JP3906338B2 - Optical receiver integrated underwater transducer - Google Patents

Optical receiver integrated underwater transducer Download PDF

Info

Publication number
JP3906338B2
JP3906338B2 JP2004369621A JP2004369621A JP3906338B2 JP 3906338 B2 JP3906338 B2 JP 3906338B2 JP 2004369621 A JP2004369621 A JP 2004369621A JP 2004369621 A JP2004369621 A JP 2004369621A JP 3906338 B2 JP3906338 B2 JP 3906338B2
Authority
JP
Japan
Prior art keywords
semi
vibrator
light receiving
underwater
elliptical shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004369621A
Other languages
Japanese (ja)
Other versions
JP2006180080A (en
Inventor
宏幸 三上
浩 内田
英樹 嶋村
千晶 大河原
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2004369621A priority Critical patent/JP3906338B2/en
Publication of JP2006180080A publication Critical patent/JP2006180080A/en
Application granted granted Critical
Publication of JP3906338B2 publication Critical patent/JP3906338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

水中にある供試体の反射能をパルス法により計測する場合の計測機器としての、水中用送波器及び水中用受波器一体形の水中用送受波器に関し、音波を送出する際の音響振動をセンシングして、駆動電圧の位相と振幅調整のフィードバックアクティブコントロールで低周波広帯域周波数特性を実現させる光受波部一体型音源構造の光受波部一体型水中用送受波器に関する。   Acoustic vibration when sending sound waves for underwater transmitters and underwater receivers integrated into an underwater transmitter as a measuring instrument for measuring the reflectivity of specimens underwater by the pulse method The present invention relates to an underwater transmitter / receiver integrated with a light receiving portion of a sound source structure integrated with a light receiving portion that realizes low-frequency broadband frequency characteristics by feedback active control of phase and amplitude adjustment of a driving voltage.

水中においては、遠距離まで指向性エネルギーを伝達する唯一の効果的方法が音波伝搬である。
現在、送波器として、数kHzの低周波で、しかも、広帯域周波数で使用する送受波器が必要とされている。これらの適用分野には、試験用送受波器や魚群探知機用送受波器が含まれる。理想的には、これらの送受波器は、薄いこと、軽量であること、送波においては媒質中に高音響出力を与えること、ができることである。
In water, sound propagation is the only effective way to transmit directional energy over long distances.
Currently, there is a need for a transmitter / receiver to be used at a low frequency of several kHz and a broadband frequency. These applications include test transducers and fish detector transducers. Ideally, these transducers are thin, lightweight, and can provide high acoustic power in the medium during transmission.

従来、水中送受波器システムの多くは、ボルト締めランジュバン振動子を用いた構成とされている。ボルト締めランジュバン振動子は、例えば機械的には直列接続、電気的には並列接続とされた円筒形圧電振動子積層から構成される。便宜的に図2を用いて説明すると、この円筒形圧電振動子の積層は、2つの金属製マスである重いリアーマス13と媒質中に音響エネルギーを送波するテーパー状の付いた軽いフロントマス2との間に、ボルト25とナット23で強固に締め付けされて構成され、プレストレスのもとで大電力駆動による大きな音響出力パワーを有している。   Conventionally, many underwater transducer systems are configured using bolted Langevin transducers. The bolted Langevin vibrator is composed of, for example, a cylindrical piezoelectric vibrator layer that is mechanically connected in series and electrically connected in parallel. For the sake of convenience, FIG. 2 will be used to describe the stack of cylindrical piezoelectric vibrators. The heavy rear mass 13 is a metal mass, and a light front mass 2 with a tapered shape that transmits acoustic energy into the medium. Between the two, the bolt 25 and the nut 23 are firmly tightened to form a large sound output power by high power driving under prestress.

この技術における帯域幅の下限周波数は、送受波器の縦振動共振周波数であるため、低周波化するためには音波の波長に従い送受波器が大寸法になるという欠点がある。
また、帯域幅を広げるために音響整合層を複数設けることが知られているが、複数の音響整合層にはその分、接着層も必要になって信頼性を低下するとともに構造的に大型化する恐れもある。
Since the lower limit frequency of the bandwidth in this technique is the longitudinal vibration resonance frequency of the transducer, there is a disadvantage that the transducer becomes large in accordance with the wavelength of the sound wave in order to reduce the frequency.
In addition, it is known that a plurality of acoustic matching layers are provided in order to widen the bandwidth. However, an adhesive layer is also required for the plurality of acoustic matching layers, which reduces reliability and structurally increases the size. There is also a fear.

さらに、ボルト締めランジュバン振動子のフロントマスに凹部を設けて、その部位に屈曲振動板を装着して、ボルト締めランジュバン型振動子の縦振動と屈曲振動板の屈曲振動との2つの振動モードを重畳させることにより、広帯域化を図る構造もあるが、屈曲振動モードは、屈曲板が周辺固定の円板であるためボルト締めランジュバン振動子の縦振動モードよりも共振周波数が高く、また、ボルト締めランジュバン型振動子の共振先鋭度も高い影響により、目論見とおりの広帯域化を得るのが至難である。また、同様な他の手法によっても試行錯誤の試みがおこなわれているが、ほとんどがパッシブ的な足し合わせであり、送波時の音響振動をセンシングして、各振動子の駆動制御するフィードバック的なアクティブコントロールで低周波広帯域周波数特性を試みた例が無い。   Furthermore, the front mass of the bolted Langevin vibrator is provided with a recess, and a bending vibration plate is attached to that portion, so that two vibration modes of longitudinal vibration of the bolting Langevin type vibrator and bending vibration of the bending vibration plate are provided. Although there is a structure that achieves a wide band by superimposing, the bending vibration mode has a higher resonance frequency than the longitudinal vibration mode of the bolted Langevin vibrator because the bending plate is a disk fixed at the periphery, and the bolt tightening Due to the high resonance sharpness of the Langevin type vibrator, it is very difficult to obtain a broadband as expected. In addition, trials and errors have also been attempted by other similar methods, but most of them are passive additions, which are feedback-type that senses acoustic vibration during transmission and controls the drive of each transducer. There are no examples of low frequency and wideband frequency characteristics with active control.

より低周波で小型軽量のハイパワー音源としては、音響放射面を大振幅で駆動する断面略半楕円シェル型送波器が適している。この送波器は、ボルト締めランジュバン振動子の縦振動モードに対して、これは、金属製ハウジングよりなる断面略半楕円形のシェル内にその長軸方向に沿って積層する構造の圧電振動子を組み込み、これに交番電圧を印加して励振し、断面略半楕円形のシェルの短軸方向の弧面を大振幅で屈曲振動させる機構部により、高出力の小型軽量の音源を得るものであり、半楕円シェルの片面放射型フレックステンショナル駆動による屈曲振動モードである。   As a low-frequency, small and light high-power sound source, a substantially semi-elliptical shell-type transmitter that drives the acoustic radiation surface with a large amplitude is suitable. This transmitter is for a longitudinal vibration mode of a bolt-clamped Langevin vibrator. This is a piezoelectric vibrator having a structure of being laminated along a major axis direction in a substantially semi-elliptical shell made of a metal housing. And a high-power small and lightweight sound source by a mechanism that flexes and vibrates the arc surface in the minor axis direction of the shell with a semi-elliptical cross section with a large amplitude. Yes, it is a flexural vibration mode by single-sided radial flexural drive of a semi-elliptical shell.

また、受波の場合、
1)従来の音響電気変換素子である圧電振動子によるエコー受波では、微弱電圧を電気的に高増幅する必要上、高電圧印加中の送波器回路側から受波器の回路側に電気的に混入の影響を被り、微弱エコーの検出を困難にさせるという欠点がある。
In the case of reception,
1) In echo reception by a piezoelectric vibrator, which is a conventional acoustoelectric transducer, it is necessary to electrically amplify a weak voltage, so that an electric signal is transmitted from the transmitter circuit side during application of the high voltage to the circuit side of the receiver. There is a drawback in that it is difficult to detect weak echoes due to the influence of mixing.

2)また、水中にある供試体の反射能を海上等でパルス法により計測する場合には、供試体のほかに計測機器として水中用送波器及び水中用受波器のそれぞれを、遠距離音場で定義される距離を隔てた計測距離設定を行った後、直線上に配列して海中の所要深度に吊下する。次に水中用送波器からパルス音波を送波し水中にある供試体からのエコーを水中用受波器で受波してデータを収集する、という構成・手順が従来の一般的な計測法である。この場合、供試体の大きさ及び周波数によっては、計測距離を離して計測を行う時があり、このような時には、周囲雑音レベルとの関係上音源レベルが十分に高い水中用送波器、遠距離捜索のための送波周波数のより低周波数化と高感度の送波特性が望ましい。   2) In addition, when measuring the reflectivity of a specimen underwater by the pulse method at sea, etc., in addition to the specimen, each of the underwater transmitter and the underwater receiver is connected at a long distance. After setting the measurement distance separated by the distance defined by the sound field, it is arranged on a straight line and suspended at the required depth in the sea. Next, the conventional measurement method is a conventional measurement method in which pulsed sound waves are transmitted from an underwater transmitter, and echoes from a specimen underwater are received by an underwater receiver to collect data. It is. In this case, depending on the size and frequency of the specimen, measurement may be performed at a distance from the measurement distance. In such a case, an underwater transmitter or a far-field transmitter with a sufficiently high sound source level in relation to the ambient noise level may be used. It is desirable to reduce the transmission frequency for distance search and to have a highly sensitive transmission characteristic.

3)水中用送波器と供試体との間に吊下してある水中用受波器の大きさによっては、音響的に影になって供試体の正確な反射能の計測が行えないことがある。このため、供試体から同心円上の距離に水中用送波器と水中用受波器を隔てて配置する等の工夫を行っているが、これでは、供試体の斜め方向の計測になるので正確な反射能の結果が得られない。また、海上では穏やかな海面よりも荒天時が多く、水中用送波器、水中用受波器及び供試体を個々に吊下、展張する作業には多くの作業員とクレーン船等の所要の設備を必要とし、経費も多大となるほか安全面にも問題があるため、計測機器としての水中用送波器の送波レベルの向上による計測周波数範囲の拡大及び水中用送波器と水中用受波器の小型・軽量化が強く望まれていた。   3) Depending on the size of the underwater receiver that is suspended between the underwater transmitter and the specimen, it is not possible to accurately measure the reflectivity of the specimen due to an acoustic shadow. There is. For this reason, devices such as placing an underwater transmitter and an underwater receiver at a distance on a concentric circle from the specimen have been devised, but this is accurate because it is measured in an oblique direction of the specimen. Results in poor reflectivity. Also, there are more times of stormy weather than the calm sea surface at sea, and many workers and crane ships, etc., are required to suspend and extend underwater transmitters, underwater receivers and specimens individually. Since equipment is required, costs are high, and there are safety issues, the measurement frequency range is expanded by improving the transmission level of the underwater transmitter as a measuring device, and the underwater transmitter and underwater There was a strong demand for smaller and lighter receivers.

水中用送受波器のより低周波数化と高感度の送波特性及びハイパワー化を達成させる手段として、大電力駆動で水中音を送波し、使用帯域の下限周波数が送受波器の縦振動共振周波数であるボルト締めランジュバン振動子1のフロントマス2に、比較的低い共振周波数のフレックステンショナル振動子3を収納した半楕円シェル5を一体化重合させる。   As a means to achieve lower frequency, higher sensitivity transmission characteristics and higher power of underwater transducers, underwater sound is transmitted with high power drive, and the lower limit frequency of the used band is the vertical frequency of the transducer. A semi-elliptical shell 5 containing a flexural vibrator 3 having a relatively low resonance frequency is integrally polymerized with the front mass 2 of a bolted Langevin vibrator 1 having a vibration resonance frequency.

併せて、フレックステンショナル振動子3の屈曲振動モードとランジュバン振動子1の縦振動モードの両モードを重畳させ、さらに、制御器28の演算器29でフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅調整のフィードバックアクティブコントロールを行い図6で示す低周波広帯域感度周波数特性概念図になるように、音波を送出する際の音響振動をセンシングする高分子圧電材6を上記音響放射面4の内面に装着させる。   At the same time, both the flexural vibration mode of the flexural vibrator 3 and the longitudinal vibration mode of the Langevin vibrator 1 are superimposed, and further, the flexural vibrator 3 and the Langevin vibrator 1 are operated by the calculator 29 of the controller 28. , And a polymer that senses acoustic vibration when a sound wave is transmitted so that the feedback active control of the phase and amplitude adjustment of the drive voltages of both vibrators is performed and the low frequency wide band sensitivity frequency characteristic conceptual diagram shown in FIG. 6 is obtained. The piezoelectric material 6 is attached to the inner surface of the acoustic radiation surface 4.

さらにまた、送受波器として使用の際の高電力駆動に対する微弱エコーの電気的高増幅における電磁干渉の影響を避けるため、受波センサに光ファイバ7を採用して光受波部8を構成し、これを半楕円シェル5の音響放射面の外面上に装着することによって、上記音響放射面4の同一面上に送波部と受波部とを重合構成させる。   Furthermore, in order to avoid the influence of electromagnetic interference in electrical high amplification of weak echoes for high power driving when used as a transducer, an optical fiber 7 is adopted as a receiving sensor to constitute an optical receiving unit 8. By mounting this on the outer surface of the acoustic radiation surface of the semi-elliptical shell 5, the transmitting portion and the receiving portion are superposed on the same surface of the acoustic radiation surface 4.

このように、本発明は高性能、低周波広帯域、ハイパワーの送波を具現化させるとともに、光技術の適用による電磁干渉のない広帯域受波感度周波数特性を有する構造の受波部を備えた光受波部一体型水中用送受波器を提供することを課題とする。   As described above, the present invention embodies high-performance, low-frequency broadband, and high-power transmission, and includes a receiving unit having a structure having a broadband receiving sensitivity frequency characteristic free from electromagnetic interference by application of optical technology. It is an object of the present invention to provide an underwater transmitter / receiver integrated with an optical receiver.

そして、本発明は、上記の問題を解決すべく高性能、低周波広帯域、ハイパワーの送波を具現化させるとともに、光技術の適用による電磁干渉のない広帯域受波感度周波数特性を有する構造の光受波部一体型水中用送受波器を提供する。   In order to solve the above problems, the present invention realizes a high-performance, low-frequency broadband, and high-power transmission, and has a structure having a broadband reception sensitivity frequency characteristic free of electromagnetic interference by application of optical technology. An optical receiver integrated underwater transducer is provided.

次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。   Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.

送波周波数のより低周波広帯域化と高感度の送波特性を達成させる手段として、比較的低い共振周波数のフレックステンショナル振動子3をボルト締めランジュバン振動子1のフロントマス2に一体化させる。   As a means for achieving a lower frequency transmission band and a high-sensitivity transmission characteristic, a flexural vibrator 3 having a relatively low resonance frequency is integrated with a front mass 2 of a bolted Langevin vibrator 1. .

さらに、高感度の広帯域送波感度周波数特性を得るために、フレックステンショナル振動子3の屈曲振動モードとボルト締めランジュバン振動子1の縦振動モードとの両モードを重畳させ、かつ、また、アクティブコントロールにより図6で示す低周波広帯域感度周波数特性概念図になるように、音波を送出する際の音響振動をセンシングする高分子圧電材6を音響放射面4の内面に装着させ、高分子圧電材6の出力信号を用いて制御器28と演算器29でフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅調整のフィードバックアクティブコントロールを行い送波特性の高感度化及び広帯域周波数特性を達成させる。   Furthermore, in order to obtain a high-sensitivity broadband transmission sensitivity frequency characteristic, both the flexural vibration mode of the flexural vibrator 3 and the longitudinal vibration mode of the bolted Langevin vibrator 1 are superposed and active. A polymer piezoelectric material 6 that senses acoustic vibration when a sound wave is transmitted is attached to the inner surface of the acoustic radiation surface 4 so that the low frequency broadband sensitivity frequency characteristic conceptual diagram shown in FIG. 6 using the output signals of 6, the controller 28 and the arithmetic unit 29 perform feedback active control of the phase and amplitude adjustment of the driving voltage of the flexural vibrator 3, the Langevin vibrator 1, and both vibrators, and the transmission characteristics To achieve high sensitivity and wideband frequency characteristics.

また、送受波器として使用の際の高電力駆動に対する従来の圧電セラミックセンサによる微弱エコーの電気的高増幅における電磁干渉の影響を避けるため、受波センサに光ファイバ7を採用して光受波部8とし、これを半楕円シェル5外面上に装着することにより電磁干渉の影響のない光受波部8を構成させることにより光受波部一体型水中用送受波器を具現化させる。   Further, in order to avoid the influence of electromagnetic interference in the electrical high amplification of weak echo by the conventional piezoelectric ceramic sensor for high power driving when used as a transducer, an optical fiber 7 is adopted as the receiving sensor to receive the light. By mounting this on the outer surface of the semi-elliptical shell 5, the light receiving unit 8 that is not affected by electromagnetic interference is formed, thereby realizing an underwater transducer integrated with a light receiving unit.

より低周波で小型軽量のハイパワー音源の実現のためには、音響放射面を大振幅で駆動する必要があり、断面略半楕円シェル型送波器が適している。すなわち、金属製の半楕円シェル5内にその長軸方向に沿って積層する構造の積層矩形圧電振動子9を組み込み、これに交番電圧を印加して励振し、半楕円シェル5の短軸方向の弧面を大振幅で屈曲振動させる変位拡大機構部11により、高出力の小型軽量の音源を得るものである。また、送波時の高電力駆動に対する受波器に対する電磁干渉の影響に対しては、受波センサに光ファイバ7を採用し、半楕円シェル5の短軸方向の弧面及び側面のエコー受音面上に音波の受波用とする光ファイバ7を装着することによって問題解決するものである。
高分子圧電材6及び光ファイバ7は、音響的に透明であり、高感度化が可能である。また、軽量で可撓性があり容易に音響放射面の形状にしたがって重合して装着ができる。
In order to realize a low-frequency, small and light high-power sound source, it is necessary to drive the acoustic radiation surface with a large amplitude, and a substantially semi-elliptical shell-type transmitter with a cross section is suitable. In other words, a laminated rectangular piezoelectric vibrator 9 having a structure of being laminated along the major axis direction is incorporated in a metal semi-elliptical shell 5, and an alternating voltage is applied thereto for excitation, whereby the minor axis direction of the semi-elliptical shell 5 is By using the displacement enlarging mechanism unit 11 that bends and vibrates the arc surface with a large amplitude, a high-power small and light sound source is obtained. Further, with respect to the influence of electromagnetic interference on the receiver for high power drive during transmission, an optical fiber 7 is adopted as the receiving sensor, and echo reception on the arc surface and side surface in the short axis direction of the semi-elliptical shell 5 is performed. The problem is solved by mounting an optical fiber 7 for receiving a sound wave on the sound surface.
The polymer piezoelectric material 6 and the optical fiber 7 are acoustically transparent and can be highly sensitive. In addition, it is lightweight and flexible, and can be easily superposed according to the shape of the acoustic radiation surface.

すなわち、本発明の請求項1記載の光受波部一体型水中用送受波器は、光受波部一体型水中用送受波器において、電気音響変換素子を収納したボルト締めランジュバン振動子1のフロントマス2に、フレックステンショナル振動子3を半楕円シェル5内に収納して、前記ボルト締めランジュバン振動子1のフロントマス2と前記フレックステンショナル振動子3の半楕円シェル5部とを重合させるとともに、光ファイバ7から成る光受波部8を前記半楕円シェル5の外面上に重合装着して、前記ボルト締めランジュバン振動子1のフロントマス2にフレックステンショナル振動子3及び光受波部8を一体化とする構成よりなることを特徴とする。   That is, the underwater transducer integrated with an optical receiver according to claim 1 of the present invention is an underwater transducer integrated with an optical receiver in the bolt-clamped Langevin transducer 1 containing an electroacoustic transducer. The flexural vibrator 3 is housed in the semi-elliptical shell 5 in the front mass 2, and the front mass 2 of the bolted Langevin vibrator 1 and the semi-elliptical shell 5 part of the flex tension vibrator 3 are superposed. In addition, a light receiving portion 8 made of an optical fiber 7 is superposed on the outer surface of the semi-elliptical shell 5, and the flexural vibrator 3 and the light receiving wave are mounted on the front mass 2 of the bolted Langevin vibrator 1. It is characterized by comprising a configuration in which the portion 8 is integrated.

請求項2記載の光受波部一体型水中用送受波器は、請求項1記載の光受波部一体型水中用送受波器において、前記半楕円シェル5が金属製とされ、該半楕円シェル5内に、断面略半楕円形の長軸方向に沿って積層矩形圧電振動子9を積層して組み込み、これに交番電圧を印加して前記半楕円シェル5の短軸方向の弧面を変位拡大機構部11により励振する送波用の音響放射面4上に、音波の受波用とする前記光ファイバ7を装着し、同一面に前記音響放射面4よりなる送波部と前記光ファイバ7よりなる光受波部8とを重合して有する構成とし、前記光受波部8を前記半楕円シェル5外面の音波の送受波部位に、媒質との音響インピーダンス整合を考慮した材料のρc樹脂モールド10を用いてモールドを施こし、これにより水密構造とすることを特徴とする。   The underwater transducer integrated with an optical receiver according to claim 2 is an underwater transducer integrated with an optical receiver according to claim 1, wherein the semi-elliptical shell 5 is made of metal. A laminated rectangular piezoelectric vibrator 9 is laminated and incorporated in the shell 5 along the major axis direction having a substantially semi-elliptical cross section, and an alternating voltage is applied thereto to form an arc surface in the minor axis direction of the semi-elliptical shell 5. The optical fiber 7 for receiving a sound wave is mounted on the acoustic radiation surface 4 for transmitting a wave excited by the displacement magnifying mechanism 11, and the transmission unit composed of the acoustic radiation surface 4 and the light are mounted on the same surface. An optical receiving portion 8 made of a fiber 7 is superposed, and the optical receiving portion 8 is made of a material in consideration of acoustic impedance matching with a medium at the sound wave transmitting / receiving portion of the outer surface of the semi-elliptical shell 5. A mold is applied using the ρc resin mold 10 to form a watertight structure. And wherein the door.

請求項3記載の光受波部一体型水中用送受波器は、請求項1記載の光受波部一体型水中用送受波器において、前記半楕円シェル5が金属製とされ、該半楕円シェル5内に、断面略半楕円形の長軸方向に沿って積層矩形圧電振動子9を積層して組み込み、これに交番電圧を印加して前記半楕円シェル5の短軸方向の弧面を変位拡大機構部11により励振する送波用の音響放射面4上に、音波の受波用とする前記光ファイバ7を装着し、同一面に前記音響放射面4よりなる送波部と前記光ファイバ7よりなる光受波部8とを重合して有する構成として、前記半楕円シェル5の前記弧面と対向する平坦底面の距離を隔てた位置に設けた水密コネクタ20に接続する複合伝送線15から電力供給のための第1の通電系導線16、第2の通電系導線17と受波用の光伝送系導線19を個別に導出させ、かつ、前記光受波部8を前記半楕円シェル5外面の音波の送受波部位に、媒質との音響インピーダンス整合を考慮した材料のρc樹脂モールド10を用いてモールドを施こし、これにより水密構造とすることを特徴とする。   The underwater transducer integrated with an optical receiver according to claim 3 is an underwater transducer integrated with an optical receiver according to claim 1, wherein the semi-elliptical shell 5 is made of metal. A laminated rectangular piezoelectric vibrator 9 is laminated and incorporated in the shell 5 along the major axis direction having a substantially semi-elliptical cross section, and an alternating voltage is applied thereto to form an arc surface in the minor axis direction of the semi-elliptical shell 5. The optical fiber 7 for receiving a sound wave is mounted on the acoustic radiation surface 4 for transmitting a wave excited by the displacement magnifying mechanism 11, and the transmission unit composed of the acoustic radiation surface 4 and the light are mounted on the same surface. A composite transmission line connected to a watertight connector 20 provided at a position spaced apart from a flat bottom surface facing the arc surface of the semi-elliptical shell 5 as a structure having a light receiving portion 8 made of a fiber 7 superimposed. 15, a first energization system conductor 16 for supplying power and a second energization system conductor 17. An optical transmission system conductor 19 for receiving waves is individually derived, and the optical receiving portion 8 is used as a sound wave transmitting / receiving portion on the outer surface of the semi-elliptical shell 5 ρc made of a material considering acoustic impedance matching with a medium. The resin mold 10 is used to mold, thereby providing a watertight structure.

請求項4記載の光受波部一体型水中用送受波器は、請求項2又は3記載の光受波部一体型水中用送受波器において、比較的低い共振周波数の前記フレックステンショナル振動子3を前記ボルト締めランジュバン振動子1のフロントマス2に一体化させるとともに、前記音響放射面4とする半楕円シェル5の内面上に高送波感度で広帯域送波特性を保有させるために、アクティブコントロール用の音波を送出する際の音響振動をセンシングする高分子圧電材6を装着させ、かつ、前記光ファイバ7よりなる光受波部を半楕円シェル5外面上に装着することにより電磁干渉の影響のない受波部を構成させたことを特徴とする。   5. The underwater transducer integrated with an optical receiver according to claim 4 is the underwater transducer integrated with an optical receiver according to claim 2 or 3, wherein the flexural vibrator has a relatively low resonance frequency. 3 is integrated with the front mass 2 of the bolt-clamped Langevin transducer 1, and the inner surface of the semi-elliptical shell 5 serving as the acoustic radiation surface 4 has a high transmission sensitivity and a broadband transmission characteristic. Electromagnetic interference is achieved by attaching a polymer piezoelectric material 6 that senses acoustic vibrations when transmitting active control sound waves, and by attaching a light receiving portion comprising the optical fiber 7 on the outer surface of the semi-elliptical shell 5. It is characterized in that a wave receiving unit without the influence of the above is configured.

請求項5記載の光受波部一体型水中用送受波器は、請求項1,2,3,4のいずれか1つに記載の光受波部一体型水中用送受波器において、前記ボルト締めランジュバン振動子1の縦振動モードと前記フレックステンショナル振動子3の屈曲振動モードを重畳させ、両モードが広帯域周波数になるようにフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅を制御するフィードバックアクティブコントロールを行うことを特徴とする。   The underwater transmitter / receiver integrated with an optical receiver according to claim 5 is the underwater transmitter / receiver integrated with an optical receiver according to any one of claims 1, 2, 3, and 4. The longitudinal vibration mode of the tightened Langevin vibrator 1 and the flexural vibration mode of the flex tension vibrator 3 are superimposed, and the flex tension vibrator 3, the Langevin vibrator 1, and both vibrators so that both modes have a wideband frequency. Feedback active control for controlling the phase and amplitude of each drive voltage is performed.

請求項6記載の光受波部一体型水中用送受波器は、請求項1,2,3,4,5のいずれか1つに記載の光受波部一体型水中用送受波器において、前記光ファイバ7が、前記音響放射面4上に、渦巻き状に配置構成されていることを特徴とする。   The underwater transmitter / receiver integrated with an optical receiver according to claim 6 is an underwater transmitter / receiver integrated with an optical receiver according to any one of claims 1, 2, 3, 4, and 5. The optical fiber 7 is arranged and configured in a spiral on the acoustic radiation surface 4.

このような構成により、本発明の光受波部一体型水中用送受波器によれば、比較的低い共振周波数のフレックステンショナル振動子3をボルト締めランジュバン振動子1のフロントマス2に一体化ができ、また、音波を送出する際の音響振動をセンシングする高分子圧電材6の出力信号を用いて制御器28でアクティブコントロールによる位相調整をして送波特性の高感度化及び広帯域周波数特性が達成でき、受波センサに光ファイバ7を採用し、エコー受音面上に音波の受波用とする光受波部8を装着させ、電磁干渉の影響のない受波部を構成させた高性能で小型軽量の低周波広帯域の高出力音源が実現し光受波部一体型水中用送受波器が得られる。   With such a configuration, according to the underwater wave transmitter / receiver integrated with a light receiving portion of the present invention, the flexural vibrator 3 having a relatively low resonance frequency is integrated with the front mass 2 of the bolted Langevin vibrator 1. In addition, the controller 28 adjusts the phase by active control using the output signal of the polymer piezoelectric material 6 that senses the acoustic vibration when the sound wave is transmitted, thereby enhancing the sensitivity of the transmission characteristics and wideband frequency. Characteristics can be achieved, optical fiber 7 is adopted as a wave receiving sensor, and an optical wave receiving part 8 for receiving sound waves is mounted on an echo sound receiving surface to constitute a wave receiving part that is not affected by electromagnetic interference. A high-performance, compact, lightweight, low-frequency, wide-band, high-power sound source is realized, and an underwater transducer integrated with an optical receiver is obtained.

また、フレックステンショナル振動子3の屈曲振動モードと、ボルト締めランジュバン振動子1の縦振動モードとの、両モードを重畳させ、さらに、音波を送出する際の音響振動をセンシングする高分子圧電材6の出力信号を用いて制御器28と演算器29でフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅調整のフィードバックアクティブコントロールを行うことにより送波特性の高感度化及び広帯域周波数特性が得られる。   Also, a polymer piezoelectric material that senses acoustic vibration when sound waves are transmitted by superimposing both modes of the flexural vibration mode of the flexural vibrator 3 and the longitudinal vibration mode of the bolted Langevin vibrator 1. 6 by using the output signal 6 to perform feedback active control of the phase and amplitude adjustment of the drive voltage of each of the flexural vibrator 3, the Langevin vibrator 1, and both vibrators by the controller 28 and the arithmetic unit 29. High sensitivity and wideband frequency characteristics can be obtained.

送波時の高電力駆動における受波器の電磁干渉の影響に対しては、受波センサに光ファイバ7を採用し、半楕円シェル5の短軸方向の弧面及び側面のエコー受音面上に音波の受波用とする光ファイバ7で構成する光受波部8を装着することによって電磁干渉の影響のない光受波部を構成させた高感度受波器及び小型軽量の低周波広帯域の高出力音源が実現せせることができ、光受波部一体型水中用送受波器が得られる。   For the influence of electromagnetic interference of the receiver in high-power driving during transmission, the optical fiber 7 is adopted as the receiving sensor, and the arc receiving surface and the echo receiving surface on the side surface of the semi-elliptical shell 5 in the short axis direction. A high-sensitivity receiver having a light receiving portion free from the influence of electromagnetic interference by mounting an optical receiving portion 8 composed of an optical fiber 7 for receiving sound waves, and a small and lightweight low frequency A broadband high-output sound source can be realized, and an optical receiver-integrated underwater transducer can be obtained.

さらに、従来の供試体の反射能測定では、低周波の計測周波数帯域毎に水中用送波器の交換使用となるため、その都度、水中用送波器の電気的絶縁チェック及びインピーダンス測定を行い、さらに、計測のための正確なセッティング作業の実施とそれに引続く事前計測データ値による物理的妥当性の勘案等、本来の計測データの取得に至るまでにかなりの支度や準備の時間を要していたほかに、吊下と揚収作業や接続ケーブルの展張や捌き作業もあって、試験時間の多くが費やされてしまうために、このような煩雑で手数のかかることの無い利便性のある水中用送受波器が要望されていたので、本発明による低周波広帯域の光受波部一体型水中用送受波器の出現によって、上記のように準備や事前のチェック等が当初だけで済むため、作業上の間違いや計測のデータの再測定も大幅に減って作業員の士気も上がり、試験工数の低減効果と安全への波及効果は大である。   Furthermore, in the conventional measurement of the reflectivity of the specimen, it is necessary to replace the underwater transmitter for each low-frequency measurement frequency band. Therefore, the electrical insulation check and impedance measurement of the underwater transmitter are performed each time. In addition, it takes considerable preparation and preparation time to obtain the original measurement data, such as taking into account the physical validity of the accurate setting work for measurement and subsequent pre-measurement data values. In addition to this, there are hanging and lifting operations, connecting cable expansion and spreading operations, and much of the test time is spent. Since a certain underwater transmitter / receiver has been desired, the preparation of the underwater transmitter / receiver integrated with a low-frequency broadband optical receiver according to the present invention requires only preparations and preliminary checks as described above. Because of work Also up mistakes and morale of workers re-measurement also decreased significantly of the data of measurement, reduction effect and the ripple effect on the safety of the test effort is large.

従来、困難とされていた、より低周波の広い周波数に亘って、送波音には、雑音に比してより際立たせた音響信号の良好な高S/N(信号対雑音)で送波させて、受波においては、受波信号を際立たせ、かつ、信頼度の高い反射能の計測が低周波数の広帯域に亘り可能となる。   The transmitted sound is transmitted with a high S / N (signal-to-noise), which is a more prominent acoustic signal than noise, over a wide range of lower frequencies, which has conventionally been difficult. Thus, in reception, the received signal is made to stand out, and a highly reliable measurement of reflectivity is possible over a wide band of low frequencies.

また、高感度送波によって、高SN比に加えて、本質的に電磁干渉のない広帯域受波感度周波数特性を有する光受波部の出力により、さらに、電気的誘導雑音の影響を受け無い高SN比の計測環境となる。これと相まって、高精度で信頼性のより高い計測結果が得られることになるとともに、研究成果に多大な貢献が可能となり、極めて有用である。   In addition to high SNR, in addition to high S / N ratio, the output of the optical receiver having a wideband receiver sensitivity frequency characteristic that is essentially free from electromagnetic interference, and is not affected by electrically induced noise. It becomes the measurement environment of SN ratio. Combined with this, it is possible to obtain highly accurate and highly reliable measurement results, and it is possible to make a great contribution to research results, which is extremely useful.

また、送波音源の送波レベルの監視のために、従来の送波器では音源の周辺部に別途用意のロープ等に補強等を行ってモニタ用の受波器を別個に取り付ける煩雑さがあったが本発明の光受波部一体型水中用送受波器では、それらは一体化されており、その不都合な煩雑さが解消される上、光受波部8と高分子圧電材6によって、モニタが光系受波と電気系受波の両方ともに具備された二重の計測が可能となって、その分信頼性の高いデータを取得できる計測機器になる。   In addition, in order to monitor the transmission level of the transmitted sound source, the conventional transmitter has the trouble of attaching a monitor receiver separately by reinforcing a separately prepared rope or the like around the sound source. However, in the underwater wave transmitter / receiver integrated with the light receiving portion of the present invention, they are integrated, and the inconvenient complexity is eliminated, and the light receiving portion 8 and the polymer piezoelectric material 6 are used. The monitor is equipped with both optical reception and electrical reception, so that it is possible to perform double measurement, and the measurement apparatus can acquire highly reliable data accordingly.

従来の計測時では、供試体から見通しの直線上に水中用送波器と水中用受波器を配置するため、音響的に影になって供試体の正確な反射能の計測が行えないこともあり、その手立てとして、同心円上の距離に水中用送波器と水中用受波器を並べて配置するも、これでは、供試体の斜め方向の計測になる上、互いの反射波の影響を被るので正確な反射能の計測結果として扱えなかったが、本発明の光受波部一体型水中用送受波器により、それらの問題は一挙に解消され、低周波広帯域の周波数に亘って本来の反射能の計測が低いレベルの測定から可能となる意義は極めて大きい。   During conventional measurement, an underwater transmitter and an underwater receiver are placed on a straight line from the specimen to the line of sight, making it impossible to accurately measure the reflectivity of the specimen due to an acoustic shadow. As a means of doing this, underwater transmitters and underwater receivers are arranged side by side at concentric distances. However, these problems were solved all at once by the underwater transducer integrated with a light receiving portion of the present invention. The significance of enabling the measurement of reflectivity from low level measurements is extremely significant.

また、海上では穏やかな海面よりも荒天時が多く、水中用送波器、水中用受波器式及び供試体を個々に吊下、展張する作業には多くの作業員とクレーン船等の所要の設備を必要とし、経費も多大となるほか安全面にも問題があったが、本発明の光受波部一体型水中用送受波器は、寸法重量ともに望まれていた規模の小型・軽量にして外観的に単一の送受波器の実現であり、かつ、光受波器、高分子圧電材等多くの機能を備えており、試験研究上において使い勝手の良い利便性の高い光受波部一体型音源である。   Also, there are more stormy weather than the calm sea surface at sea, and many workers and crane ships etc. are required to hang and extend the underwater transmitter, underwater receiver type and specimen individually. However, the light receiving unit integrated submersible transmitter / receiver of the present invention is small and light in the scale that is desired in both dimensions and weight. In addition, it is possible to realize a single transmitter / receiver in appearance, and has many functions such as an optical receiver, a polymer piezoelectric material, etc., and it is convenient and convenient for receiving and testing. This is a part-integrated sound source.

本発明の光受波部一体型水中用送受波器は、比較的低い共振周波数のフレックステンショナル振動子3を、ボルト締めランジュバン振動子1のフロントマス2に一体化させるとともに音響放射面4とする半楕円シェル5の内面上に音波を送出する際の音響放射面4の音響振動をセンシングとする高分子圧電材6を装着させ、その出力信号を送出し制御部28と演算回路29に、アクティブコントロール用の高送波感度で広帯域送波特性を保有させるために、併せて、受波部に光ファイバ7を採用し、これを半楕円シェル5外面上に装着することにより電磁干渉の影響のない受波部を構成させたので、計測時には、大電力駆動音源の環境下で、微弱なエコーを検出することができる上、S/N(信号対雑音)比が向上することによって、信号処理に対して好結果をもたらす大きな利点がある。   The underwater transducer integrated with a light receiving portion of the present invention integrates a flexural vibrator 3 having a relatively low resonance frequency with a front mass 2 of a bolted Langevin vibrator 1 and an acoustic radiation surface 4. The polymer piezoelectric material 6 that senses the acoustic vibration of the acoustic radiation surface 4 when the sound wave is transmitted is mounted on the inner surface of the semi-elliptical shell 5 that performs sensing, and the output signal is transmitted to the control unit 28 and the arithmetic circuit 29. In order to retain broadband transmission characteristics with high transmission sensitivity for active control, an optical fiber 7 is also used for the receiving part, and this is mounted on the outer surface of the semi-elliptical shell 5 to prevent electromagnetic interference. Since the receiving unit having no influence is configured, a weak echo can be detected in the environment of a high-power drive sound source during measurement, and the S / N (signal-to-noise) ratio is improved. Signal processing There is a great advantage of providing good results for.

また、従来における低周波域の計測試験では、一般的に送波器が単一共振特性のために、低周波域で他の周波数の試験が行われる場合の都度、別途の送波器の用意が必要であり、この場合には、大型寸法の大重量の低周波送波器であり、容易で無い重量物移動に関する面倒な作業と煩雑性は安全上にも問題がある上、抱き合わせ受波器のロープ沿わせ全長の複雑に絡みあった交換取り付け作業は至難であったが、本発明の光受波部一体型水中用送受波器は、低周波広帯域特性であり試験においては、供試体のほかに本発明の光受波部一体型水中用送受波器のみを吊り下げるだけで済むので、作業性や計測の制限は大幅に軽減されることになる。さらに、試験設定内容によっては、例えば、十分にS/Nの高い場合の想定であれば、半楕円シェル5の内面上に装着してあるアクティブコントロールに使用するための高分子圧電材6を予め受波感度校正を行うことによって計測用受波器の十分な代用を果たし得るので、その場合には、光受信計の器材を用意して、調整する負担も無くなって、その分の工数が軽減される。   Also, in conventional measurement tests in the low frequency range, a separate transmitter is prepared each time a test is performed at other frequencies in the low frequency range because the transmitter generally has a single resonance characteristic. In this case, it is a large-sized, heavy-weight, low-frequency transmitter, and the tedious work and complexity associated with the movement of heavy objects, which are not easy, are problematic in terms of safety. It was difficult to replace and assemble the entire length of the rope along the rope, but the underwater transmitter / receiver integrated with the optical receiver according to the present invention has a low-frequency wideband characteristic. In addition to this, only the optical receiver-integrated underwater transmitter / receiver of the present invention needs to be suspended, so that workability and measurement restrictions are greatly reduced. Further, depending on the test setting contents, for example, if it is assumed that the S / N is sufficiently high, a polymer piezoelectric material 6 for use in active control mounted on the inner surface of the semi-elliptical shell 5 is previously provided. The reception sensitivity calibration can be used as a sufficient substitute for the measurement receiver. In that case, the burden of adjusting and preparing the optical receiver equipment is eliminated, and the man-hours for that are reduced. Is done.

光受波部を半楕円シェル5外面の音波の送受波部位には媒質との音響インピーダンス整合を考慮した材料のρc樹脂モールド10を用いてモールドを施して水密構造としたので、水槽や試験船でケーブルによって水中に吊り下げて単独で使用する水中用送受波器として適しており、特に、耐水圧強度を必要とする深深度での計測用水中用送波器として優れている。   Since the light receiving portion is molded with a ρc resin mold 10 made of a material in consideration of acoustic impedance matching with the medium at the transmitting / receiving portion of the sound wave on the outer surface of the semi-elliptical shell 5, a watertight structure is obtained. Therefore, it is suitable as an underwater transmitter / receiver that is suspended in water by a cable and used alone, and is particularly excellent as an underwater transmitter for measurement at a deep depth that requires water pressure resistance.

以下本発明に係わる光受波部一体型水中用送受波器の実施の形態を図面に従って説明する。
図1は本発明の実施例に係わる光受波部一体型水中用送受波器の1部切欠斜視概要図、図2は本発明の実施例に係わる光受波部一体型水中用送受波器の横断面概要図である。
本実施の形態の光受波部一体型水中用送受波器は、試験用送受波器や魚群探知機用送受波器のより低周波数化と高感度の送波特性及びハイパワー化を達成させるものである。
図2に示すように、ボルト締めランジュバン振動子1は、円筒形圧電振動子12が、2つの金属製マスである重いリアーマス13と媒質中に音響エネルギーを送波するテーパー状の付いた軽いフロントマス2との間に積層構成されて、ボルト25とナット23で強固に締め付けされて構成され、プレストレスのもとで大電力駆動による大きな音響出力パワーを有した構造となっている。また、フレックステンショナル振動子3は、金属製の半楕円シェル5内にその長軸方向に沿って積層矩形圧電振動子9が積層構成され、これに交番電圧を印加して励振し、半楕円シェル5の短軸方向の弧面を大振幅で屈曲振動させる変位拡大機構部11により、高出力の小型軽量の音源を得るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an underwater transducer integrated with a light receiving section according to the present invention will be described with reference to the drawings.
FIG. 1 is a partially cutaway perspective schematic view of an underwater transducer integrated with an optical receiver according to an embodiment of the present invention. FIG. 2 is an underwater transducer integrated with an optical receiver according to an embodiment of the present invention. FIG.
The underwater transmitter / receiver integrated with the optical receiver of this embodiment achieves lower frequency, higher sensitivity transmission characteristics and higher power of the test transmitter / receiver for fish detectors. It is something to be made.
As shown in FIG. 2, a bolted Langevin vibrator 1 includes a cylindrical piezoelectric vibrator 12 having a heavy rear mass 13 that is two metal masses and a light front with a tapered shape that transmits acoustic energy into the medium. It is configured to be laminated between the mass 2 and firmly tightened with bolts 25 and nuts 23, and has a structure with large acoustic output power by high power drive under prestress. The flexural vibrator 3 is formed by laminating a laminated rectangular piezoelectric vibrator 9 in a metal semi-elliptical shell 5 along the major axis direction thereof, and applying an alternating voltage thereto to excite the semi-elliptical vibrator 3. The displacement enlarging mechanism 11 that flexures and vibrates the arc surface in the short axis direction of the shell 5 with a large amplitude is used to obtain a high-power, small and lightweight sound source.

この実施の形態では、大電力駆動で水中音送波し、使用帯域の下限周波数が送受波器の縦振動共振周波数であるボルト締めランジュバン振動子1のフロントマス2に、比較的低い共振周波数のフレックステンショナル振動子3を収納した片面放射型ハウジングの半楕円シェル5を一体化させるとともに、高感度の広帯域送波感度周波数特性を得るために、フレックステンショナル振動子3の屈曲振動モードと、ボルト締めランジュバン振動子1の縦振動モードとの両モードを重畳させる。さらに、広帯域周波数特性になるようにアクティブコントロール用の、音波を送波する際の音響放射面4の音響振動をセンシングする高分子圧電材6の出力を、アクティブコントロール系導線18を介してフィードバック回路を有する制御器28と演算器29に電圧増幅器30を介して送出し(図5参照)、そこで、アクティブコントロールによりフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅を制御させて送波特性の高感度化及び広帯域周波数特性を達成させる。なお、この場合、フレックステンショナル振動子3の屈曲振動モードが、ボルト締めランジュバン振動子1の縦振動モードよりも共振周波数が低く、共振先鋭度及び最大感度は、ボルト締めランジュバン振動子1の方を比較的高く設計してある。   In this embodiment, underwater sound transmission is performed with high power drive, and the lower limit frequency of the band used is the front mass 2 of the bolt-clamped Langevin vibrator 1 which is the longitudinal vibration resonance frequency of the transducer. In order to integrate the semi-elliptical shell 5 of the single-sided radiation type housing that houses the flexural resonator 3 and to obtain a high-sensitivity broadband transmission sensitivity frequency characteristic, the flexural vibration mode of the flexural resonator 3; Both modes of the bolted Langevin vibrator 1 and the longitudinal vibration mode are superimposed. Further, an output of the polymer piezoelectric material 6 for sensing the acoustic vibration of the acoustic radiation surface 4 when transmitting a sound wave for active control so as to have a wideband frequency characteristic is fed back via an active control system lead 18. Are sent to the controller 28 and the arithmetic unit 29 via the voltage amplifier 30 (see FIG. 5), where the drive voltage of each of the flexural vibrator 3, the Langevin vibrator 1, and both vibrators is controlled by active control. The phase and amplitude are controlled to achieve high sensitivity of transmission characteristics and wideband frequency characteristics. In this case, the flexural vibration mode of the flexural vibrator 3 has a lower resonance frequency than the longitudinal vibration mode of the bolt-clamped Langevin vibrator 1, and the resonance sharpness and maximum sensitivity are those of the bolt-clamped Langevin vibrator 1. Is designed relatively high.

受波センサには、音響的に透明であり、且つ、軽量で可撓性を有する光ファイバ7を採用して受波部として、これを半楕円シェル5外面上、すなわち、半楕円シェル5の短軸方向の正面となる湾曲した弧面のエコー受音面上、すなわち音響放射面4に音波の受波用として構成し、電磁干渉の影響のない光受波部8を構成して、送受波器として使用の際の高電力駆動に対する従来の圧電セラミックセンサによる微弱エコーの電気的高増幅における電磁干渉の影響を避けた構造としている。なお、本実施の形態では、図1に示すように光ファイバ7を渦巻き状に配置構成している。   The wave receiving sensor employs an optical fiber 7 that is acoustically transparent and lightweight and flexible, and serves as a wave receiving portion on the outer surface of the semi-elliptical shell 5, that is, the semi-elliptical shell 5. On the echo receiving surface of the curved arc surface that is the front in the short axis direction, that is, the acoustic radiation surface 4 is configured to receive sound waves, and the light receiving unit 8 that is not affected by electromagnetic interference is configured to transmit and receive The structure avoids the influence of electromagnetic interference in the electrical high amplification of weak echo by the conventional piezoelectric ceramic sensor for high power drive when used as a waver. In the present embodiment, as shown in FIG. 1, the optical fibers 7 are arranged in a spiral shape.

フレックステンショナル振動子3の屈曲振動モードとボルト締めランジュバン振動子1の縦振動モードの両モードを重畳させ、かつまた、広帯域周波数特性になるように音波を送出する際の音響振動をセンシングする高分子圧電材6を上記音響放射面4の内面に装着させて、その出力信号をアクティブコントロール系導線21を介してフィードバック回路を有する制御器28と演算器29に送信器31を介して送出し(図5参照)、そこで、アクティブコントロールによりフレックステンショナル振動子3、ランジュバン振動子1、及び両振動子の各々駆動電圧の位相と振幅を制御させて送波特性の高感度化及び広帯域周波数特性を達成させる。   Both the flexural vibration mode of the flexural vibrator 3 and the longitudinal vibration mode of the bolted Langevin vibrator 1 are superposed, and the acoustic vibration at the time of transmitting a sound wave so as to have a wideband frequency characteristic is high. The molecular piezoelectric material 6 is attached to the inner surface of the acoustic radiation surface 4, and the output signal is sent via the active control system conductor 21 to the controller 28 having a feedback circuit and the arithmetic unit 29 via the transmitter 31 ( Therefore, the sensitivity and the broadband frequency characteristics of the transmission characteristics are improved by controlling the phase and amplitude of the driving voltage of each of the flexural vibrator 3, the Langevin vibrator 1, and both vibrators by active control. To achieve.

なお、各信号の導線である第1の通電系導線16、第2の通電系導線17、アクティブコントロール系導線18、光伝送系導線19は、金属性の半楕円シェル5や水密ケース26を貫通して積層矩形圧電振動子9及び積層円筒形圧電振動子12へ、また、高分子圧電材6及び光受波部8の光ファイバ7もリード線等に各々接続される。   The first conducting system conducting wire 16, the second conducting system conducting wire 17, the active control system conducting wire 18, and the optical transmission system conducting wire 19, which are the conducting wires of each signal, pass through the metallic semi-elliptical shell 5 and the watertight case 26. Then, the laminated rectangular piezoelectric vibrator 9 and the laminated cylindrical piezoelectric vibrator 12 are connected to the polymer piezoelectric material 6 and the optical fiber 7 of the light receiving section 8 to lead wires or the like.

音響放射面4とする半楕円シェル5の内面上には、高分子圧電材6が配設される。この高分子圧電材6は音響的に透明であり、且つ、可撓性を有する薄板状であり、上記内面に容易に沿って接着剤等により装着、固定される。   A polymer piezoelectric material 6 is disposed on the inner surface of the semi-elliptical shell 5 serving as the acoustic radiation surface 4. The polymer piezoelectric material 6 is acoustically transparent and has a thin plate shape having flexibility, and is easily mounted and fixed along the inner surface with an adhesive or the like.

金属製の半楕円シェル5の音響放射面4等の外面主要部は、合成樹脂モールド、好ましくは媒質と音響的整合を有するρc樹脂モールド10で覆われる。また、裏面のボルト締めランジュバン振動子1の部位とは、Oリング27を介設して水密ケース26が接続される。さらに、水密ケース26には、水密コネクタ20付のエンドキャップ21がビス22止めされ、水密機能を持たせている。また、送波時の振動伝達を極力防ぐために水密ケース26とリアーマス13との間にはクッションゴム24を介在させ保持させている。   An outer surface main portion such as the acoustic radiation surface 4 of the metal semi-elliptical shell 5 is covered with a synthetic resin mold, preferably a ρc resin mold 10 having acoustic matching with the medium. Further, a watertight case 26 is connected to the portion of the bolted Langevin vibrator 1 on the back surface through an O-ring 27. Furthermore, the end cap 21 with the watertight connector 20 is fixed to the watertight case 26 with a screw 22 to provide a watertight function. Further, a cushion rubber 24 is interposed between the watertight case 26 and the rear mass 13 so as to prevent vibration transmission during wave transmission as much as possible.

供試体からのエコーによる到来音波はρc樹脂モールド10を透過し光ファイバ7で構成する光受波部8で受波され、これを送出された光部品回路部14において、音圧による光ファイバの長さ等の変化を光ファイバ中を伝搬するレーザー光の位相変化として検出する。さらに光伝送系導線19を経由して図示しないドライエンドの光/電気変換器及び復調器によってエコーレベルとしての電圧が検出できる。   The incoming sound wave due to the echo from the specimen is transmitted through the ρc resin mold 10 and received by the light receiving unit 8 constituted by the optical fiber 7. A change in length or the like is detected as a phase change of laser light propagating through the optical fiber. Further, a voltage as an echo level can be detected by a dry-end optical / electrical converter and demodulator (not shown) via the optical transmission line 19.

このようにして、比較的低い共振周波数のフレックステンショナル振動子3をボルト締めランジュバン振動子1のフロントマス2に一体化させるとともに、音響放射面4とする半楕円シェル5の内面上に高送波感度で広帯域送波特性を保有させるために、アクティブコントロール用の音波を送出する際の音響放射面4の音響振動をセンシングする送波音モニタ用の高分子圧電材6を装着させ、併せて、受波部に光ファイバ7を採用し、これを半楕円シェル5外面上に装着することにより電磁干渉の影響のない受波部を構成させたこと、及び同一面上に送波部(音源)と受波部を一体的に有する構成とした受波部一体型音源としての光受波部一体型水中用送受波器が得られる。このことから、高感度、低周波広帯域、ハイパワーの送波を実現させるとともに、光技術の採用による電磁干渉のない広帯域受波感度周波数特性を有する小型・軽量の光受波部一体型水中用送受波器が得られる。   In this way, the flexural vibrator 3 having a relatively low resonance frequency is integrated with the front mass 2 of the bolted Langevin vibrator 1 and is fed on the inner surface of the semi-elliptical shell 5 serving as the acoustic radiation surface 4. In order to maintain a broadband transmission characteristic with wave sensitivity, a polymer piezoelectric material 6 for transmitting sound monitoring for sensing acoustic vibration of the acoustic radiation surface 4 when transmitting a sound wave for active control is attached. An optical fiber 7 is used for the wave receiving portion, and this is mounted on the outer surface of the semi-elliptical shell 5 to form a wave receiving portion that is not affected by electromagnetic interference, and the wave transmitting portion (sound source) ) And the wave receiving part, the optical wave receiving part integrated underwater transducer as the wave receiving part integrated sound source is obtained. This enables high-sensitivity, low-frequency broadband, and high-power transmission, as well as a compact and lightweight optical receiver-integrated underwater unit that has wideband received sensitivity frequency characteristics without electromagnetic interference through the use of optical technology. A transducer is obtained.

この実施の形態に係わる光受波部一体型水中用送受波器は、小型・軽量に構成できるこから、複数の水中用送受波器を、その底面のエンドキャップ21側を架台上面に設置させるようにして取り付けることにより、総合された高出力の送受波信号を得るのに適している。また、光受波部一体型音源は、装備面積の制限下における装備に適している。さらに、本発明の光受波部一体型水中用送受波器によれば、ハウリングの発生しないレスポンダやトランスポンダに最適である。   Since the underwater transmitter / receiver integrated with a light receiving portion according to this embodiment can be configured to be small and light, a plurality of underwater transmitter / receivers are installed with the end cap 21 side of the bottom surface on the top surface of the gantry. By mounting in this way, it is suitable for obtaining an integrated high-power transmission / reception signal. Further, the sound receiving unit integrated sound source is suitable for equipment under the limitation of equipment area. Further, the underwater transducer integrated with an optical receiver of the present invention is optimal for a responder or transponder that does not generate howling.

なお、上述した実施の形態では、光受波部8を、図1,2に示すように、半楕円シェル5の音響放射面4となる弧面部分(正面部分)に構成させた例を示したが、図3に示すように、半楕円シェル5の側面部分にも光ファイバ7を配置し、すなわち弧面部分と側面部分とを光受波部8としてもよく、或いは、図4に示すように、弧面部分には配置せず、側面部分のみ光ファイバ7を配置し光受波部8として構成してもよい。   In the above-described embodiment, as shown in FIGS. 1 and 2, an example in which the light receiving unit 8 is configured in an arc surface portion (front portion) that becomes the acoustic radiation surface 4 of the semi-elliptical shell 5 is shown. However, as shown in FIG. 3, the optical fiber 7 may be disposed also on the side surface portion of the semi-elliptical shell 5, that is, the arc surface portion and the side surface portion may be used as the light receiving portion 8. Alternatively, as shown in FIG. As described above, the optical receiver 7 may be configured by arranging the optical fiber 7 only in the side surface portion without arranging it in the arc surface portion.

本発明の実施例の形態係る光受波部一体型水中用送受波器の一部切欠斜視概要図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective schematic view of an underwater transmitter / receiver integrated with a light receiving unit according to an embodiment of the present invention. 同光受波部一体型水中用送受波器の横断面概要図である。It is a cross-sectional schematic diagram of the underwater transmitter / receiver integrated with the same optical receiver. 本発明の第2の実施の形態を示す光受波部一体型水中用送受波器の横断面概要図である。It is a cross-sectional schematic diagram of the optical receiving part integrated underwater transducer which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す光受波部一体型水中用送受波器の横断面概要図である。It is a cross-sectional schematic diagram of the optical receiver integrated water transmitter / receiver which shows the 3rd Embodiment of this invention. アクティブコントロールと駆動制御系統基本構成概要図である。It is an active control and drive control system basic composition outline figure. 本発明に係る光受波部一体型水中用送受波器の送波感度周波数特性概念図である。FIG. 3 is a conceptual diagram of a transmission sensitivity frequency characteristic of an underwater transducer integrated with a light receiving section according to the present invention.

符号の説明Explanation of symbols

1…ボルト締めランジュバン振動子
2…フロントマス
3…フレックステンショナル振動子
4…音響放射面
5…半楕円シェル
6…高分子圧電材
7…光ファイバ
8…光受波部
9…積層矩形圧電振動子
10…ρc樹脂モールド
11…変位拡大機構部
12…積層円筒形圧電振動子
13…リアーマス
14…光部品回路部
15…複合伝送線
16…第1の通電系導線
17…第2の通電系導線
18…アクティブコントロール系導線
19…光伝送系導線
20…水密コネクタ
21…エンドキャップ
22…ビス
23…ナット
24…クッションゴム
25…ボルト
26…水密ケース
27…Oリング
28…制御器
29…演算器
30…電圧増幅器
31…送信機
1 ... Bolt-tightened Langevin vibrator 2 ... Front mass 3 ... Flexural vibrator
4 ... Acoustic radiation surface
DESCRIPTION OF SYMBOLS 5 ... Semi-elliptical shell 6 ... Polymer piezoelectric material 7 ... Optical fiber 8 ... Light receiving part 9 ... Laminated rectangular piezoelectric vibrator 10 ... ρc resin mold 11 ... Displacement expansion mechanism part 12 ... Laminated cylindrical piezoelectric vibrator 13 ... Rear mass DESCRIPTION OF SYMBOLS 14 ... Optical component circuit part 15 ... Composite transmission line 16 ... 1st electricity supply system conducting wire 17 ... 2nd electricity supply system conducting wire 18 ... Active control system conducting wire 19 ... Optical transmission system conducting wire 20 ... Watertight connector 21 ... End cap 22 ... Screw 23 ... Nut 24 ... Cushion rubber 25 ... Bolt 26 ... Watertight case 27 ... O-ring 28 ... Controller 29 ... Calculator 30 ... Voltage amplifier 31 ... Transmitter

Claims (6)

光受波部一体型水中用送受波器において、電気音響変換素子を収納したボルト締めランジュバン振動子1のフロントマス2に、フレックステンショナル振動子3を半楕円シェル5内に収納して、前記ボルト締めランジュバン振動子1のフロントマス2と前記フレックステンショナル振動子3の半楕円シェル5部とを重合させるとともに、光ファイバ7から成る光受波部8を前記半楕円シェル5の外面上に重合装着して、前記ボルト締めランジュバン振動子1のフロントマス2にフレックステンショナル振動子3及び光受波部8を一体化とする構成よりなることを特徴とする光受波部一体型水中用送受波器。   In the underwater transmitter / receiver integrated with a light receiving section, the flexural vibrator 3 is housed in the semi-elliptical shell 5 in the front mass 2 of the bolted Langevin vibrator 1 housing the electroacoustic transducer, The front mass 2 of the bolted Langevin vibrator 1 and the semi-elliptical shell 5 part of the flexural vibrator 3 are superposed, and a light receiving part 8 comprising an optical fiber 7 is placed on the outer surface of the semi-elliptical shell 5. Light receiving part integrated type for underwater, comprising a structure in which the flexural vibrator 3 and the light receiving part 8 are integrated with the front mass 2 of the bolt-clamped Langevin vibrator 1 by superposition. Transmitter / receiver. 前記半楕円シェル5が金属製とされ、該半楕円シェル5内に、断面略半楕円形の長軸方向に沿って積層矩形圧電振動子9を積層して組み込み、これに交番電圧を印加して前記半楕円シェル5の短軸方向の弧面を変位拡大機構部11により励振する送波用の音響放射面4上に、音波の受波用とする前記光ファイバ7を装着し、同一面に前記音響放射面4よりなる送波部と前記光ファイバ7よりなる光受波部8とを重合して有する構成とし、前記光受波部8を前記半楕円シェル5外面の音波の送受波部位に、媒質との音響インピーダンス整合を考慮した材料のρc樹脂モールド10を用いてモールドを施こし、これにより水密構造とすることを特徴とする請求項1記載の構成の光受波部一体型水中用送受波器。   The semi-elliptical shell 5 is made of metal, and a laminated rectangular piezoelectric vibrator 9 is laminated and incorporated in the semi-elliptical shell 5 along the major axis direction having a substantially semi-elliptical cross section, and an alternating voltage is applied thereto. The optical fiber 7 for receiving a sound wave is mounted on the acoustic radiation surface 4 for transmitting a wave that excites the arc surface in the short axis direction of the semi-elliptical shell 5 by the displacement magnifying mechanism 11. And a light receiving portion 8 comprising the optical fiber 7 and a light receiving portion 8 comprising the optical fiber 7, and the light receiving portion 8 is used to transmit and receive sound waves on the outer surface of the semi-elliptical shell 5. 2. The optical receiving unit integrated structure according to claim 1, wherein the part is molded by using a ρc resin mold 10 made of a material considering acoustic impedance matching with a medium, thereby forming a watertight structure. Underwater transducer. 前記半楕円シェル5が金属製とされ、該半楕円シェル5内に、断面略半楕円形の長軸方向に沿って積層矩形圧電振動子9を積層して組み込み、これに交番電圧を印加して前記半楕円シェル5の短軸方向の弧面を変位拡大機構部11により励振する送波用の音響放射面4上に、音波の受波用とする前記光ファイバ7を装着し、同一面に前記音響放射面4よりなる送波部と前記光ファイバ7よりなる光受波部8とを重合して有する構成として、前記半楕円シェル5の前記弧面と対向する平坦底面の距離を隔てた位置に設けた水密コネクタ20に接続する複合伝送線15から電力供給のための第1の通電系導線16、第2の通電系導線17と受波用の光伝送系導線19を個別に導出させ、かつ、前記光受波部8を前記半楕円シェル5外面の音波の送受波部位に、媒質との音響インピーダンス整合を考慮した材料のρc樹脂モールド10を用いてモールドを施こし、これにより水密構造とすることを特徴とする請求項1記載の構成の光受波部一体型水中用送受波器。   The semi-elliptical shell 5 is made of metal, and a laminated rectangular piezoelectric vibrator 9 is laminated and incorporated in the semi-elliptical shell 5 along the major axis direction having a substantially semi-elliptical cross section, and an alternating voltage is applied thereto. The optical fiber 7 for receiving a sound wave is mounted on the acoustic radiation surface 4 for transmitting a wave that excites the arc surface in the short axis direction of the semi-elliptical shell 5 by the displacement magnifying mechanism 11. As a configuration having a wave transmitting portion made of the acoustic radiation surface 4 and a light receiving portion 8 made of the optical fiber 7 in an overlapping manner, a distance between a flat bottom surface facing the arc surface of the semi-elliptical shell 5 is separated. A first conducting system conducting wire 16, a second conducting system conducting wire 17 and a receiving optical transmission system conducting wire 19 for power supply are individually derived from the composite transmission line 15 connected to the watertight connector 20 provided at the position. And the light receiving section 8 transmits sound waves on the outer surface of the semi-elliptical shell 5. 2. The light receiving part according to claim 1, wherein the wave part is molded by using a ρc resin mold 10 made of a material considering acoustic impedance matching with a medium, thereby forming a watertight structure. Body underwater transducer. 比較的低い共振周波数の前記フレックステンショナル振動子3を前記ボルト締めランジュバン振動子1のフロントマス2に一体化させるとともに、前記音響放射面4とする半楕円シェル5の内面上に高送波感度で広帯域送波特性を保有させるために、アクティブコントロール用の音波を送出する際の音響振動をセンシングする高分子圧電材6を装着させ、かつ、前記光ファイバ7よりなる光受波部を半楕円シェル5外面上に装着することにより電磁干渉の影響のない受波部を構成させたことを特徴とする請求項2又は3記載の光受波部一体型水中用送受波器。   The flex tensional vibrator 3 having a relatively low resonance frequency is integrated with the front mass 2 of the bolted Langevin vibrator 1, and the high wave transmission sensitivity is provided on the inner surface of the semi-elliptical shell 5 serving as the acoustic radiation surface 4. In order to maintain a broadband transmission characteristic, a polymer piezoelectric material 6 for sensing acoustic vibrations when transmitting a sound wave for active control is attached, and a light receiving section made of the optical fiber 7 is half-finished. 4. The underwater transducer with an integrated light receiving portion according to claim 2, wherein a receiving portion free from the influence of electromagnetic interference is configured by being mounted on the outer surface of the elliptical shell. 前記ボルト締めランジュバン振動子1の縦振動モードと前記フレックステンショナル振動子3の屈曲振動モードを重畳させ、両モードが広帯域周波数になるように位相と振幅を駆動制御するフィードバックアクティブコントロールを行うことを特徴とする請求項1,2,3,4のいずれか1つに記載の光受波部一体型水中用送受波器。   Feedback active control is performed in which the longitudinal vibration mode of the bolted Langevin vibrator 1 and the flexural vibration mode of the flexural vibrator 3 are superimposed, and the phase and amplitude are driven and controlled so that both modes have a wideband frequency. 5. The underwater wave transmitter / receiver integrated with an optical wave receiving part according to any one of claims 1, 2, 3, and 4. 前記光ファイバ7が、前記音響放射面4上に、渦巻き状に配置構成されていることを特徴とする請求項1,2,3,4,5のいずれか1つに記載の光受波部一体型水中用送受波器。   The optical receiving section according to any one of claims 1, 2, 3, 4, and 5, wherein the optical fiber (7) is disposed on the acoustic radiation surface (4) in a spiral shape. Integrated underwater transducer.
JP2004369621A 2004-12-21 2004-12-21 Optical receiver integrated underwater transducer Active JP3906338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369621A JP3906338B2 (en) 2004-12-21 2004-12-21 Optical receiver integrated underwater transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369621A JP3906338B2 (en) 2004-12-21 2004-12-21 Optical receiver integrated underwater transducer

Publications (2)

Publication Number Publication Date
JP2006180080A JP2006180080A (en) 2006-07-06
JP3906338B2 true JP3906338B2 (en) 2007-04-18

Family

ID=36733780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369621A Active JP3906338B2 (en) 2004-12-21 2004-12-21 Optical receiver integrated underwater transducer

Country Status (1)

Country Link
JP (1) JP3906338B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338294B2 (en) * 2008-12-15 2013-11-13 日本電気株式会社 Underwater acoustic transducer

Also Published As

Publication number Publication date
JP2006180080A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US20100192693A1 (en) Acoustic transducer assembly
Fuller et al. Experiments on active control of sound radiation from a panel using a piezoceramic actuator
CN101964185B (en) Ultra-wideband underwater acoustic transducer
US20020089262A1 (en) Cylindrical transducer apparatus
US8352201B2 (en) Integrated circuit system for controlling structural health monitoring processes
KR100983744B1 (en) Sound wave generator for the application of the parametric array
EP3166735B1 (en) Multi-cell transducer
US6697302B1 (en) Highly directive underwater acoustic receiver
WO2003002956A1 (en) Device and method for vibration measurement
US4397186A (en) Coaxial direct-coupled ultrasonic probe and method of non-destructive testing
US5530678A (en) Real-time calibration acoustic array
Je et al. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array
US4453238A (en) Apparatus and method for determining the phase sensitivity of hydrophones
JP3906338B2 (en) Optical receiver integrated underwater transducer
CN110058213B (en) Adjustable acoustic isolation testing system and method
CN110426460B (en) Traveling wave tube measuring device and method for decoupling characteristic parameters of underwater acoustic material
CN210803370U (en) Rock-soil core sample wave velocity testing system
JPH08340597A (en) Ultrasonic wave transmitter-receiver
RU2363115C1 (en) Multi-element hydroacoustic antenna
JP2642812B2 (en) Underwater transducer
Xinjing et al. Low-cost, high-sensitivity hydrophone based on resonant air cavity
KR102617901B1 (en) Device for detecting wave and sonobuoy system comprising the same
JP3030428B2 (en) Cylindrical hydrophone
JPH04132498A (en) Ultrasonic sensor
KR200184719Y1 (en) Underwater investigation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350