JP3908964B2 - Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof - Google Patents

Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof Download PDF

Info

Publication number
JP3908964B2
JP3908964B2 JP2002036193A JP2002036193A JP3908964B2 JP 3908964 B2 JP3908964 B2 JP 3908964B2 JP 2002036193 A JP2002036193 A JP 2002036193A JP 2002036193 A JP2002036193 A JP 2002036193A JP 3908964 B2 JP3908964 B2 JP 3908964B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
strength
strength steel
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002036193A
Other languages
Japanese (ja)
Other versions
JP2003239040A (en
Inventor
政昭 水谷
裕一 谷口
力 岡本
展弘 藤田
賢一郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002036193A priority Critical patent/JP3908964B2/en
Publication of JP2003239040A publication Critical patent/JP2003239040A/en
Application granted granted Critical
Publication of JP3908964B2 publication Critical patent/JP3908964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法
に関する。
【0002】
【従来の技術】
近年、自動車の燃費向上のため、車体の軽量化がより一層要求されている。
車体の軽量化のためには、強度の高い鋼材を使用すれば良いが、強度が高くなるほど、プレス成形が困難となる。これは、一般に鋼材の強度が高くなるほど、鋼材の降伏応力が増大し、更に伸びが低下するからである。
これに対し、伸びの改善に対しては残留オーステナイトの加工誘起変態を利用した鋼板(以下TRIP鋼)などが発明されており、例えば、特開昭61−157625号公報に開示されている。
しかし、通常のTRIP鋼板は、多量のSi添加が必須であり鋼板表面の溶融亜鉛メッキ性が悪化するため適用可能な部材は制限される。更に、残留オーステナイト鋼において高強度を確保するためには多量のC添加が必要であり、ナゲット割れ等の溶接上の問題がある。
【0003】
鋼板表面の溶融亜鉛メッキ性については、残留オーステナイトTRIP鋼のSi低減を目的とした発明が特開2000-345288号公報に開示されているが、この発明では溶融亜鉛メッキ性と延性の向上は望めるものの、前述の溶接性の改善は望めないうえ、引張り強度980MPa以上のTRIP鋼板では、非常に高い降伏応力となるためプレス時等での形状凍結性が悪化するという問題点があった。
また、降伏応力を低減させる技術として、特開昭57−155329号公報に開示されているような、フェライトを含むDual Phase鋼(以下DP鋼という)が従来から知られているが、必ずしも十分な成形性を有する溶融亜鉛メッキ高強度鋼板は実現していなかった。
【0004】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法を工業的規模で実現することを課題とする。
【0005】
【課題を解決するための手段】
まず、本発明の技術思想を説明する。
本発明者らは、成形性に優れた溶融亜鉛メッキ高強度鋼板を鋭意検討した結果、鋼成分の最適化、すなわち、Si、Al、Tsのバランスを特定範囲とし、特にAl添加量を調整することで、降伏応力の低いDP鋼において、これまで以上の伸びが確保できる溶融亜鉛メッキ高強度鋼板を工業的に製造できることを見出した。
本発明の鋼板は従来の残留オーステナイト鋼並に準ずる程度に延性が向上し、また、Siを低減することにより溶融亜鉛メッキ性を向上させ、さらに合金化メッキをおこなっても特性が劣化することが少ない高強度鋼板を実現した。
さらに、遅れ破壊や二次加工脆性の問題が生じないように、不可避的に含まれる5%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まないDP鋼とした。
【0006】
本発明の高強度鋼板は、590Mpaから1500Mpaの引張強度が実現できるが、980Mpa以上の高強度鋼板にて著しい効果を奏する。
本発明は、以上のような技術思想に基づくものであり、特許請求の範囲に記載した以下の内容をその要旨とする。
(1)質量%で、
C :0.01〜0.30%、
Si:0.109〜0.3%、
Mn:0.1〜3.3%、
P :0.001〜0.019%、
S :0.001〜0.01%、
N :0.0005〜0.01%、
Al:0.25〜1.8%
を含有し、残部Feおよび不可避不純物からなり、
さらに、Si、Alの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、金属組織がフェライトとマルテンサイトを含有することを特徴とする成形性に優れた溶融亜鉛メッキ高強度鋼板。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3*[Si]・・・(A) ここに、[TS狙い値]は鋼板の強度設計値で単位はMpa、
[Si]はSiの質量%
【0007】
(2) さらに、Ti:0.01〜0.2%、を含有することを特徴とする(1)に記載の成形性に優れた溶融亜鉛メッキ高強度鋼板。
(3)さらに、Ca :0.0005〜0.005%、を含有することを特徴とする(1)または(2)に記載の成形性に優れた溶融亜鉛メッキ高強度鋼板。
(4)(1)乃至(3)のいずれか1項に記載の高強度鋼板の製造方法であって、溶融亜鉛メッキ工程においてAc1以上Ac3+100℃以下の温度域に加熱し、30秒以上30分以下保持した後、1℃/s以上の冷却速度で600℃以下の温度域まで冷却することを特徴とする成形性に優れた溶融亜鉛メッキ高強度鋼板の製造方法。
【0009】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
まず、本発明の高強度鋼板の成分および金属組織の限定理由を説明する。
Cは、強度確保の観点から、またマルテンサイトを安定化する基本元素として、必須の成分である。
Cが0.01%未満では強度が満足せず、またマルテンサイト相が形成されない。また、0.3%を超えると、強度が上がりすぎ、延性が不足するほか、溶接性の劣化を招くため工業材料として使用できない。
従って、本発明におけるCの範囲は、0.01〜0.3%とし、好ましくは、0.03〜0.15%である。
Mnは強度確保の観点で添加が必要であることに加え、炭化物の生成を遅らせる元素でありフェライトの生成に有効な元素である。
Mnが0.1%未満では、強度が満足せず、またフェライトの形成が不十分となり延性が劣化する。
【0010】
また、Mn添加量が3.3%を超えると、焼入れ性が必要以上に高まるため、マルテンサイトが多く生成し、強度上昇を招きこれにより、製品のバラツキが大きくなるほか、延性が不足し工業材料として使用できない。
従って、本発明におけるMnの範囲は、0.1〜3.3%とした。
Siは強度確保の観点で添加することに加え、通常、延性の確保のために添加される元素であるが、0.2%を超える添加により、溶融亜鉛メッキ性が劣化してしまう。従って、本発明におけるSiの範囲は、0.3%以下が好ましい
Pは鋼板の強度を上げる元素として必要な強度レベルに応じて添加する。しかし、添加量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、P上限値は0.019%とする。下限を0.001%としたのは、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。
【0011】
Sは、MnSを生成することで局部延性、溶接性を劣化させる元素であり、鋼中に存在しない方が好ましい元素である。従って、上限を0.01%とする。下限を0.001%としたのは、Pと同様に、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。
Alは、本発系において最も重要な元素である。 Alは添加によりフェライトの生成を促進し、延性向上に有効に作用する他、多量添加によっても溶融亜鉛メッキ性を劣化させない元素である。また、脱酸元素としても作用する。
延性を向上させるためには0.25%以上のAl添加が必要である、一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を1.8%とした。
Nは、不可避的に含まれる元素であるが、あまり多量に含有する場合は、時効性を劣化させるのみならず、AlN析出量が多くなってAl添加の効果を減少させるので、0.01%以下の含有が好ましい。 また、不必要にNを低減することは製鋼工程でのコストが増大するので通常0.0005%程度以上に制御することが好ましい。
【0012】
高強度鋼板とするためには一般に多量の元素添加が必要となり、フェライト生成が抑制される。このため、組織のフェライト分率が低減し、第2相の分率が増加するため、特に980MPa以上のDP鋼においては伸びが著しく低下する。この改善のために、Si添加、Mn低減が多く用いられるが、前者は溶融亜鉛メッキ性が劣化すること、後者は強度確保が困難となることから、本発明の目的とする鋼板においては利用できない。そこで、発明者らは鋭意検討した結果、Alの効果を見出し、式(A)の関係を満たすAl、Si、TSバランスを有するとき、十分なフェライト分率を確保することができ、優れた伸びを確保できることを見出した。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3*[Si] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMPa。[Si]はSiの質量%である。
【0013】
Al添加量が(0.0012×[TS狙い値]-0.29-[Si])/1.45未満となると、延性を向上させるために十分でなく、1.5-3*[Si]を超えてしまうと、溶融亜鉛メッキ性が悪化する。
図1に、本発明における溶融亜鉛メッキ高強度鋼板の発明範囲を示す。
本発明の金属組織がフェライトとマルテンサイトを含有することを特徴とする理由は、このような組織をとる場合は、強度延性バランスに優れた鋼板となるからである。ここでいう、フェライトは、ポリゴナルフェライト、ベイネティックフェライトを差し、マルテンサイトは通常の焼き入れにより得られるマルテンサイトの他、600℃以下の温度にて焼戻しを行ったマルテンサイトにおいても効果は変わらない。また、組織中にオーステナイトが残存すると2次加工脆性や遅れ破壊特性が悪化するため、本発明では不可避的に存在する3%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まない。
V、Ti 、Nbは、強度確保の目的でV:0.01〜0.1%、Ti:0.01〜0.2%、
Nb:0.005〜0.05%の範囲で添加してもよい。
【0014】
Moは強度確保と焼入れ性に効果のある元素である。最低添加量を0.05%以下では、Moの強化が利用できないほか、Mo特有の焼き入れ性能が発揮されず、十分なマルテンサイトが形成されず強度不足となる。過多のMoの添加はDPにおけるフェライト生成を抑制し、延性の劣化を招くほか、溶融亜鉛メッキ性を劣化させることがあるので、上限を0.5%とした。
CaおよびREMは、介在物制御、穴拡げ改善の目的で、Ca:0.0005〜0.005%、REM:0.0005〜0.005%の範囲で添加してもよい。
Bは、焼入れ性確保とBNによる有効Alの増大を目的として、B:0.0005〜0.002%の範囲で添加してもよい。
【0015】
不可避的不純物として、例えば、Snなどがあるがこれら元素を0.01質量%以下の範囲で含有しても本発明の効果を損なうものではない。
本発明の製造工程の限定理由は次の通りである。
本発明で用いる素材は通常の熱延工程を経て製造された熱延鋼板である。これらは酸洗、冷延をされもしくはそのまま直接、以下に述べる熱履歴を経ることにより得られる。
溶融亜鉛メッキ工程では、Ac1以上、Ac3+100℃以下の温度で焼鈍する。これ未満では組識が不均一となる。一方、これ以上の温度では、オーステナイトの粗大化によりフェライト生成が抑制されるため伸びの劣化を招く。また、経済的な点から焼鈍温度は900℃以下が望ましい。この際、層状の組識を解消するためには30秒以上の保持が必要であるが、30分を超えても効果は飽和し生産性も低下する。従って、30秒以上30分以下とする。
続いて、冷却終了温度を600℃以下の温度とする。600℃を超えるとオーステナイトが残留しやすくなり、2次加工性、遅れ破壊の問題が生じ易くなる。本発明は、この熱処理の後、穴拡げ性、脆性の改善を目的とした、600℃以下の焼戻し処理を行っても効果は変わらない。
【0016】
【実施例】
表1および表2に示した成分組成を有する鋼を真空溶解炉にて製造し、冷却凝固後1200℃まで再加熱し、880℃にて仕上圧延を行い、冷却後600℃で1時間保持することで、熱延の巻取熱処理を再現した。得られた熱延板を研削によりスケールを除去し、70%の冷間圧延した。その後連続焼鈍シミュレータを用い、770℃×60秒の焼鈍を行い、350℃まで冷却した後、10〜600秒その温度で保持したあと、さらに室温まで冷却した。
引張特性は、JIS5号引張試験片のL方向引張にて評価し、TS(MPa)×EL(%)の積が18000MPa%を以上を良好とした。金属組織は、工学顕微鏡で観察した。フェライトはナイタールエッチング。マルテンサイトはレペラーエッチングにより観察した。
【0017】
メッキ性能は溶融亜鉛メッキシミュレーターにより、上記同様の焼鈍条件を施した後、溶融亜鉛メッキを行い、目視にてメッキの付着状況を確認し、メッキ面の内90%以上の面積で均一に付着している場合を良好「○」、部分的に欠陥があるものを「×」とした。
表3および表4の結果から認められるように、本発明による鋼板は溶融亜鉛メッキ性が優れ、かついずれも強度・延性バランスに優れる高強度鋼板を製造できる。
一方、表3および表4の成分範囲が本発明の範囲から外れる比較例、および、Alの範囲が(A)式を満足しない比較例(CI,CJ)は、強度・延性バランスを示すTS×ELの値が18000Mpa%未満である、もしくは、メッキ評価が×となっている。
【0018】
【表1】

Figure 0003908964
【表2】
Figure 0003908964
【表3】
Figure 0003908964
【表4】
Figure 0003908964
【0019】
【発明の効果】
本発明によれば、Si、Al、Tsのバランスを特定範囲とし、特にAl添加量を調整することで、降伏応力の低いDP鋼において、これまで以上の伸びが確保できる成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法を工業的規模で実現することができ、産業上有用な、著しい効果を奏する。
【図面の簡単な説明】
【図1】 本発明における溶融亜鉛メッキ高強度鋼板の発明範囲を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-dip galvanized high-strength steel sheet excellent in formability and a method for producing the same.
[0002]
[Prior art]
In recent years, in order to improve the fuel efficiency of automobiles, the weight reduction of the vehicle body has been further demanded.
In order to reduce the weight of the vehicle body, a steel material having a high strength may be used. However, as the strength increases, press molding becomes more difficult. This is because, generally, the higher the strength of the steel material, the higher the yield stress of the steel material, and the lower the elongation.
On the other hand, a steel plate (hereinafter referred to as TRIP steel) using work-induced transformation of retained austenite has been invented for improving the elongation, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-157625.
However, in general TRIP steel sheets, a large amount of Si is indispensable, and the applicable members are limited because the hot dip galvanizing property of the steel sheet surface deteriorates. Furthermore, in order to secure high strength in the retained austenitic steel, a large amount of C is required, which causes welding problems such as nugget cracks.
[0003]
Regarding hot dip galvanizing on the surface of steel sheets, an invention aimed at reducing Si in retained austenitic TRIP steel is disclosed in Japanese Patent Application Laid-Open No. 2000-345288. In this invention, improvement of hot dip galvanizing and ductility can be expected. However, the above-mentioned improvement in weldability cannot be expected, and the TRIP steel sheet with a tensile strength of 980 MPa or more has a problem that the shape freezing property at the time of pressing or the like deteriorates because of a very high yield stress.
Further, as a technique for reducing yield stress, a dual phase steel containing ferrite (hereinafter referred to as DP steel) as disclosed in JP-A-57-155329 has been conventionally known, but it is not always sufficient. A hot-dip galvanized high-strength steel sheet having formability has not been realized.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art and to realize a hot-dip galvanized high-strength steel sheet excellent in formability and a manufacturing method thereof on an industrial scale.
[0005]
[Means for Solving the Problems]
First, the technical idea of the present invention will be described.
As a result of intensive studies on hot-dip galvanized high-strength steel sheets with excellent formability, the present inventors have optimized the steel components, that is, set the balance of Si, Al, and Ts within a specific range, and in particular adjusts the amount of Al added. Thus, it has been found that a hot-dip galvanized high-strength steel sheet capable of securing a higher elongation than before can be industrially produced in DP steel having a low yield stress.
The steel sheet of the present invention has improved ductility to the same extent as conventional retained austenitic steel, and also improves hot dip galvanizing properties by reducing Si, and further deteriorates properties even when alloying plating is performed. Realized few high-strength steel sheets.
Furthermore, in order not to cause the problem of delayed fracture and secondary work brittleness, DP steel that allows unavoidable 5% or less of retained austenite and does not substantially contain retained austenite was obtained.
[0006]
The high-strength steel sheet of the present invention can realize a tensile strength of 590 Mpa to 1500 Mpa, but has a remarkable effect with a high-strength steel sheet of 980 Mpa or higher.
The present invention is based on the technical idea as described above, and includes the following contents described in the claims.
(1) By mass%
C: 0.01 to 0.30%
Si: 0.109 to 0.3%,
Mn: 0.1-3.3%
P: 0.001 to 0.019 %,
S: 0.001 to 0.01%,
N: 0.0005 to 0.01%,
Al: 0.25 to 1.8%
Comprising the balance Fe and inevitable impurities,
Furthermore, the mass% of Si and Al and the target strength value (TS) satisfy the following formula (A), and the metal structure contains ferrite and martensite. Galvanized high strength steel sheet.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 * [Si] (A) where [TS target value] is the strength design value of the steel sheet and its unit is Mpa,
[Si] is the mass% of Si
[0007]
(2) The hot-dip galvanized high-strength steel sheet having excellent formability as described in (1), further containing Ti: 0.01 to 0.2%.
(3) The hot-dip galvanized high-strength steel sheet having excellent formability as described in (1) or (2), further comprising Ca: 0.0005 to 0.005%.
(4) A method for producing a high-strength steel sheet according to any one of (1) to (3), wherein the steel sheet is heated to a temperature range of Ac1 to Ac3 + 100 ° C. in a hot dip galvanizing step, and is 30 seconds to 30 minutes. A method for producing a hot-dip galvanized high-strength steel sheet having excellent formability, wherein the steel sheet is kept below and then cooled to a temperature range of 600 ° C. or lower at a cooling rate of 1 ° C./s or higher.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
First, the reasons for limiting the components and metal structure of the high-strength steel sheet of the present invention will be described.
C is an essential component from the viewpoint of securing strength and as a basic element for stabilizing martensite.
If C is less than 0.01%, the strength is not satisfied and a martensite phase is not formed. On the other hand, if it exceeds 0.3%, the strength is too high, the ductility is insufficient, and the weldability is deteriorated, so that it cannot be used as an industrial material.
Therefore, the range of C in the present invention is 0.011 to 0.3%, preferably 0.03 to 0.15%.
Mn is an element that delays the formation of carbides and is effective for the formation of ferrite, in addition to the need for addition from the viewpoint of securing strength.
If Mn is less than 0.1%, the strength is not satisfied, and ferrite is not sufficiently formed, resulting in deterioration of ductility.
[0010]
Also, if the Mn addition amount exceeds 3.3%, the hardenability is increased more than necessary, so that a lot of martensite is generated, resulting in an increase in strength, resulting in increased product variation and insufficient ductility. Cannot be used as a material.
Therefore, the range of Mn in the present invention is set to 0.1 to 3.3%.
Si is an element usually added for ensuring ductility in addition to ensuring strength, but addition exceeding 0.2% deteriorates hot dip galvanizing properties. Therefore, the Si range in the present invention is preferably 0.3% or less .
P is added according to the strength level required as an element for increasing the strength of the steel sheet. However, if the addition amount is large, segregation to the grain boundary causes deterioration of local ductility. In addition, the weldability is deteriorated. Therefore, the P upper limit is set to 0.019% . The reason why the lower limit is set to 0.001% is that a further reduction leads to a cost increase during refining in the steelmaking stage.
[0011]
S is an element that deteriorates local ductility and weldability by generating MnS, and is preferably an element that does not exist in steel. Therefore, the upper limit is made 0.01%. The reason why the lower limit is set to 0.001% is that, as in the case of P, reducing it further leads to an increase in cost during refining at the steelmaking stage.
Al is the most important element in this system. Al is an element that, when added, promotes the formation of ferrite and effectively works to improve ductility, and does not deteriorate hot dip galvanizing properties even when added in a large amount. It also acts as a deoxidizing element.
In order to improve the ductility, Al addition of 0.25% or more is necessary. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 1.8%.
N is an element that is inevitably included, but if it is contained in a large amount, not only deteriorates the aging property but also increases the amount of precipitated AlN and decreases the effect of Al addition, so 0.01% or less Containing is preferable. Further, unnecessarily reducing N increases the cost in the steelmaking process, so it is usually preferable to control it to about 0.0005% or more.
[0012]
In order to obtain a high-strength steel sheet, it is generally necessary to add a large amount of elements, and ferrite formation is suppressed. For this reason, the ferrite fraction of the structure is reduced and the fraction of the second phase is increased, so that the elongation is remarkably lowered particularly in DP steel of 980 MPa or more. For this improvement, Si addition and Mn reduction are often used. However, the former cannot be used in the steel sheet which is the object of the present invention because the hot dip galvanizing property is deteriorated and the latter is difficult to ensure the strength. . Therefore, as a result of intensive studies, the inventors found out the effect of Al, and when having an Al, Si, TS balance satisfying the relationship of the formula (A), a sufficient ferrite fraction can be secured, and excellent elongation is achieved. It was found that it can be secured.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 * [Si] (A)
Here, [TS target value] is the strength design value of the steel sheet, and the unit is MPa. [Si] is the mass% of Si.
[0013]
If the amount of Al added is less than (0.0012 × [TS target value] -0.29- [Si]) / 1.45, it is not sufficient to improve ductility, and if it exceeds 1.5-3 * [Si], molten zinc Plating properties deteriorate.
In FIG. 1, the invention range of the hot dip galvanized high strength steel sheet in the present invention is shown.
The reason why the metal structure of the present invention is characterized by containing ferrite and martensite is that when such a structure is taken, the steel sheet has an excellent balance of strength and ductility. The ferrite here refers to polygonal ferrite and bainetic ferrite, and martensite is effective not only in martensite obtained by ordinary quenching but also in martensite tempered at a temperature of 600 ° C. or lower. does not change. In addition, if austenite remains in the structure, secondary work brittleness and delayed fracture characteristics deteriorate, so in the present invention, 3% or less of retained austenite that is unavoidably present is allowed, and substantially no retained austenite is contained.
V, Ti, and Nb are V: 0.01 to 0.1%, Ti: 0.01 to 0.2% for the purpose of securing strength,
Nb: You may add in 0.005 to 0.05% of range.
[0014]
Mo is an element effective in ensuring strength and hardenability. If the minimum addition amount is 0.05% or less, the strengthening of Mo cannot be used, the quenching performance peculiar to Mo cannot be exhibited, sufficient martensite is not formed, and the strength is insufficient. Excessive addition of Mo suppresses ferrite formation in DP and causes deterioration of ductility, and may deteriorate hot dip galvanization, so the upper limit was made 0.5%.
Ca and REM may be added in the range of Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.005% for the purpose of inclusion control and improvement of hole expansion.
B may be added in a range of B: 0.0005 to 0.002% for the purpose of ensuring hardenability and increasing effective Al by BN.
[0015]
Inevitable impurities include, for example, Sn, but the effects of the present invention are not impaired even if these elements are contained in the range of 0.01% by mass or less.
The reasons for limiting the manufacturing process of the present invention are as follows.
The material used in the present invention is a hot-rolled steel sheet manufactured through a normal hot-rolling process. These can be obtained by pickling, cold rolling or directly passing through the heat history described below.
In the hot dip galvanizing process, annealing is performed at a temperature of Ac1 or higher and Ac3 + 100 ° C or lower. Below this, the organization becomes uneven. On the other hand, at a temperature higher than this, since the formation of ferrite is suppressed by the coarsening of austenite, the elongation is deteriorated. Also, the annealing temperature is desirably 900 ° C. or less from an economical point. At this time, in order to eliminate the layered organization, it is necessary to hold for 30 seconds or more. However, even if it exceeds 30 minutes, the effect is saturated and the productivity is also lowered. Therefore, it is 30 seconds or more and 30 minutes or less.
Subsequently, the cooling end temperature is set to a temperature of 600 ° C. or lower. If it exceeds 600 ° C., austenite tends to remain, and problems of secondary workability and delayed fracture tend to occur. The effect of the present invention does not change even if a tempering treatment at 600 ° C. or lower is performed for the purpose of improving hole expansibility and brittleness after this heat treatment.
[0016]
【Example】
Steels having the composition shown in Tables 1 and 2 are manufactured in a vacuum melting furnace, cooled and solidified to 1200 ° C., finish-rolled at 880 ° C., and held at 600 ° C. for 1 hour after cooling. In this way, the hot rolling heat treatment was reproduced. The obtained hot-rolled sheet was removed from the scale by grinding and cold-rolled by 70%. Thereafter, using a continuous annealing simulator, annealing was performed at 770 ° C. for 60 seconds, cooled to 350 ° C., held at that temperature for 10 to 600 seconds, and further cooled to room temperature.
Tensile properties were evaluated by tensile in the L direction of a JIS No. 5 tensile test piece, and the product of TS (MPa) × EL (%) was 18000 MPa%. The metal structure was observed with an engineering microscope. Ferrite is nital etching. Martensite was observed by repeller etching.
[0017]
The plating performance is the same as the above with the hot dip galvanizing simulator, then hot dip galvanizing is performed, and the adhesion of the plating is visually confirmed, and it adheres uniformly over an area of 90% or more of the plated surface. The case where it is good is “◯”, and the case where there is a partial defect is “x”.
As can be seen from the results in Tables 3 and 4, the steel sheet according to the present invention can produce a high-strength steel sheet having excellent hot-dip galvanizing properties and excellent balance between strength and ductility.
On the other hand, Comparative Examples in which the component ranges in Tables 3 and 4 deviate from the scope of the present invention, and Comparative Examples in which the Al range does not satisfy the formula (A) (CI, CJ) are TS × showing a balance between strength and ductility. The EL value is less than 18000 Mpa% or the plating evaluation is x.
[0018]
[Table 1]
Figure 0003908964
[Table 2]
Figure 0003908964
[Table 3]
Figure 0003908964
[Table 4]
Figure 0003908964
[0019]
【The invention's effect】
According to the present invention, the balance of Si, Al, and Ts is set to a specific range, and in particular, by adjusting the amount of Al added, DP steel with a low yield stress can be melted with excellent formability that can ensure more elongation than before. The galvanized high-strength steel sheet and the manufacturing method thereof can be realized on an industrial scale, and there are significant industrially useful effects.
[Brief description of the drawings]
FIG. 1 is a diagram showing an invention scope of a hot-dip galvanized high-strength steel sheet according to the present invention.

Claims (4)

質量%で、
C :0.01〜0.30%、
Si:0.109〜0.3%、
Mn:0.1〜3.3%、
P :0.001〜0.019%、
S :0.001〜0.01%、
N :0.0005〜0.01%、
Al:0.25〜1.8%を含有し、残部Feおよび不可避不純物からなり、
さらに、Si、Alの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、
金属組織がフェライトとマルテンサイトを含有することを特徴とする成形性に優れた溶融亜鉛メッキ高強度鋼板。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3*[Si]・・・(A) ここに、[TS狙い値]は鋼板の強度設計値で単位はMpa、
[Si]はSiの質量%
% By mass
C: 0.01 to 0.30%
Si: 0.109 to 0.3%,
Mn: 0.1-3.3%
P: 0.001 to 0.019 %,
S: 0.001 to 0.01%,
N: 0.0005 to 0.01%,
Al: containing 0.25 to 1.8%, consisting of the balance Fe and inevitable impurities,
Furthermore, the mass% of Si and Al and the target strength value (TS) satisfy the following formula (A):
A hot-dip galvanized high-strength steel sheet excellent in formability, characterized in that the metal structure contains ferrite and martensite.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 * [Si] (A) where [TS target value] is the strength design value of the steel sheet and its unit is Mpa,
[Si] is the mass% of Si
さらに、
Ti:0.01〜0.2%、
を含有することを特徴とする請求項1に記載の成形性に優れた溶融亜鉛メッキ高強度鋼板。
further,
Ti: 0.01-0.2%
The hot-dip galvanized high-strength steel sheet having excellent formability according to claim 1.
さらに、
Ca :0.0005〜0.005%、を含有することを特徴とする請求項1または請求項2に記載の成形性に優れた溶融亜鉛メッキ高強度鋼板。
further,
The hot-dip galvanized high-strength steel sheet having excellent formability according to claim 1 or 2 , characterized by containing Ca: 0.0005 to 0.005%.
請求項1乃至請求項3のいずれか1項に記載の高強度鋼板の製造方法であって、溶融亜鉛メッキ工程においてAc1以上Ac3+100℃以下の温度域に加熱し、30秒以上30分以下保持した後、1℃/s以上の冷却速度で600℃以下の温度域まで冷却することを特徴とする成形性に優れた溶融亜鉛メッキ高強度鋼板の製造方法。It is a manufacturing method of the high strength steel plate of any one of Claim 1 thru | or 3, Comprising: In the hot dip galvanization process, it heated to the temperature range of Ac1 or more and Ac3 + 100 degrees C or less, and maintained for 30 seconds or more and 30 minutes or less. Then, the manufacturing method of the hot-dip galvanized high strength steel plate excellent in formability characterized by cooling to the temperature range of 600 degrees C or less with the cooling rate of 1 degrees C / s or more.
JP2002036193A 2002-02-14 2002-02-14 Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof Expired - Fee Related JP3908964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036193A JP3908964B2 (en) 2002-02-14 2002-02-14 Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002036193A JP3908964B2 (en) 2002-02-14 2002-02-14 Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003239040A JP2003239040A (en) 2003-08-27
JP3908964B2 true JP3908964B2 (en) 2007-04-25

Family

ID=27778143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036193A Expired - Fee Related JP3908964B2 (en) 2002-02-14 2002-02-14 Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3908964B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214006B2 (en) 2003-06-19 2009-01-28 新日本製鐵株式会社 High strength steel sheet with excellent formability and method for producing the same
CA2552963C (en) * 2004-01-14 2010-11-16 Nippon Steel Corporation Hot dip galvanized high strength steel sheet excellent in plating adhesion and hole expandability and method of production of same
JP4510488B2 (en) * 2004-03-11 2010-07-21 新日本製鐵株式会社 Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
KR101153659B1 (en) * 2004-12-24 2012-06-21 주식회사 포스코 A cold rolled steel sheet having excellent formability and coatability, and A method for manufacturing the same
JP5250938B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same
JP5250939B2 (en) * 2005-03-31 2013-07-31 Jfeスチール株式会社 Method for producing galvannealed steel sheet
BR112013016582A2 (en) 2010-12-17 2016-09-27 Nippon Steel & Sumitomo Metal Corp hot dip galvanized steel sheet and method of manufacturing it

Also Published As

Publication number Publication date
JP2003239040A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
RU2677444C2 (en) Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP4542515B2 (en) High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
US20060140814A1 (en) Steel composition for the production of cold rolled multiphase steel products
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP5521562B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
CN112689684B (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP4500197B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet with excellent formability and weldability
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
KR20210047334A (en) Hot rolled steel sheet and its manufacturing method
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP6516845B2 (en) Composite structure steel sheet excellent in formability and method for manufacturing the same
US20220325369A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
KR101489243B1 (en) High strength galvannealed steel sheet having excellent formability and coating adhesion and method for manufacturing the same
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
CN115698365B (en) Heat-treated cold-rolled steel sheet and method for manufacturing same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
EP4073281A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R151 Written notification of patent or utility model registration

Ref document number: 3908964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees