被検査物1の上記と同じ箇所に接触させる。この場合、被検査物1のオーステナイト相の一部は繰り返し負荷により加工変態を生じ、マルテンサイトとなる。オーステナイト相は非磁性であるのに対しマルテンサイト相は強磁性であるため、強磁性体棒21の先端から放出される交番磁束により誘起される被検査物1の渦電流に変化が生じ、検出コイル23、24の出力電圧の位相に僅かの変化を生ずる。位相検波回路32はこの位相変化を検出し、出力する。位相検波回路32の出力(アナログ)はローパスフィルタ33を通して疲労度算出部5のA/D変換器51に送られ、デジタル値に変換される。CPU52は、メモリ53に格納されているデータを参照することにより、位相検波回路32の出力データに基づいて被検査物1の疲労度を決定する。決定された疲労度は、予め定められたフォーマットで表示装置6に表示される。
【0013】
メモリ53に格納しておく参照データの決定方法の一例を次に説明する。まず、被検査物1と同じ材質で図4に示すような試験片8を作成する。この試験片8は、縦48×横50mmの平板の中央に、負荷線からの深さが24.5mmの切り込み81を入れたもので、切り込み81の先端にはドリルで半径4mmのアールを付けておく。負荷用の孔83、84にピンを差し込み、油圧式疲労試験機により切り込み81が開く方向に所定の振幅の荷重を繰り返し負荷する。所定回数毎に疲労試験機を停止し、切り込み81先端のアール部分82の先の方の疲労度を上記実施例の疲労測定装置で測定する。こうして、負荷の繰り返し回数とA/D変換器51のデジタル出力値のデータを多数採取し、グラフにプロットすると、図5及び図6に示すようなグラフが得られる。図5はSUS304について得られた結果であり、図6はSUS316について得られた結果である。いずれの鋼種においても、負荷の繰り返し回数が増えるに従ってA/D変換器51のデジタル出力(すなわち、位相検波回路32の出力)の値は増加してゆく。また、その増加の速度も繰り返し回数の増加に従って大きくなり、或る時点で亀裂が発生する。なお、亀裂発生後は渦電流の形状が大きく変化するため、位相検波回路32の出力も大きく変化する。従って、図5及び図6では亀裂発生後のデータは記入していない。このようなデータをメモリ53に格納しておくことにより、ローパスフィルタ33及びA/D変換器51を経由した後の位相検波回路32の出力に基づいて疲労度を算出することができる。なお、疲労度としてはそれまでの負荷回数(繰り返し回数)を採用してもよいし、亀裂発生までの負荷回数、或いは亀裂発生時の繰り返し回数を1とした指数等で表わしてもよい。なお、図5、図6に示すように、鋼種により繰り返し回数と位相検波回路32の出力の関係は異なるため、各種鋼種及び各種条件についてこのようなデータを作成しておき、メモリ53に格納しておくことが望ましい。そして、本疲労度測定装置を使用する際は、どの鋼種、どの条件で測定を行なうかを入力することにより、使用する参照データを決定し、それに基づいてCPU52が疲労度を算出して表示装置6に表示を行なう。
【0014】
被検査物がオーステナイト系ステンレス鋼製でない場合は、オーステナイト系ステンレス鋼製の薄板をその被検査物に固定し、被検査物と同じ負荷の繰り返しを受けるようにしておけば、本発明に係る疲労度測定装置により、オーステナイト系ステンレス鋼製でない被検査物についても、疲労度を測定することが可能となる。
【図面の簡単な説明】
【図1】 本発明の構成を示すブロック図。
【図2】 本発明の疲労度測定装置の検出部の概略構成図。
【図3】 本発明の一実施例である疲労度測定装置の構成を示すブロック図。
【図4】 参照データを作成するための疲労試験片の一例の平面図。
【図5】 SUS304の参照データの一例のグラフ。
【図6】 SUS316の参照データの一例のグラフ。
【符号の説明】
1…被検査物
2…検出部
21…強磁性体棒
22…励磁コイル
23、24…検出コイル
3…処理回路部
31…入力回路
32…位相検波回路
33…ローパスフィルタ
4…励磁回路部
41…正弦波電流発生回路
42…移相回路
5…疲労度算出部
51…A/D変換器
52…CPU
53…メモリ
6…表示装置
8…試験片
[0001]
[Industrial application fields]
The present invention relates to an apparatus for measuring the degree of fatigue of an austenitic stainless steel part before it cracks due to fatigue.
[0002]
[Prior art]
Conventionally, the most common method for detecting metal fatigue is a method (ultrasonic detection method) in which ultrasonic waves are injected into the metal and the reflected waves are detected. This is because if there is a crack in the vicinity of the detection part, the ultrasonic wave is reflected by the surface of the crack so that the crack can be detected. There is a drawback that it cannot be detected unless it is large. In addition, there is a method (potential difference method) in which a constant direct current or alternating current is allowed to flow in a portion where a crack is expected to occur, such as a stress concentration portion, and the occurrence of a crack is detected by a change in voltage at both ends. According to this method, it is possible to detect a minute crack as compared with the ultrasonic detection method. Further, a method of detecting a crack by applying an alternating magnetic field with an exciting coil and detecting a minute change in the magnetic field with a fluxgate magnetometer (Fluxgate magnetometer method; Japanese Patent Laid-Open No. 6-308092) has also been devised. ing.
[0003]
[Problems to be solved by the invention]
All of the conventional fatigue detection apparatuses described above detect a crack after it has occurred. For this reason, for parts where fatigue is expected and fracture due to fatigue is a very serious problem, a very large safety factor is expected so that the part will not break even if cracks become large enough to be detected There was a need. In addition, metal fatigue generally requires a very long time or number of repetitions until a crack occurs, but once a crack occurs, the subsequent growth of the crack is very fast, so the inspection interval must be sufficiently short. there were. Furthermore, if the leakage of internal gas or liquid is a problem rather than destruction, the presence of cracks may not be allowed. The fluxgate magnetometer method has a problem that the detection accuracy is deteriorated by an unnecessary noise magnetic field because the fluxgate magnetometer is extremely sensitive to an external magnetic field.
[0004]
The present invention has been made to solve such problems, and has developed an apparatus capable of measuring the degree of fatigue of austenitic stainless steel parts before cracking occurs due to fatigue. Is.
[0005]
[Means for Solving the Problems]
The fatigue measuring apparatus according to the present invention, which has been made to solve the above problems,
a) a detection unit comprising one ferromagnetic rod, one excitation coil wound approximately at the center of the ferromagnetic rod, and two detection coils wound on both sides thereof;
b) an excitation circuit for supplying an AC excitation current to the excitation coil;
c) By connecting the above two detection coils to a differential transformer configuration and analyzing the phase of the output signal based on the phase of the excitation current, the electric power corresponding to the permeability of the inspected object made of austenitic stainless steel is obtained. A processing circuit unit for extracting a signal;
d) a memory storing data indicating the relationship between the degree of fatigue and the permeability change for each steel type;
e) Based on the change in the electrical signal in accordance with the change in the magnetic permeability accompanying the fatigue of the inspection object taken out from the processing circuit unit, the fatigue level of the inspection object made of austenitic stainless steel is calculated by referring to the memory. A fatigue calculation unit to perform,
It is characterized by providing.
[0006]
[Action]
The configuration and operation of the fatigue level measuring apparatus of the present invention will be described with reference to FIGS. As shown in FIG. 2, the detection unit 2 includes a single ferromagnetic rod 21, one excitation coil 22 wound approximately at the center thereof, and two detection coils 23 and 24 wound on both sides thereof. The excitation coil is connected to the excitation circuit unit 4 and receives an AC excitation current from the excitation circuit unit 4. The two detection coils 23 and 24 are connected to the processing circuit unit 3 so as to form a differential transformer configuration together with the excitation coil 22. The processing circuit unit 3 receives a signal representing the phase of the excitation current from the excitation circuit unit 4.
[0007]
When an alternating excitation current is supplied from the excitation circuit unit 4 to the excitation coil 22 of the detection unit 2, alternating magnetic flux is emitted from both ends of the ferromagnetic rod 21 of the detection unit 2. When one end of the detection unit 2 is brought into contact with the surface of the inspected object 1 made of austenitic stainless steel that is not fatigued, an eddy current is generated on the surface of the inspection object 1, and both ends of the detection coils 23 and 24 are detected. An electromotive force is generated by eddy current. The processing circuit unit 3 takes out an electrical signal corresponding to the magnetic permeability of the device under test 1 by performing a phase analysis of the outputs of the detection coils 23 and 24 based on the phase of the excitation current.
[0008]
When a large number of repeated stresses are applied to the inspection object 1 and fatigue progresses, the austenite phase of the inspection object 1 changes to a martensite phase due to work transformation. Thereby, the magnetic permeability of the inspection object 1 changes, and the phase state of the outputs of the detection coils 23 and 24 changes. The processing circuit unit 3 detects the change in the phase state, and the fatigue level calculation unit 5 calculates the fatigue level of the inspection object 1 based on the change. In addition, since the fatigue level measuring apparatus according to the present invention utilizes such a principle, the material of the inspection object 1 is desirably a stainless steel having a quasi-austenitic phase that is liable to be transformed into a martensite phase. .
[0009]
【The invention's effect】
In the fatigue level measuring apparatus according to the present invention, a change in magnetic permeability due to a phase change of an inspected object made of austenitic stainless steel is detected, and the degree of fatigue is measured based on the change. Therefore, before the inspected object is cracked, It can be detected that fatigue has accumulated. That is, since the possibility can be detected before the failure occurs, it is not necessary to set a uselessly large safety factor based on the presence of a crack. Even when fatigue accumulation is detected, it takes a long time to actually generate a microcrack, so the inspection interval can be made relatively long. Furthermore, the fatigue level measuring apparatus according to the present invention can effectively deal with parts in which cracks themselves are problematic.
[0010]
【Example】
One embodiment of the present invention is shown in FIG. Since the basic configuration of the fatigue measuring apparatus of the present embodiment is the same as that shown in FIGS. 1 and 2, the same symbols are used for the same elements. In this embodiment, a soft iron rod having a diameter of 1 mm and a length of 15 mm is used as the ferromagnetic rod 21 of the detection unit 2. The processing circuit unit 3 includes an input circuit 31 that adds and amplifies the voltage signals from the two detection coils 23 and 24 of the detection unit 2, a phase detection circuit 32, and a low-pass filter 33. The excitation circuit unit 4 includes a sine wave current generation circuit 41 and a phase shift circuit 42. Further, the fatigue level calculation unit 5 converts the analog output signal of the processing circuit unit 3 into a digital value, and determines the fatigue level of the test object 1 by a signal corresponding to the permeability of the test object 1. It comprises a CPU 52 for calculation and a memory 53 for storing data on the relationship between the output value corresponding to the change in permeability and the degree of fatigue measured in advance using a test piece for each steel type.
[0011]
The effect | action of the fatigue measuring apparatus of a present Example is as follows. First, an alternating current is passed from the sine wave current generation circuit 41 to the excitation coil 22 with the detection unit 2 being far away from the object 1 to be inspected, and the absolute values of the voltages induced in the two detection coils 23 and 24 are the same. The input circuit 31 is balanced so that the output voltage of the input circuit 31 becomes zero. Thereafter, one end of the ferromagnetic rod 21 of the detection unit 2 is brought into contact with the surface of the inspection object 1 made of austenitic stainless steel that is not fatigued. Since the object to be inspected 1 is a conductor, it is induced by an alternating magnetic field generated by the exciting coil 22 to generate an eddy current centering on the contact portion. The balance is lost due to the influence of the eddy current, and the output voltages of the input circuits 31 of the two detection coils 23 and 24 are not zero. The output voltage of the input circuit 31 is sent to the phase detection circuit 32 where the phase analysis is performed based on the reference vector voltage signal from the phase shift circuit 42. At this time, the parameters of the phase detection circuit 32 are adjusted so that the output of the phase detection circuit 32 becomes zero.
[0012]
Next, the test object 1 is fatigued by applying a load many times, and then the one end of the ferromagnetic rod 21 is brought into contact with the same part of the test object 1 as described above. In this case, a part of the austenite phase of the object to be inspected 1 undergoes work transformation due to repeated loading, and becomes martensite. Since the austenite phase is non-magnetic and the martensite phase is ferromagnetic, the eddy current of the test object 1 induced by the alternating magnetic flux emitted from the tip of the ferromagnetic rod 21 changes, and is detected. A slight change occurs in the phase of the output voltage of the coils 23 and 24. The phase detection circuit 32 detects and outputs this phase change. The output (analog) of the phase detection circuit 32 is sent to the A / D converter 51 of the fatigue degree calculation unit 5 through the low-pass filter 33 and converted into a digital value. The CPU 52 refers to the data stored in the memory 53 to determine the degree of fatigue of the inspection object 1 based on the output data of the phase detection circuit 32. The determined fatigue level is displayed on the display device 6 in a predetermined format.
[0013]
Next, an example of a method for determining reference data stored in the memory 53 will be described. First, a test piece 8 as shown in FIG. In this test piece 8, a notch 81 having a depth of 24.5 mm from the load line is made in the center of a flat plate of 48 × 50 mm, and a radius of 4 mm is attached to the tip of the notch 81 by a drill. Keep it. A pin is inserted into the loading holes 83 and 84, and a load having a predetermined amplitude is repeatedly applied in a direction in which the cut 81 is opened by a hydraulic fatigue testing machine. The fatigue testing machine is stopped every predetermined number of times, and the degree of fatigue at the tip of the round portion 82 at the tip of the notch 81 is measured by the fatigue measuring device of the above embodiment. Thus, when a large number of data of the load repetition count and the digital output value of the A / D converter 51 are collected and plotted on a graph, graphs as shown in FIGS. 5 and 6 are obtained. FIG. 5 shows the results obtained for SUS304, and FIG. 6 shows the results obtained for SUS316. In any steel type, the value of the digital output of the A / D converter 51 (that is, the output of the phase detection circuit 32) increases as the number of load repetitions increases. Further, the rate of increase also increases as the number of repetitions increases, and a crack occurs at a certain point in time. Since the shape of the eddy current changes greatly after the crack is generated, the output of the phase detection circuit 32 also changes greatly. Therefore, in FIG. 5 and FIG. 6, data after the occurrence of cracks is not entered. By storing such data in the memory 53, the fatigue level can be calculated based on the output of the phase detection circuit 32 after passing through the low-pass filter 33 and the A / D converter 51. In addition, as the degree of fatigue, the number of loads until then (the number of repetitions) may be adopted, or may be represented by an index or the like where the number of loads until the occurrence of cracks or the number of repetitions when cracks occur is 1. As shown in FIGS. 5 and 6, since the relationship between the number of repetitions and the output of the phase detection circuit 32 differs depending on the steel type, such data is prepared for various steel types and various conditions and stored in the memory 53. It is desirable to keep it. And when using this fatigue degree measuring apparatus, the reference data to be used is determined by inputting which steel type and under which conditions the measurement is performed, and the CPU 52 calculates the fatigue degree based on the data, and the display apparatus 6 is displayed.
[0014]
If the object to be inspected is not made of austenitic stainless steel, the thin plate made of austenitic stainless steel is fixed to the object to be inspected and subjected to the same load as the object to be inspected. With the degree measuring device, it is possible to measure the degree of fatigue even for an object not made of austenitic stainless steel.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of the present invention.
FIG. 2 is a schematic configuration diagram of a detection unit of the fatigue level measuring apparatus according to the present invention.
FIG. 3 is a block diagram showing a configuration of a fatigue level measuring apparatus according to an embodiment of the present invention.
FIG. 4 is a plan view of an example of a fatigue test piece for creating reference data.
FIG. 5 is a graph showing an example of reference data of SUS304.
FIG. 6 is a graph showing an example of reference data of SUS316.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Detection part 21 ... Ferromagnetic rod 22 ... Excitation coil 23, 24 ... Detection coil 3 ... Processing circuit part 31 ... Input circuit 32 ... Phase detection circuit 33 ... Low pass filter 4 ... Excitation circuit part 41 ... Sine wave current generation circuit 42 ... Phase shift circuit 5 ... Fatigue degree calculation unit 51 ... A / D converter 52 ... CPU
53 ... Memory 6 ... Display device 8 ... Test piece

Claims (1)

a)1本の強磁性体棒、強磁性体棒の略中央に巻かれた1つの励磁コイル、及び、その両側に巻かれた2つの検出コイルから成る検出部と、
b)上記励磁コイルに交流励磁電流を供給する励磁回路部と、
c)上記2つの検出コイルを差動変圧器構成に接続し、その出力信号を励磁電流の位相に基づいて位相解析することにより、オーステナイト系ステンレス鋼製の被検査物の透磁率に応じた電気信号を取り出す処理回路部と、
d) 鋼種毎の疲労度と透磁率の変化の関係を示すデータを格納したメモリと、
e)処理回路部から取り出される、被検査物の疲労に伴う透磁率変化に応じた電気信号の変化に基づき、前記メモリを参照することによりオーステナイト系ステンレス鋼製の被検査物の疲労度を算出する疲労度算出部と、
を備えることを特徴とする疲労度測定装置。
a) a detection unit comprising one ferromagnetic rod, one excitation coil wound approximately at the center of the ferromagnetic rod, and two detection coils wound on both sides thereof;
b) an excitation circuit for supplying an AC excitation current to the excitation coil;
c) By connecting the above two detection coils to a differential transformer configuration and analyzing the phase of the output signal based on the phase of the excitation current, the electric power corresponding to the permeability of the inspected object made of austenitic stainless steel is obtained. A processing circuit unit for extracting a signal;
d) a memory storing data indicating the relationship between the degree of fatigue and the permeability change for each steel type;
e) Based on the change in the electrical signal in accordance with the change in the magnetic permeability accompanying the fatigue of the inspection object taken out from the processing circuit unit, the fatigue level of the inspection object made of austenitic stainless steel is calculated by referring to the memory. A fatigue calculation unit to perform,
A fatigue degree measuring device comprising:
JP07990095A 1995-03-10 1995-03-10 Fatigue measuring device Expired - Fee Related JP3910222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07990095A JP3910222B2 (en) 1995-03-10 1995-03-10 Fatigue measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07990095A JP3910222B2 (en) 1995-03-10 1995-03-10 Fatigue measuring device

