JP3908313B2 - Dehydrogenation catalyst - Google Patents

Dehydrogenation catalyst Download PDF

Info

Publication number
JP3908313B2
JP3908313B2 JP34315496A JP34315496A JP3908313B2 JP 3908313 B2 JP3908313 B2 JP 3908313B2 JP 34315496 A JP34315496 A JP 34315496A JP 34315496 A JP34315496 A JP 34315496A JP 3908313 B2 JP3908313 B2 JP 3908313B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
catalyst according
platinum
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34315496A
Other languages
Japanese (ja)
Other versions
JPH10180101A (en
Inventor
佳巳 岡田
健一 今川
進 山本
佐知夫 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP34315496A priority Critical patent/JP3908313B2/en
Publication of JPH10180101A publication Critical patent/JPH10180101A/en
Application granted granted Critical
Publication of JP3908313B2 publication Critical patent/JP3908313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group

Description

【0001】
【発明の属する技術分野】
本発明は脱水素触媒に関し、より具体的にはアルカンの脱水素反応によりアルケンを製造するのに用いる脱水素触媒に関する。
【0002】
【従来の技術】
近年、プロピレンやイソブチレンに代表されるアルケンの需要が増えている。これは、プロピレンを原料とするポリプロピレンの需要が包装材料や自動車部品用樹脂として増大しており、また、イソブチレンを原料として製造するガソリンの高オクタン価燃料用添加剤メチル−t−ブチルエーテル(MTBE)の需要が増大していること等によるものである。これらプロピレンやイソブチレンは、ガソリン製造のための流動床式接触分解(FCC)により得られ、あるいはエチレン製造のための熱分解の副生物として得られるが、そのような方法により得られる量には限度があり、他の製造方法の確立が望まれている。このような状況下において、燃料としての利用にとどまっているC3、C4類等のアルカンを原料としてプロピレンやイソブチレン、あるいはn−ブテン等のアルケンを製造することが各種試みられている。このようにアルカンを原料としてアルケンを製造する方法としては、触媒存在下での接触脱水素反応による方法が従来から有効な方法として知られている(例えば特開平3−288548号公報参照)。そして、そのための脱水素触媒としては、シリカ、アルミナ、ゼオライト、活性炭などの担体上に金属や金属酸化物などの活性物質を担持させたものが従来から用いられ、特に酸化クロム/アルミナ触媒がよく用いられている(例えば米国特許第4581339号参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、脱水素反応は吸熱反応であることから一般に反応は高温で行われ、このためコーク生成(触媒上への炭素析出)による触媒劣化がしばしば見られる。そのような場合は触媒の活性を維持するために頻繁に再生を行う必要があり、プロセス効率の低下を招くことになる。このため、触媒寿命が長く安定性に優れた脱水素触媒が望まれている。すなわち本発明は、アルカンの脱水素によるアルケンの製造に用いられる脱水素触媒であって、触媒上への炭素析出が抑制された脱水素触媒を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、表面積150m2/g以上、細孔容積0.55cm3/g以上、平均細孔径90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるγ−アルミナ担体に酸化亜鉛を担持してなる複合担体に、白金、スズおよび周期律表の第1A族および第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属が担持されていることを特徴とする脱水素触媒を提供することにより、上記課題を解決する。
【0005】
【発明の実施の形態】
固体触媒を用いたアルカンの脱水素反応は本質的に気固系接触操作であるため、活性を高めるためには活性金属の選択とともに触媒表面積を大きくすることが重要である。また、選択性を高め、かつ活性劣化を抑制するためには、異性化反応あるいは分解反応を抑制して目的化合物を優先的に形成し、かつコークスの沈着を抑制するような表面特性を与えることが重要である。したがって、活性や選択性の低下を防止するためには、上記表面積や表面特性の変化が小さいことが重要となる。本発明では、特定のγ−アルミナ担体に特定量の酸化亜鉛を担持してなる複合担体を用い、これに白金、スズおよび周期律表の第1A族および第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持することによって大きな表面積及び好ましい表面特性を長期に渡って維持するものである。
【0006】
上記特定の多孔性γ−アルミナ担体は、表面積が150m2/g以上、細孔容積が0.55cm3/g以上、平均細孔径が90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるものである。平均細孔径が90オングストロームより小さいとアルカン分子やアルケン分子の細孔内拡散が律速になり、全触媒表面積を有効に利用することができない。一方、平均細孔径が200オングストロームより大きいと表面積が大きくとれなくなる。上記条件を満足するγ−アルミナ担体は、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、これを脱水乾燥した後、400〜800℃で1〜6時間程度焼成することにより得られる。
【0007】
上記特定の多孔性γ−アルミナ担体には、酸化亜鉛[ZnO]を好ましくは5〜50重量%担持させる。この酸化亜鉛はアルミナ表面にアルミナとの複合体を形成し、好ましい表面特性を与える役割を果たすと思われる。担持量が5重量%以下ではγ−アルミナ担体表面をアルミナと酸化亜鉛の複合体が均一に覆うことができないため十分な効果が得られず、一方、担持量が50重量%を超えるとアルミナと酸化亜鉛との複合体の表面特性が変化するとともに表面積の減少が著しいものとなる。γ−アルミナ担体上に酸化亜鉛を担持させるには、硝酸亜鉛などの亜鉛化合物の水溶液を担体に含浸させた後、乾燥して焼成すればよい。
【0008】
上記複合体上には白金を好ましくは0.05〜1.5重量%担持させる。ここで用いる白金化合物としては、塩化白金酸、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等が挙げられる。白金の担持は、当該複合担体に塩化白金酸等の白金化合物の水溶液を含浸させ、次いでこれを焼成した後、水素ガス中にて高温で還元する工程が通常用いられるが、本発明では必ずしも水素還元ではなく他の還元方法を用いても良い。
【0009】
上記複合担体上には白金とともにスズを担持させる。スズの担持量は0.5〜10重量%が好ましい。ここで用いるスズ化合物としては、水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものが好ましい。このようなスズ化合物としては、臭化第一スズ、酢酸スズ、塩化第一スズ、塩化第二スズ、及びそれらの水和物や、塩化第二スズアセチルアセトナート錯体、テトラメチルスズ、テトラエチルスズ、テトラブチルスズ、テトラフェニルスズ等が挙げられる。スズの担持は、上記還元工程後の当該担体にスズ化合物の水溶液及び/又は有機溶媒溶液等を含浸させて水又は有機溶媒を乾燥除去した後、水素ガス中にて高温で還元する方法が通常用いられるが、本発明では必ずしも水素還元でなく他の還元方法を用いてもよい。
【0010】
上記複合担体上には白金及びスズとともに周期律表の第1A族及び第2A族からなる群から選ばれる少なくとも1つのアルカリ性金属を担持させる。アルカリ性金属の担持量は0.01〜10重量%が好ましい。本明細書において「アルカリ性金属」とは、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウムを包含する周期律表の第1A族及び第2A族の金属元素をいう。担持させるのに用いるアルカリ性金属の化合物としては、水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものが好ましい。そのような化合物の例としては、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、硝酸ルビジウム、硫酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、プロピオン酸リチウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、硝酸セシウム、硫酸セシウム、酢酸セシウム、プロピオン酸セシウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、プロピオン酸マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等がある。アルカリ性金属の担持は、上記還元工程後の当該担体にアルカリ性金属化合物の水溶液及び/又は有機溶媒溶液を含浸させて水または有機溶媒を乾燥除去した後、高温処理する方法が通常用いられる。
【0011】
上記のようにして得られた触媒組成物は、最終的に還元性ガスの存在下で高温還元処理すると高温での劣化がより緩和される。ここで用いる還元性ガスとしては水素または水素を含む混合ガスが好ましく、水素ガスを単独で用いるのがより好ましい。通常、高温還元処理は500〜700℃、好ましくは550〜650℃の温度で、1〜20時間程度行う。なお、この高温還元処理は、必ずしも触媒を反応管に充填する前に予め行う必要はなく、触媒を反応管に充填した後、原料アルカンを導入して脱水素反応を行う前に、水素ガスを反応管に流通させればよい。
【0012】
【実施例】
以下において、アルカリ性金属を担持した本発明の脱水素触媒とアルカリ性金属を担持しない従来の脱水素触媒を用いて脱水素反応試験を行った例を示す。なお以下において、%の値はすべて重量%である。
(1)γ−アルミナ担体の製造
特公平6−72005号公報中の実施例1に記載されるようにして、γ−アルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく攪拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得、これを種子水酸化アルミニウムとして、攪拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返して濾過洗浄ケーキを得、これを押し出し成形して乾燥した後、500℃で3時間焼成するというものである。こうして得られるγ−アルミナの性状は典型的には下記の表1の通りである。
【表1】

Figure 0003908313
【0013】
(2)白金/スズ担持触媒の製造
上記γ−アルミナ担体27.5gをとり、これにZnO/Al23比が30/70になるように30%硝酸亜鉛[Zn(NO32]水溶液を含浸させ、水分除去後、400℃で3時間焼成して複合担体を調製した。この複合担体にPt担持量が0.3%になるように2.0%塩化白金酸[H2PtCl6]水溶液を含浸させ、乾燥後400℃で3時間焼成し、さらに水素気流中400℃で3時間還元した。次いで、この還元後の白金担持複合担体にSn担持量が3.5%になるように3%塩化第一スズ[SnCl2 ]水溶液を含浸させ、乾燥後に400℃で30分間水素還元を行って白金/スズ担持触媒を得た。これを触媒Aとする。
同様に、上記γ−アルミナ担体27.5gをとり、これにZnO/Al23比が45/55になるように30%硝酸亜鉛[Zn(NO32]水溶液を含浸させ、水分除去後、400℃で3時間焼成して複合担体を調製した。この複合担体にPt担持量が0.6%になるように2.0%塩化白金酸[H2PtCl6]水溶液を含浸させ、乾燥後400℃で3時間焼成し、さらに水素気流中400℃で3時間還元した。次いでこの還元後の白金担持複合担体にSn担持量が3.5%になるように二塩化第二スズビスアセチルアセトナト錯体[Sn(C5722Cl2 ]のアセトン溶液を含浸させ、乾燥後に400℃で30分間水素還元を行って白金/スズ担持触媒を得た。これを触媒Bとする。
【0014】
(3)アルカリ性金属担持触媒の製造
上記触媒Aに、K担持量がそれぞれ0.5%、1.0%及び2.0%になるように硝酸カリウム[KNO3 ]水溶液を含浸させ、これを風乾して白金/スズ/カリウム担持触媒A1、A2及びA3を調製した。
同様に、上記触媒Bに、Mg担持量が1.0%になるように硝酸マグネシウム[Mg(KNO32]水溶液を含浸させ、これを風乾して白金/スズ/マグネシウム担持触媒B1を調製した。
【0015】
(4)脱水素反応試験
上記で得られた触媒A,A1、A2及びA3を直径18mmの石英製反応管に充填し、窒素で十分なパージを行った。次いで、イソブタンを原料として、温度560℃、空間速度GHSV500hr-1で脱水素反応試験を20時間行い、反応器出口ガスをガスクロマトグラフにより分析した。また、反応終了後の触媒を抜き出し炭素析出量を測定した。結果を下記の表2に示す。
【表2】
Figure 0003908313
【0016】
同様に、上記で得られた触媒A,A1、A2及びA3を直径18mmの石英製反応管に充填し、水素流通下に600℃で3時間の処理を行った後、窒素で十分なパージを行った。次いで、イソブタンを原料として、温度560℃、空間速度GHSV500hr-1で脱水素反応試験を20時間行い、反応器出口ガスをガスクロマトグラフにより分析した。また、反応終了後の触媒を抜き出し炭素析出量を測定した。結果を下記の表3に示す。
【表3】
Figure 0003908313
【0017】
同様に、上記で得られた触媒B及びB1を直径18mmの石英製反応管に充填し、水素流通下に600℃で3時間の処理を行った後、窒素で十分なパージを行った。次いで、イソブタンを原料として、温度560℃、空間速度GHSV325hr-1で脱水素反応試験を8時間行い、反応器出口ガスをガスクロマトグラフにより分析した。また、反応終了後の触媒を抜き出し炭素析出量を測定した。結果を下記の表4に示す。
【表4】
Figure 0003908313
【0018】
表2〜表4から明らかなように、カリウムやマグネシウム等のアルカリ性金属を担持した触媒によって脱水素反応を行ったところ、選択性が向上するとともに触媒上の炭素析出量が著しく減少し、触媒活性の低下が著しく緩和された。
【0019】
【発明の効果】
以上のように、本発明の脱水素触媒を用いれば、アルカンの脱水素反応によってアルケンを製造する際に、触媒上の炭素析出が抑制され、触媒劣化が著しく緩和される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehydrogenation catalyst, and more specifically to a dehydrogenation catalyst used for producing an alkene by a dehydrogenation reaction of an alkane.
[0002]
[Prior art]
In recent years, demand for alkenes represented by propylene and isobutylene has increased. This is because demand for polypropylene using propylene as a raw material is increasing as a packaging material and resin for automobile parts, and methyl-t-butyl ether (MTBE), an additive for high octane fuel in gasoline produced using isobutylene as a raw material. This is because demand is increasing. These propylene and isobutylene can be obtained by fluidized bed catalytic cracking (FCC) for gasoline production or as a by-product of thermal cracking for ethylene production, but the amount obtained by such a method is limited. Therefore, establishment of another manufacturing method is desired. Under such circumstances, various attempts have been made to produce alkene such as propylene, isobutylene, or n-butene using as raw materials alkanes such as C 3 and C 4 which are only used as fuel. Thus, as a method for producing alkenes using alkane as a raw material, a method based on catalytic dehydrogenation reaction in the presence of a catalyst has been conventionally known as an effective method (see, for example, JP-A-3-288548). As a dehydrogenation catalyst for that purpose, a catalyst in which an active substance such as a metal or a metal oxide is supported on a carrier such as silica, alumina, zeolite or activated carbon has been conventionally used, and in particular, a chromium oxide / alumina catalyst is often used. (See, for example, US Pat. No. 4,581,339).
[0003]
[Problems to be solved by the invention]
However, since the dehydrogenation reaction is an endothermic reaction, the reaction is generally carried out at a high temperature. For this reason, catalyst deterioration due to coke formation (carbon deposition on the catalyst) is often observed. In such a case, it is necessary to regenerate frequently in order to maintain the activity of the catalyst, leading to a decrease in process efficiency. For this reason, a dehydrogenation catalyst having a long catalyst life and excellent stability is desired. That is, the present invention provides a dehydrogenation catalyst that is used in the production of alkenes by dehydrogenation of alkanes and that suppresses carbon deposition on the catalyst.
[0004]
[Means for Solving the Problems]
In the present invention, the surface area is 150 m 2 / g or more, the pore volume is 0.55 cm 3 / g or more, the average pore diameter is 90 to 200 angstroms, and the pores having a pore diameter of 90 to 200 angstroms are 60% of the total pore volume. The composite carrier formed by supporting zinc oxide on the γ-alumina carrier occupying the above supports platinum, tin, and at least one alkaline metal selected from the group consisting of groups 1A and 2A of the periodic table. The above-mentioned problems are solved by providing a dehydrogenation catalyst characterized by the above.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Since the dehydrogenation reaction of alkane using a solid catalyst is essentially a gas-solid contact operation, it is important to increase the surface area of the catalyst along with the selection of the active metal in order to increase the activity. In addition, in order to enhance selectivity and suppress activity degradation, surface properties should be given such that the isomerization reaction or decomposition reaction is suppressed to preferentially form the target compound and coke deposition is suppressed. is important. Therefore, in order to prevent a decrease in activity and selectivity, it is important that the change in the surface area and surface characteristics is small. In the present invention, a composite carrier obtained by supporting a specific amount of zinc oxide on a specific γ-alumina carrier is used, and at least selected from the group consisting of platinum, tin, and groups 1A and 2A of the periodic table By supporting one alkaline metal, a large surface area and favorable surface characteristics are maintained over a long period of time.
[0006]
The specific porous γ-alumina support has a surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and a pore diameter of 90 to 200 angstroms. The pores occupy 60% or more of the total pore volume. If the average pore diameter is smaller than 90 angstroms, the diffusion of alkane molecules or alkene molecules in the pores becomes rate-determined, and the entire catalyst surface area cannot be used effectively. On the other hand, if the average pore diameter is larger than 200 Å, the surface area cannot be increased. The γ-alumina carrier satisfying the above conditions is obtained by filtering and washing a slurry of aluminum hydroxide produced by neutralization of an aluminum salt, dehydrating and drying the slurry, and then firing it at 400 to 800 ° C. for about 1 to 6 hours. can get.
[0007]
The specific porous γ-alumina carrier preferably carries 5 to 50% by weight of zinc oxide [ZnO]. This zinc oxide appears to play a role in forming a complex with alumina on the surface of the alumina and imparting favorable surface properties. If the supported amount is 5% by weight or less, the surface of the γ-alumina support cannot be uniformly covered with the composite of alumina and zinc oxide, so that a sufficient effect cannot be obtained. On the other hand, if the supported amount exceeds 50% by weight, alumina and The surface properties of the composite with zinc oxide change and the surface area decreases markedly. In order to support zinc oxide on the γ-alumina carrier, the carrier may be impregnated with an aqueous solution of a zinc compound such as zinc nitrate, then dried and fired.
[0008]
Preferably, 0.05 to 1.5% by weight of platinum is supported on the composite. Examples of the platinum compound used here include chloroplatinic acid, ammonium platinate, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonylplatinum platinum dichloride, and dinitrodiamine platinate. . For the support of platinum, a step of impregnating the composite carrier with an aqueous solution of a platinum compound such as chloroplatinic acid, and then firing the resultant is followed by reduction at a high temperature in hydrogen gas. Other reduction methods may be used instead of reduction.
[0009]
Tin is supported on the composite carrier together with platinum. The supported amount of tin is preferably 0.5 to 10% by weight. As a tin compound used here, a water-soluble thing and / or a thing soluble in organic solvents, such as acetone, are preferable. Such tin compounds include stannous bromide, tin acetate, stannous chloride, stannic chloride, and their hydrates, stannic chloride acetylacetonate complex, tetramethyltin, tetraethyltin. , Tetrabutyltin, tetraphenyltin and the like. The loading of tin is usually performed by impregnating the support after the reduction step with an aqueous solution of a tin compound and / or an organic solvent solution, etc., drying and removing water or an organic solvent, and then reducing at a high temperature in hydrogen gas. Although used, in the present invention, other reduction methods may be used instead of hydrogen reduction.
[0010]
On the composite carrier, at least one alkaline metal selected from the group consisting of Group 1A and Group 2A of the periodic table is supported together with platinum and tin. The supported amount of alkaline metal is preferably 0.01 to 10% by weight. As used herein, “alkaline metal” refers to Group 1A and Group 2A metal elements of the periodic table including lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, and barium. As the alkali metal compound used for supporting, a water-soluble compound and / or a compound soluble in an organic solvent such as acetone is preferable. Examples of such compounds include potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, rubidium chloride, rubidium bromide, rubidium iodide, rubidium nitrate, rubidium sulfate, acetic acid. Rubidium, rubidium propionate, lithium chloride, lithium bromide, lithium iodide, lithium nitrate, lithium sulfate, lithium acetate, lithium propionate, cesium chloride, cesium bromide, cesium iodide, cesium nitrate, cesium sulfate, cesium acetate, Cesium propionate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium propionate, calcium chloride, calcium bromide, calcium iodide, nitric acid Calcium, calcium sulfate, calcium acetate, there is calcium propionate and the like. For the support of the alkaline metal, a method is generally used in which the carrier after the reduction step is impregnated with an aqueous solution of an alkaline metal compound and / or an organic solvent solution, and water or the organic solvent is removed by drying, followed by high-temperature treatment.
[0011]
When the catalyst composition obtained as described above is finally subjected to a high temperature reduction treatment in the presence of a reducing gas, deterioration at a high temperature is further alleviated. As the reducing gas used here, hydrogen or a mixed gas containing hydrogen is preferable, and it is more preferable to use hydrogen gas alone. Usually, the high-temperature reduction treatment is performed at a temperature of 500 to 700 ° C., preferably 550 to 650 ° C. for about 1 to 20 hours. This high temperature reduction treatment is not necessarily performed in advance before filling the reaction tube with the catalyst, and after filling the reaction tube with the hydrogen gas before introducing the raw material alkane and performing the dehydrogenation reaction. What is necessary is just to distribute | circulate to a reaction tube.
[0012]
【Example】
In the following, an example is shown in which a dehydrogenation reaction test was performed using the dehydrogenation catalyst of the present invention carrying an alkaline metal and a conventional dehydrogenation catalyst not carrying an alkaline metal. In the following, all values of% are% by weight.
(1) Production of γ-alumina carrier A γ-alumina carrier was produced as described in Example 1 of JP-B-6-72005. The outline of this method is as follows. A suspension of aluminum hydroxide slurry (pH 10) is obtained by instantly adding a sodium aluminate aqueous solution while stirring vigorously in hot dilute sulfuric acid, and this is used as seed aluminum hydroxide and stirred. The process of repeatedly adding hot dilute sulfuric acid and aqueous sodium aluminate solution for a fixed time is repeated to obtain a filter washed cake, which is extruded and dried, and then baked at 500 ° C. for 3 hours. . The properties of γ-alumina thus obtained are typically as shown in Table 1 below.
[Table 1]
Figure 0003908313
[0013]
(2) Production of platinum / tin supported catalyst Take 27.5 g of the above-mentioned γ-alumina carrier and add 30% zinc nitrate [Zn (NO 3 ) 2 ] so that the ZnO / Al 2 O 3 ratio is 30/70. After impregnating with an aqueous solution and removing moisture, the composite carrier was prepared by baking at 400 ° C. for 3 hours. This composite carrier was impregnated with a 2.0% chloroplatinic acid [H 2 PtCl 6 ] aqueous solution so that the amount of Pt supported was 0.3%, dried and then calcined at 400 ° C. for 3 hours, and further in a hydrogen stream at 400 ° C. For 3 hours. Next, this reduced platinum-supported composite carrier was impregnated with a 3% stannous chloride [SnCl 2 ] aqueous solution so that the amount of Sn supported was 3.5%, and after drying, hydrogen reduction was performed at 400 ° C. for 30 minutes. A platinum / tin supported catalyst was obtained. This is referred to as catalyst A.
Similarly, 27.5 g of the above-mentioned γ-alumina support is taken and impregnated with a 30% zinc nitrate [Zn (NO 3 ) 2 ] aqueous solution so that the ZnO / Al 2 O 3 ratio is 45/55 to remove moisture. Thereafter, the composite carrier was prepared by baking at 400 ° C. for 3 hours. This composite carrier was impregnated with a 2.0% chloroplatinic acid [H 2 PtCl 6 ] aqueous solution so that the amount of Pt supported was 0.6%, dried and then calcined at 400 ° C. for 3 hours, and further in a hydrogen stream at 400 ° C. For 3 hours. Next, an acetone solution of stannic dibisbisacetylacetonate complex [Sn (C 5 H 7 O 2 ) 2 Cl 2 ] is added to the reduced platinum-supported composite carrier so that the amount of Sn supported is 3.5%. It was impregnated, and after drying, hydrogen reduction was performed at 400 ° C. for 30 minutes to obtain a platinum / tin supported catalyst. This is referred to as catalyst B.
[0014]
(3) Production of alkaline metal supported catalyst The catalyst A was impregnated with an aqueous potassium nitrate [KNO 3 ] solution so that the K supported amounts were 0.5%, 1.0% and 2.0%, respectively, and air-dried. Thus, platinum / tin / potassium supported catalysts A1, A2 and A3 were prepared.
Similarly, the catalyst B is impregnated with a magnesium nitrate [Mg (KNO 3 ) 2 ] aqueous solution so that the amount of Mg supported is 1.0%, and air-dried to prepare a platinum / tin / magnesium supported catalyst B1. did.
[0015]
(4) Dehydrogenation reaction test The catalysts A, A1, A2 and A3 obtained above were filled in a quartz reaction tube having a diameter of 18 mm and sufficiently purged with nitrogen. Next, using isobutane as a raw material, a dehydrogenation test was conducted for 20 hours at a temperature of 560 ° C. and a space velocity of GHSV 500 hr −1 , and the reactor outlet gas was analyzed by gas chromatography. Moreover, the catalyst after completion | finish of reaction was extracted and the amount of carbon deposits was measured. The results are shown in Table 2 below.
[Table 2]
Figure 0003908313
[0016]
Similarly, the catalysts A, A1, A2 and A3 obtained above are filled in a quartz reaction tube having a diameter of 18 mm, treated at 600 ° C. for 3 hours under hydrogen flow, and then sufficiently purged with nitrogen. went. Next, using isobutane as a raw material, a dehydrogenation test was conducted for 20 hours at a temperature of 560 ° C. and a space velocity of GHSV 500 hr −1 , and the reactor outlet gas was analyzed by gas chromatography. Moreover, the catalyst after completion | finish of reaction was extracted and the amount of carbon deposits was measured. The results are shown in Table 3 below.
[Table 3]
Figure 0003908313
[0017]
Similarly, the catalysts B and B1 obtained above were filled in a quartz reaction tube having a diameter of 18 mm, treated at 600 ° C. for 3 hours under hydrogen flow, and then sufficiently purged with nitrogen. Next, using isobutane as a raw material, a dehydrogenation reaction test was conducted for 8 hours at a temperature of 560 ° C. and a space velocity of GHSV 325 hr −1 , and the reactor outlet gas was analyzed by a gas chromatograph. Moreover, the catalyst after completion | finish of reaction was extracted and the amount of carbon deposits was measured. The results are shown in Table 4 below.
[Table 4]
Figure 0003908313
[0018]
As is apparent from Tables 2 to 4, when the dehydrogenation reaction was carried out using a catalyst supporting an alkaline metal such as potassium or magnesium, the selectivity was improved and the amount of carbon deposited on the catalyst was significantly reduced, resulting in catalytic activity. The decrease in the was remarkably mitigated.
[0019]
【The invention's effect】
As described above, when the dehydrogenation catalyst of the present invention is used, when the alkene is produced by the dehydrogenation reaction of alkane, carbon deposition on the catalyst is suppressed and catalyst deterioration is remarkably mitigated.

Claims (8)

表面積150m/g以上、細孔容積0.55cm/g以上、平均細孔径90〜200オングストロームであり、かつ細孔径90〜200オングストロームの細孔が全細孔容積の60%以上を占めるγ−アルミナ担体に酸化亜鉛を5〜50重量%担持してなる複合担体に、白金及びスズとともに周期律表の第1A族のアルカリ金属および第2A族のアルカリ土類金属からなる群から選ばれる少なくとも1つの元素が担持されていることを特徴とする脱水素触媒。A surface area of 150 m 2 / g or more, a pore volume of 0.55 cm 3 / g or more, an average pore diameter of 90 to 200 angstroms, and pores having a pore diameter of 90 to 200 angstroms account for 60% or more of the total pore volume -At least selected from the group consisting of a group 1A alkali metal and a group 2A alkaline earth metal of the periodic table together with platinum and tin on a composite carrier comprising 5 to 50% by weight of zinc oxide supported on an alumina carrier A dehydrogenation catalyst in which one element is supported. 前記複合担体上の白金の担持量が0.05〜1.5重量%である請求項1記載の触媒。  The catalyst according to claim 1, wherein the amount of platinum supported on the composite carrier is 0.05 to 1.5% by weight. 前記複合担体上のスズの担持量が0.5〜10重量%である請求項1または2記載の触媒。  The catalyst according to claim 1 or 2, wherein the amount of tin supported on the composite carrier is 0.5 to 10% by weight. 前記複合担体上の少なくとも1つの元素の担持量が0.01〜10重量%である請求項1〜3のいずれか記載の触媒。  The catalyst according to any one of claims 1 to 3, wherein the supported amount of at least one element on the composite carrier is 0.01 to 10 wt%. 前記少なくとも1つの元素がカリウムである請求項1〜4のいずれか記載の触媒。  The catalyst according to any one of claims 1 to 4, wherein the at least one element is potassium. 前記少なくとも1つの元素がマグネシウムである請求項1〜4のいずれか記載の触媒。  The catalyst according to any one of claims 1 to 4, wherein the at least one element is magnesium. 請求項1〜6のいずれか記載の触媒を還元性ガスの存在下に500〜700℃の温度で1〜20時間高温還元処理してなる触媒。A catalyst obtained by subjecting the catalyst according to any one of claims 1 to 6 to high-temperature reduction treatment at a temperature of 500 to 700 ° C for 1 to 20 hours in the presence of a reducing gas. 前記還元性ガスが水素である請求項記載の触媒。The catalyst according to claim 7 , wherein the reducing gas is hydrogen.
JP34315496A 1996-12-24 1996-12-24 Dehydrogenation catalyst Expired - Lifetime JP3908313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34315496A JP3908313B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34315496A JP3908313B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Publications (2)

Publication Number Publication Date
JPH10180101A JPH10180101A (en) 1998-07-07
JP3908313B2 true JP3908313B2 (en) 2007-04-25

Family

ID=18359340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34315496A Expired - Lifetime JP3908313B2 (en) 1996-12-24 1996-12-24 Dehydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP3908313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626307A (en) * 2017-09-29 2018-01-26 北京工业大学 A kind of method of ZnO doping regulation and control Pt base catalyst oxidation activities

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166333B2 (en) * 1998-07-24 2008-10-15 千代田化工建設株式会社 Dehydrogenation catalyst
JP4054116B2 (en) * 1998-07-24 2008-02-27 千代田化工建設株式会社 Dehydrogenation catalyst
DE10020049A1 (en) * 1999-04-26 2001-01-11 Inst Francais Du Petrole Preparation of catalyst useful for hydroconversion of hydrocarbons comprises using group VIII metal and additional metal added in form of water soluble organometallic compound
FR2813304B1 (en) * 2000-08-23 2002-11-29 Inst Francais Du Petrole PROCESS FOR DEHYDROGENATION OF ORGANIC COMPOUNDS IN THE PRESENCE OF A SUPPORTED BIMETALLIC CATALYST HAVING A STRONG INTERACTION BETWEEN A GROUP VIII METAL AND TIN
KR100387433B1 (en) * 2000-12-16 2003-06-18 주식회사 효성 Dehydrogenation catalyst controlled crystalline properties of ZnO and Alumina
PL2141118T3 (en) 2008-07-03 2014-01-31 Haldor Topsoe As Chromium-free water gas shift catalyst
EP2712675A1 (en) * 2012-09-27 2014-04-02 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
WO2014016811A1 (en) * 2012-07-26 2014-01-30 Sabic Innovative Plastics Ip B.V. Alkane dehydrogenation catalyst and process for its preparation
EP2689843A1 (en) * 2012-07-26 2014-01-29 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
US10723674B2 (en) 2016-03-15 2020-07-28 Jxtg Nippon Oil & Energy Corporation Unsaturated hydrocarbon production method and conjugated diene production method
JP2017165667A (en) * 2016-03-15 2017-09-21 Jxtgエネルギー株式会社 Manufacturing method of conjugated diene
JP6883286B2 (en) * 2017-02-21 2021-06-09 Eneos株式会社 Method for producing unsaturated hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626307A (en) * 2017-09-29 2018-01-26 北京工业大学 A kind of method of ZnO doping regulation and control Pt base catalyst oxidation activities
CN107626307B (en) * 2017-09-29 2021-03-26 北京工业大学 Method for regulating and controlling oxidation activity of Pt-based catalyst by doping ZnO

Also Published As

Publication number Publication date
JPH10180101A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
JP3831821B2 (en) Catalytic hydrogenation process and catalyst usable in this process
JP3908313B2 (en) Dehydrogenation catalyst
EP0623383B1 (en) Platinum and tin-containing catalyst and use thereof in alkane dehydrogenation
TW200400850A (en) Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process
JP4269243B2 (en) Catalysts containing zeolite EUO and use of the catalyst in an isomerization process of aromatic compounds containing 8 carbon atoms per molecule
JP2004537407A (en) catalyst
RU2580553C2 (en) Optimised catalyst for catalytic reforming
US4548918A (en) Process for manufacturing a hydrocarbon conversion catalyst and catalyst prepared by said process
JP5345058B2 (en) Method for reactivating metathesis catalyst and method for producing olefins including reactivation step thereof
US20150158024A1 (en) Dehydrogenation catalyst for hydrocarbons and method of preparation thereof
JP4054116B2 (en) Dehydrogenation catalyst
JPH10182505A (en) Dehydrogenation
JP2000317310A (en) Catalyst containing group viii, ix or x element having excellent accessibility and use thereof in dehydrogenation of paraffin
JP2594464B2 (en) Dehydrogenation catalyst
EP2296809B1 (en) Preparation of sulfur-based supports for catalytic reforming
JP4166333B2 (en) Dehydrogenation catalyst
JP3908314B2 (en) Dehydrogenation catalyst
KR102046771B1 (en) Dehydrogenation catalyst
US2897137A (en) Platinum catalyst
KR102162079B1 (en) Method of preparing catalyst support and dehydrogenation catalysts
JP2000037629A (en) Dehydrogenation catalyst
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
JP2000037628A (en) Dehydrogenation catalyst
US4217205A (en) Catalysts for hydrocarbon conversion
KR101440694B1 (en) A catalyst for dehydrogenation and dehydroisomerization of n-butane and a method for producing a mixture of n-butane, 1,3-butadiene and iso-butene in high yield using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term