Publications (2)

Publication Number Publication Date
JPH08248004A JPH08248004A (en) 1996-09-27
JP3910222B2 true JP3910222B2 (en) 2007-04-25

Family

ID=13703164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07990095A Expired - Fee Related JP3910222B2 (en) 1995-03-10 1995-03-10 Fatigue measuring device

Country Status (1)

Country Link
JP (1) JP3910222B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013056B2 (en) * 2002-12-18 2007-11-28 日本精工株式会社 Bearing load condition diagnosis method
JP4287187B2 (en) * 2003-04-24 2009-07-01 株式会社東芝 Defect inspection equipment
JP5026195B2 (en) * 2007-08-27 2012-09-12 株式会社マエダ Metal fatigue identification device and metal fatigue identification method
US9427186B2 (en) 2009-12-04 2016-08-30 Endomagnetics Ltd. Magnetic probe apparatus
US10634741B2 (en) 2009-12-04 2020-04-28 Endomagnetics Ltd. Magnetic probe apparatus
DE112010000023B4 (en) 2009-12-17 2021-09-30 Nsk Ltd. A method for predicting a remaining life of a bearing, an apparatus for diagnosing a remaining life of a bearing and a bearing diagnostic system
ES2803506T3 (en) 2013-03-11 2021-01-27 Endomagnetics Ltd Hypoosmotic solutions for lymph node detection
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
CN113558782A (en) 2015-06-04 2021-10-29 安都磁学有限公司 Marker materials and forms for Magnetic Marker Localization (MML)

Also Published As

Publication number Publication date
JPH08248004A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US6239593B1 (en) Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
US4528856A (en) Eddy current stress-strain gauge
EP2707705B1 (en) Surface property inspection device and surface property inspection method
EP2124043B1 (en) Eddy current inspection method and eddy current inspection device for carrying out the eddy current inspection method
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP3910222B2 (en) Fatigue measuring device
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP2766929B2 (en) Non-destructive inspection equipment
US7215117B2 (en) Measurement with a magnetic field
JPH01245149A (en) Deterioration inspection instrument for metallic material
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
Uchanin et al. Nondestructive determination of stresses in steel components by eddy current method
JPH03255380A (en) Apparatus for measuring magnetic permeability
Theiner et al. Determination of residual stresses using micromagnetic parameters
KR101999945B1 (en) Apparatus For Measuring Stess of ferromagnetic substance
JPH0545184B2 (en)
JP3572452B2 (en) Eddy current probe
US5423223A (en) Fatigue detection in steel using squid magnetometry
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JPH01269049A (en) Method of inspecting deterioration of metallic material
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
EP0650028A2 (en) Method and apparatus for measurement of thickness of specimens
JP4603216B2 (en) Fatigue damage degree diagnosis method and fatigue damage degree diagnosis system for steel materials constituting steel structure
Gu et al. The principle and application of a new technique for detecting wire rope defects

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees