JP3905430B2 - Bearing parts and rolling bearings - Google Patents

Bearing parts and rolling bearings Download PDF

Info

Publication number
JP3905430B2
JP3905430B2 JP2002194793A JP2002194793A JP3905430B2 JP 3905430 B2 JP3905430 B2 JP 3905430B2 JP 2002194793 A JP2002194793 A JP 2002194793A JP 2002194793 A JP2002194793 A JP 2002194793A JP 3905430 B2 JP3905430 B2 JP 3905430B2
Authority
JP
Japan
Prior art keywords
carbonitriding
rolling
test
bearing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002194793A
Other languages
Japanese (ja)
Other versions
JP2003226919A (en
Inventor
力 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002194793A priority Critical patent/JP3905430B2/en
Priority to US10/300,590 priority patent/US7438477B2/en
Priority to DE10254635A priority patent/DE10254635B4/en
Priority to KR1020020073071A priority patent/KR100951216B1/en
Priority to CNB021543194A priority patent/CN1304625C/en
Priority to FR0306034A priority patent/FR2841907B1/en
Publication of JP2003226919A publication Critical patent/JP2003226919A/en
Priority to US11/118,385 priority patent/US8425690B2/en
Application granted granted Critical
Publication of JP3905430B2 publication Critical patent/JP3905430B2/en
Priority to US13/291,839 priority patent/US20120051682A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、減速機、ドライブピニオン、トランスミッション用軸受などに用いられる軸受部品および転がり軸受に関し、転動疲労特性が長寿命で、高度の耐割れ強度や耐経年寸法変化を有する軸受部品および転がり軸受に関するものである。
【0002】
【従来の技術】
軸受部品の転動疲労に対して長寿命を与える熱処理方法として、焼入れ加熱時の雰囲気RXガス中にさらにアンモニアガスを添加するなどして、その軸受部品の表層部に浸炭窒化処理を施す方法がある(たとえば特開平8−4774号公報、特開平11−101247号公報)。この浸炭窒化処理法を用いることにより、表層部を硬化させ、ミクロ組織中に残留オーステナイトを生成させ、転動疲労寿命を向上させることができる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の浸炭窒化処理方法は炭素および窒素を拡散させる拡散処理であるため、長時間高温に保持する必要がある。このため、組織が粗大化する等して耐割れ強度の向上を図ることは困難である。また、残留オーステナイトの増加による経年寸法変化率の増大も問題となる。
【0004】
一方、転動疲労に対して長寿命を確保し、割れ強度を向上させ、経年寸法変化率の増大を防ぐために、鋼の合金設計により組成を調整することによって対処することが可能である。しかし合金設計によると、原材料コストが高くなるなどの問題点が発生する。
【0005】
今後の軸受部品には、使用環境の高荷重化、高温化に伴い、従来よりも、大きな荷重条件でかつより高温で使用できる特性を備えることが要求される。このため、高強度で、転動疲労特性が長寿命で、高度の耐割れ強度と寸法安定性とを有する軸受部品が必要になる。
【0006】
本発明は、高度の耐割れ強度と寸法安定性とを有し、転動疲労寿命に優れた軸受部品および転がり軸受を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の転がり軸受は、内輪、外輪および複数の転動体を有する転がり軸受である。この転がり軸受では、内輪、外輪および転動体のうち少なくともいずれか一つの部材が浸炭窒化層を有し、その部材のオーステナイト結晶粒の粒度番号が10番を超え、その部材の水素量は0.4ppm以下であり、その部材はJIS規格SUJ2からなっている
【0008】
オーステナイト粒径が微細であることにより、転動疲労寿命を大幅に改良することができる。オーステナイト粒径の粒度番号が10番以下では、転動疲労寿命は大きく改善されないので、10番を超える範囲とする。通常、11番以上とする。オーステナイト粒径は細かいほど望ましいが、通常、13番を超える粒度番号を得ることは難しい。なお、上記の軸受部品のオーステナイト粒は、浸炭窒化処理の影響を大きく受けている表層部でも、それより内側の内部でも変化しない。したがって、上記の結晶粒度番号の範囲の対象となる位置は、表層部および内部とする。
【0009】
本発明の軸受部品は、転がり軸受に組み込まれる軸受部品であって、浸炭窒化処理層を有し、オーステナイト結晶粒の粒度番号が10番を超える範囲にあり、水素量は0.4ppm以下であり、JIS規格SUJ2からなっている
【0010】
【発明の実施の形態】
次に図面を用いて本発明の実施の形態について説明する。図1は、本発明の実施の形態における転がり軸受を示す概略断面図である。図1において、この転がり軸受10は、外輪1と、内輪2と、転動体3とを主に有している。図面はラジアル軸受を表しているが、玉軸受、円すいころ軸受、ころ軸受、ニードルころ軸受も同様に本発明の実施の形態の対象になる。転動体3は、外輪1と内輪2との間に配置された保持器により転動可能に支持されている。
【0011】
次に、これら転がり軸受の外輪、内輪および転動体の少なくとも1つの軸受部品に行なう浸炭窒化処理を含む熱処理について説明する。図2は、本発明の実施の形態における熱処理方法を説明する図である。また、図3は、本発明の実施の形態における熱処理方法の変形例を説明する図である。図2は1次焼入れおよび2次焼入れを行なう方法を示す熱処理パターンであり、図3は焼入れ途中で材料をA1変態点温度未満に冷却し、その後、再加熱して最終的に焼入れる方法を示す熱処理パターンである。どちらも本発明の実施の態様例である。これらの図において、処理T1では鋼の素地に炭素や窒素を拡散させまた炭素の溶け込みを十分に行なった後、A1変態点未満に冷却する。次に、図中の処理T2において、処理T1よりも低温に再加熱し、そこから油焼入れを施す。
【0012】
上記の熱処理を普通焼入れ、すなわち浸炭窒化処理に引き続いてそのまま1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、経年寸法変化率を減少することができる。上述したように、上記の熱処理方法によれば、オーステナイト結晶粒の粒径を従来の2分の1以下となるミクロ組織を得ることができる。上記の熱処理を受けた軸受部品は、転動疲労特性が長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させることができる。
【0013】
図4は軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。図4(a)は本発明例の軸受部品であり、図4(b)は従来の軸受部品である。すなわち、上記図2に示す熱処理パターンを適用した軸受鋼のオーステナイト結晶粒度を図4(a)に示す。また、比較のため、従来の熱処理方法による軸受鋼のオーステナイト結晶粒度を図4(b)に示す。また、図5(a)および図5(b)は、上記図4(a)および図4(b)を図解したオーステナイト結晶粒界を示す図である。これらオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径はJIS規格の粒度番号で10番であり、また本発明による熱処理方法によれば12番の細粒を得ることができる。また、図4(a)の平均粒径は、切片法で測定した結果、5.6μmであった。
【0014】
【実施例】
次に本発明の実施例について説明する。
【0015】
(実施例1)
JIS規格SUJ2材(1.0重量%C−0.25重量%Si−0.4重量%Mn−1.5重量%Cr)を用いて、本発明の実施例1を行なった。表1に示した各試料の製造履歴を以下に示す。
【0016】
【表1】

Figure 0003905430
【0017】
(試料A〜D;本発明例):浸炭窒化処理850℃、保持時間150分間。雰囲気は、RXガスとアンモニアガスとの混合ガスとした。図2に示す熱処理パターンにおいて、浸炭窒化処理温度850℃から1次焼入れを行ない、次いで浸炭窒化処理温度より低い温度域780℃〜830℃に加熱して2次焼入れを行なった。ただし、2次焼入温度780℃の試料Aは焼入不足のため試験の対象から外した。
(試料E、F;比較例):浸炭窒化処理は、本発明例A〜Dと同じ履歴で行ない、2次焼入れ温度を浸炭窒素処理温度850℃以上の850℃〜870℃で行なった。
(従来浸炭窒化処理品;比較例):浸炭窒化処理850℃、保持時間150分間。雰囲気は、RXガスとアンモニアガスとの混合ガスとした。浸炭窒化処理温度からそのまま焼入れを行ない、2次焼入れは行わなかった。
(普通焼入れ品;比較例):浸炭窒化処理を行なわずに、850℃に加熱して焼き入れた。2次焼入れは行わなかった。
【0018】
上記の試料に対して、(1)水素量の測定、(2)結晶粒度の測定、(3)シャルピー衝撃試験、(4)破壊応力値の測定、(5)転動疲労試験、の各試験を行なった。次にこれらの試験方法について説明する。
【0019】
I 実施例1の試験方法
(1)水素量の測定
水素量は、LECO社製DH−103型水素分析装置により、鋼中の非拡散性水素量を分析した。拡散性水素量は測定してない。このLECO社製DH−103型水素分析装置の仕様を下記に示す。
【0020】
分析範囲:0.01〜50.00ppm
分析精度:±0.1ppmまたは±3%H(いずれか大なるほう)
分析感度:0.01ppm
検出方式:熱伝導度法
試料重量サイズ:10mg〜35g(最大:直径12mm×長さ100mm)
加熱炉温度範囲:50℃〜1100℃
試薬:アンハイドロン Mg(ClO42 、 アスカライト NaOH
キャリアガス:窒素ガス、ガスドージングガス:水素ガス、いずれのガスも純度99.99%以上、圧力40PSI(2.8kgf/cm2)である。
【0021】
測定手順の概要は以下のとおりである。専用のサンプラーで採取した試料をサンプラーごと上記の水素分析装置に挿入する。内部の拡散性水素は窒素キャリアガスによって熱伝導度検出器に導かれる。この拡散性性水素は本実施例では測定しない。次に、サンプラーから試料を取出し抵抗加熱炉内で加熱し、非拡散性水素を窒素キャリアガスによって熱伝導度検出器に導く。熱伝導度検出器において熱伝導度を測定することによって非拡散性水素量を知ることができる。
(2)結晶粒度の測定
結晶粒度の測定は、JIS G 0551の鋼のオーステナイト結晶粒度試験方法に基づいて行なった。
(3)シャルピー衝撃試験
シャルピー衝撃試験は、JIS Z 2242の金属材料のシャルピー衝撃試験方法に基づいて行なった。試験片は、JIS Z 2202に示されたUノッチ試験片(JIS3号試験片)を用いた。
(4)破壊応力値の測定
図6は、静圧壊強度試験(破壊応力値の測定)の試験片を示す図である。図中のP方向に荷重を負荷して破壊されるまでの荷重を測定する。その後、得られた破壊荷重を、下記に示す曲がり梁の応力計算式により応力値に換算する。なお、試験片は図6に示す試験片に限られず、他の形状の試験片を用いてもよい。
【0022】
図6の試験片の凸表面における繊維応力をσ1、凹表面における繊維応力をσ2とすると、σ1およびσ2は下記の式によって求められる(機械工学便覧A4編材料力学A4−40)。ここで、Nは円環状試験片の軸を含む断面の軸力、Aは横断面積、e1は外半径、e2は内半径を表す。また、κは曲がり梁の断面係数である。
【0023】
σ1=(N/A)+{M/(Aρo)}[1+e1/{κ(ρo+e1)}]
σ2=(N/A)+{M/(Aρo)}[1−e2/{κ(ρo−e2)}]
κ=−(1/A)∫A{η/(ρo+η)}dA
(5)転動疲労試験、
転動疲労寿命試験の試験条件を表2に示す。また、図7は、転動疲労寿命試験機の概略図である。図7(a)は正面図であり、図7(b)は側面図である。図7(a)および(b)において、転動疲労寿命試験片21は、駆動ロール11によって駆動され、ボール13と接触して回転している。ボール13は、(3/4)”のボールであり、案内ロールにガイドされて、転動疲労寿命試験片21との間で高い面圧を及ぼし合いながら転動する。
【0024】
II 実施例1の試験結果
(1) 水素量
浸炭窒化処理したままの従来浸炭窒化処理品は、0.72ppmと非常に高い値となっている。これは、浸炭窒化処理の雰囲気に含まれるアンモニア(NH3)が分解して水素が鋼中に侵入したためと考えられる。これに対して、試料B〜Dは、水素量は0.37〜0.40ppmと半分近くにまで減少している。この水素量は普通焼入れ品と同じレベルである。
【0025】
上記の水素量の低減により、水素の固溶に起因する鋼の脆化を軽減することができる。すなわち、水素量の低減により、本発明例の試料B〜Dのシャルピー衝撃値は大きく改善されている。
(2) 結晶粒度
結晶粒度は2次焼入れ温度が、浸炭窒化処理時の焼入れ(1次焼入れ)の温度より低い場合、すなわち試料B〜Dの場合、オーステナイト粒は、結晶粒度番号11〜12と顕著に微細化されている。試料EおよびFならびに従来浸炭窒化処理品および普通焼入品のオーステナイト粒は、結晶粒度番号10であり、本発明例の試料B〜Dより粗大な結晶粒となっている。
(3)シャルピー衝撃試験
表1によれば、従来浸炭窒化処理品のシャルピー衝撃値は5.33J/cm2であるのに比して、本発明例の試料B〜Dのシャルピー衝撃値は6.30〜6.65J/cm2と高い値が得られている。この中でも、2次焼入れ温度が低いほうがシャルピー衝撃値が高くなる傾向を示す。普通焼入品のシャルピー衝撃値は6.70J/cm2と高い。
(4)破壊応力値の測定
上記破壊応力値は、耐割れ強度に相当する。表1によれば、従来浸炭窒化処理品は2330MPaの破壊応力値となっている。これに比して、試料B〜Dの破壊応力値は2650〜2840MPaと改善された値が得られる。普通焼入品の破壊応力値は2770MPaであり、試料B〜Fの破壊応力値と同等である。このような、試料B〜Dの改良された耐割れ強度は、オーステナイト結晶粒の微細化と並んで、水素含有率の低減による効果が大きいと推定される。
(5)転動疲労試験
表1によれば、普通焼入品は浸炭窒化層を表層部に有しないことを反映して、転動疲労寿命L10は最も低い。これに比して従来浸炭窒化処理品の転動疲労寿命は3.1倍となる。試料B〜Dの転動疲労寿命は従来浸炭窒化処理品より大幅に向上する。本発明の試料E,Fは、従来浸炭窒化処理品とほぼ同等である。
【0026】
上記をまとめると、本発明例の試料B〜Dは、水素含有率が低下し、オーステナイト結晶粒度が11番以上に微細化され、シャルピー衝撃値、耐割れ強度および転動疲労寿命も改善される。
【0027】
(実施例2)
次に実施例2について説明する。下記のA材、B材およびC材について、一連の試験を行なった。熱処理用素材には、JIS規格SUJ2材(1.0重量%C−0.25重量%Si−0.4重量%Mn−1.5重量%Cr)を用い、A材〜C材に共通とした。A材〜C材の製造履歴は次のとおりである。
(A材:比較例):普通焼入れのみ(浸炭窒化処理せず)。
(B材:比較例):浸炭窒化処理後にそのまま焼き入れる(従来の浸炭窒化焼入れ)。浸炭窒化処理温度845℃、保持時間150分間。浸炭窒化処理の雰囲気は、RXガス+アンモニアガスとした。
(C材:本発明例):図2の熱処理パターンを施した軸受鋼。浸炭窒化処理温度845℃、保持時間150分間。浸炭窒化処理の雰囲気は、RXガス+アンモニアガスとした。最終焼入れ温度は800℃とした。
【0028】
(1) 転動疲労寿命
転動疲労寿命試験の試験条件および試験装置は、上述したように、表2および図7に示すとおりである。この転動疲労寿命試験結果を表3に示す。
【0029】
【表2】
Figure 0003905430
【0030】
【表3】
Figure 0003905430
【0031】
表3によれば、比較例のB材は、同じく比較例で普通焼入れのみを施したA材のL10寿命(試験片10個中1個が破損する寿命)の3.1倍を示し、浸炭窒化処理による長寿命化の効果が認められる。これに対して、本発明例のC材は、B材の1.74倍、またA材の5.4倍の長寿命を示している。この改良の主因はミクロ組織の微細化によるものと考えられる。
【0032】
(2) シャルピー衝撃試験
シャルピー衝撃試験は、Uノッチ試験片を用いて、上述のJISZ2242に準じた方法により行なった。試験結果を表4に示す。
【0033】
【表4】
Figure 0003905430
【0034】
浸炭窒化処理を行なったB材(比較例)のシャルピー衝撃値は、普通焼入れのA材(比較例)より高くないが、C材はA材と同等の値が得られた。
【0035】
(3) 静的破壊靭性値の試験
図8は、静的破壊靭性試験の試験片を示す図である。この試験片のノッチ部に、予き裂を約1mm導入した後に、3点曲げによる静的荷重を加え、破壊荷重Pを求めた。破壊靭性値(KIc値)の算出には次に示す(I)式を用いた。また、試験結果を表5に示す。
Ic=(PL√a/BW2){5.8−9.2(a/W)+43.6(a/W)2−75.3(a/W)3+77.5(a/W)4}…(I)
【0036】
【表5】
Figure 0003905430
【0037】
予き亀裂深さが浸炭窒化層深さよりも大きくなったため、比較例のA材とB材とには違いはない。しかし、本発明例のC材は比較例に対して約1.2倍の値を得ることができた。
【0038】
(4) 静圧壊強度試験(破壊応力値の測定)
静圧壊強度試験片は、上述のように図6に示す形状のものを用いた。図中、P方向に荷重を付加して、静圧壊強度試験を行なった。試験結果を表6に示す。
【0039】
【表6】
Figure 0003905430
【0040】
浸炭窒化処理を行なっているB材は普通焼入れのA材よりもやや低い値である。しかしながら、本発明のC材は、B材よりも静圧壊強度が向上し、A材と遜色ないレベルが得られている。
【0041】
(5) 経年寸法変化率
保持温度130℃、保持時間500時間における経年寸法変化率の測定結果を、表面硬度、残留オーステナイト量(0.1mm深さ)と併せて表7に示す。
【0042】
【表7】
Figure 0003905430
【0043】
残留オーステナイト量の多いB材の寸法変化率に比べて、本発明例のC材は2分の1以下に抑制されていることがわかる。
【0044】
(6) 異物混入潤滑下における寿命試験
玉軸受6206を用い、標準異物を所定量混入させた異物混入潤滑下での転動疲労寿命を評価した。試験条件を表8に、また試験結果を表9に示す。
【0045】
【表8】
Figure 0003905430
【0046】
【表9】
Figure 0003905430
【0047】
A材に比べ、従来の浸炭窒化処理を施したB材は約2.5倍になり、また、本発明例のC材は約2.3倍の長寿命が得られた。本発明例のC材は、比較例のB材に比べて残留オーステナイトが少ないものの、窒素の侵入と微細化されたミクロ組織の影響でほぼ同等の長寿命が得られている。
【0048】
上記の結果より、本発明例のC材、すなわち本発明の熱処理方法によって製造された軸受部品は、従来の浸炭窒化処理では困難であった転動疲労寿命の長寿命化、割れ強度の向上、経年寸法変化率の低減の3項目を同時に満足することができることがわかった。
【0049】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0050】
【発明の効果】
本発明の軸受部品および転がり軸受を用いることにより、浸炭窒化処理層を形成した上で、軸受部品のオーステナイト粒径を粒度番号で11番以上に微細化し、水素含有率も低減されるため、転動疲労寿命が大きく改善され、優れた耐割れ強度や耐経年寸法変化を得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態における転がり軸受を示す概略断面図である。
【図2】 本発明の実施の形態における熱処理方法を説明する図である。
【図3】 本発明の実施の形態における熱処理方法の変形例を説明する図である。
【図4】 軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。(a)は本発明例の軸受部品であり、(b)は従来の軸受部品である。
【図5】 (a)は図4(a)を図解したオーステナイト粒界を示し、(b)は図4(b)を図解したオーステナイト粒界を示す。
【図6】 静圧壊強度試験(破壊応力値の測定)の試験片を示す図である。
【図7】 転動疲労寿命試験機の概略図である。(a)は正面図であり、(b)は側面図である。
【図8】 静的破壊靭性試験の試験片を示す図である。
【符号の説明】
1 外輪、2 内輪、3 転動体、10 転がり軸受、11 駆動ロール、12 案内ロール、13 (3/4)”ボール、21 転動疲労寿命試験片、T1 浸炭窒化処理温度、T2 焼入れ加熱温度。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to bearing parts and rolling bearings used for reduction gears, drive pinions, transmission bearings, etc., and relates to bearing parts and rolling bearings that have a long rolling fatigue characteristic and have high cracking resistance and aging-resistant dimensional changes. It is about.
[0002]
[Prior art]
As a heat treatment method that gives a long life against rolling fatigue of a bearing component, a method of performing a carbonitriding process on the surface layer portion of the bearing component by adding ammonia gas to the atmosphere RX gas during quenching heating, etc. (For example, JP-A-8-4774, JP-A-11-101247). By using this carbonitriding treatment method, the surface layer portion can be hardened, retained austenite can be generated in the microstructure, and the rolling fatigue life can be improved.
[0003]
[Problems to be solved by the invention]
However, since the carbonitriding method described above is a diffusion treatment that diffuses carbon and nitrogen, it must be kept at a high temperature for a long time. For this reason, it is difficult to improve the cracking resistance due to the coarsening of the structure. In addition, an increase in the dimensional change rate due to increase in retained austenite is also a problem.
[0004]
On the other hand, in order to ensure a long life against rolling fatigue, improve crack strength, and prevent an increase in the rate of dimensional change over time, it is possible to cope with the problem by adjusting the composition by the alloy design of steel. However, the alloy design causes problems such as an increase in raw material costs.
[0005]
Future bearing parts are required to have characteristics that can be used under larger load conditions and at higher temperatures than in the past as the usage environment increases in load and temperature. For this reason, a bearing component having high strength, long rolling fatigue characteristics, high cracking strength and dimensional stability is required.
[0006]
It is an object of the present invention to provide a bearing component and a rolling bearing that have high cracking resistance and dimensional stability and are excellent in rolling fatigue life.
[0007]
[Means for Solving the Problems]
The rolling bearing of the present invention is a rolling bearing having an inner ring, an outer ring, and a plurality of rolling elements. In this rolling bearing, at least one member of the inner ring, the outer ring, and the rolling element has a carbonitriding layer, the austenite grain size number of the member exceeds 10, and the hydrogen amount of the member is 0.00. 4ppm Ri der below, the member is made of JIS standard SUJ2.
[0008]
Due to the fine austenite grain size, the rolling fatigue life can be greatly improved. When the particle size number of the austenite particle size is 10 or less, the rolling fatigue life is not greatly improved. Usually 11 or more. Although it is desirable that the austenite particle size is finer, it is usually difficult to obtain a particle size number exceeding # 13. Note that the austenite grains of the bearing parts described above do not change even in the surface layer portion that is greatly affected by the carbonitriding process, or in the inside thereof. Therefore, the target position of the above crystal grain size number range is the surface layer portion and the inside.
[0009]
The bearing component of the present invention is a bearing component to be incorporated in a rolling bearing, has a carbonitriding layer, has an austenite grain size number exceeding 10, and has a hydrogen content of 0.4 ppm or less. JIS standard SUJ2 .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a rolling bearing in an embodiment of the present invention. In FIG. 1, this rolling bearing 10 mainly has an outer ring 1, an inner ring 2, and rolling elements 3. Although the drawings show radial bearings, ball bearings, tapered roller bearings, roller bearings, and needle roller bearings are also subject to the embodiments of the present invention. The rolling element 3 is supported by a cage disposed between the outer ring 1 and the inner ring 2 so as to be able to roll.
[0011]
Next, heat treatment including carbonitriding performed on at least one bearing part of the outer ring, the inner ring and the rolling element of the rolling bearing will be described. FIG. 2 is a diagram for explaining a heat treatment method according to the embodiment of the present invention. Moreover, FIG. 3 is a figure explaining the modification of the heat processing method in embodiment of this invention. FIG. 2 is a heat treatment pattern showing a method of performing primary quenching and secondary quenching, and FIG. 3 is a method of cooling the material to below the A 1 transformation point temperature during quenching, and then re-heating and finally quenching. It is the heat processing pattern which shows. Both are exemplary embodiments of the present invention. In these figures, in the treatment T1, carbon and nitrogen are diffused in the steel base and the carbon is sufficiently dissolved, and then cooled to below the A 1 transformation point. Next, in process T2 in the figure, reheating is performed at a temperature lower than that of process T1, and oil quenching is performed therefrom.
[0012]
Rather than performing normal quenching, that is, carbonitriding once after the carbonitriding treatment, the crack strength can be improved and the aging change rate can be reduced while carbonitriding the surface layer portion. As described above, according to the above heat treatment method, it is possible to obtain a microstructure in which the grain size of austenite crystal grains is ½ or less of the conventional one. The bearing parts subjected to the above heat treatment have a long rolling fatigue characteristic, can improve the cracking strength, and can also reduce the rate of dimensional change over time.
[0013]
FIG. 4 is a view showing the microstructure of the bearing component, particularly austenite grains. FIG. 4A shows a bearing component of the present invention, and FIG. 4B shows a conventional bearing component. That is, FIG. 4A shows the austenite grain size of the bearing steel to which the heat treatment pattern shown in FIG. 2 is applied. For comparison, FIG. 4B shows the austenite grain size of the bearing steel obtained by the conventional heat treatment method. FIGS. 5A and 5B are diagrams showing the austenite grain boundaries illustrated in FIGS. 4A and 4B. From the structure showing the austenite crystal grain size, the conventional austenite grain size is No. 10 in the JIS standard grain size number, and according to the heat treatment method of the present invention, No. 12 fine grains can be obtained. Moreover, the average particle diameter of Fig.4 (a) was 5.6 micrometers as a result of measuring by the intercept method.
[0014]
【Example】
Next, examples of the present invention will be described.
[0015]
Example 1
Example 1 of the present invention was performed using JIS standard SUJ2 material (1.0 wt% C-0.25 wt% Si-0.4 wt% Mn-1.5 wt% Cr). The manufacturing history of each sample shown in Table 1 is shown below.
[0016]
[Table 1]
Figure 0003905430
[0017]
(Samples A to D; examples of the present invention): carbonitriding 850 ° C., holding time 150 minutes. The atmosphere was a mixed gas of RX gas and ammonia gas. In the heat treatment pattern shown in FIG. 2, primary quenching was performed from a carbonitriding temperature of 850 ° C., and then secondary quenching was performed by heating to a temperature range of 780 ° C. to 830 ° C. lower than the carbonitriding temperature. However, Sample A having a secondary quenching temperature of 780 ° C. was excluded from the test due to insufficient quenching.
(Samples E and F; Comparative Examples): The carbonitriding treatment was performed with the same history as the inventive examples A to D, and the secondary quenching temperature was 850 ° C. to 870 ° C., which is a carburizing nitrogen treatment temperature of 850 ° C. or higher.
(Conventional carbonitriding product; comparative example): Carbonitriding treatment at 850 ° C., holding time of 150 minutes. The atmosphere was a mixed gas of RX gas and ammonia gas. Quenching was performed as it was from the carbonitriding temperature, and secondary quenching was not performed.
(Normally hardened product; comparative example): without quenching and carbonitriding, it was heated to 850 ° C. and quenched. Secondary quenching was not performed.
[0018]
(1) Measurement of hydrogen content, (2) Measurement of crystal grain size, (3) Charpy impact test, (4) Measurement of fracture stress value, (5) Rolling fatigue test Was done. Next, these test methods will be described.
[0019]
I Test Method of Example 1 (1) Measurement of hydrogen amount The amount of hydrogen was analyzed for the amount of non-diffusible hydrogen in the steel using a DH-103 hydrogen analyzer manufactured by LECO. The amount of diffusible hydrogen is not measured. The specification of this LECO DH-103 type hydrogen analyzer is shown below.
[0020]
Analysis range: 0.01 to 50.00 ppm
Analysis accuracy: ± 0.1 ppm or ± 3% H (whichever is greater)
Analysis sensitivity: 0.01ppm
Detection method: Thermal conductivity method Sample weight size: 10 mg to 35 g (maximum: diameter 12 mm × length 100 mm)
Heating furnace temperature range: 50 ° C to 1100 ° C
Reagents: Anhydrone Mg (ClO 4 ) 2 , Ascarite NaOH
Carrier gas: nitrogen gas, gas dosing gas: hydrogen gas, both gases have a purity of 99.99% or more and a pressure of 40 PSI (2.8 kgf / cm 2 ).
[0021]
The outline of the measurement procedure is as follows. A sample collected with a dedicated sampler is inserted into the hydrogen analyzer together with the sampler. Internal diffusible hydrogen is directed to the thermal conductivity detector by a nitrogen carrier gas. This diffusible hydrogen is not measured in this example. Next, the sample is taken out from the sampler and heated in a resistance heating furnace, and non-diffusible hydrogen is guided to the thermal conductivity detector by nitrogen carrier gas. The amount of non-diffusible hydrogen can be known by measuring the thermal conductivity with a thermal conductivity detector.
(2) Measurement of crystal grain size The crystal grain size was measured based on the JIS G 0551 steel austenite grain size test method.
(3) Charpy impact test The Charpy impact test was performed based on the Charpy impact test method for metal materials of JIS Z 2242. As a test piece, a U-notch test piece (JIS No. 3 test piece) shown in JIS Z 2202 was used.
(4) Measurement of Fracture Stress Value FIG. 6 is a diagram showing a test piece for a static crushing strength test (measurement of a fracture stress value). The load until it is broken by applying a load in the P direction in the figure is measured. Thereafter, the obtained fracture load is converted into a stress value by the following bending beam stress calculation formula. In addition, a test piece is not restricted to the test piece shown in FIG. 6, You may use the test piece of another shape.
[0022]
Assuming that the fiber stress on the convex surface of the test piece of FIG. 6 is σ 1 and the fiber stress on the concave surface is σ 2 , σ 1 and σ 2 are obtained by the following formulas (Mechanical Engineering Handbook A4 Knitting Material Dynamics A4-40) . Here, N is the axial force of the cross section including the axis of the annular specimen, A is the cross-sectional area, e 1 is the outer radius, and e 2 is the inner radius. Further, κ is a section modulus of the curved beam.
[0023]
σ 1 = (N / A) + {M / (Aρ o )} [1 + e 1 / {κ (ρ o + e 1 )}]
σ 2 = (N / A) + {M / (Aρ o )} [1-e 2 / {κ (ρ o −e 2 )}]
κ = − (1 / A) ∫ A {η / (ρ o + η)} dA
(5) Rolling fatigue test,
Table 2 shows the test conditions for the rolling fatigue life test. FIG. 7 is a schematic view of a rolling fatigue life tester. FIG. 7A is a front view, and FIG. 7B is a side view. 7 (a) and 7 (b), the rolling fatigue life test piece 21 is driven by the drive roll 11 and is in contact with the ball 13 and rotating. The ball 13 is a (3/4) ″ ball and is guided by a guide roll and rolls while exerting a high surface pressure with the rolling fatigue life test piece 21.
[0024]
II Test Results of Example 1 (1) The conventional carbonitrided product that has been subjected to the hydrogen carbonitriding treatment has a very high value of 0.72 ppm. This is presumably because ammonia (NH 3 ) contained in the carbonitriding atmosphere decomposed and hydrogen entered the steel. On the other hand, in Samples B to D, the hydrogen amount is reduced to almost half of 0.37 to 0.40 ppm. This amount of hydrogen is at the same level as that of ordinary quenched products.
[0025]
By reducing the amount of hydrogen described above, embrittlement of steel due to hydrogen solid solution can be reduced. That is, the reduction in the amount of hydrogen greatly improves the Charpy impact value of Samples B to D of the present invention example.
(2) Crystal grain size When the secondary quenching temperature is lower than the quenching (primary quenching) temperature during carbonitriding, that is, in the case of Samples BD, the austenite grains have grain size numbers 11-12. Remarkably miniaturized. The austenite grains of Samples E and F, the conventional carbonitrided product, and the normal quenching product have a crystal grain size number 10 and are coarser than the samples B to D of the examples of the present invention.
(3) Charpy impact test According to Table 1, the Charpy impact value of the samples BD of the present invention is 6 compared to the Charpy impact value of the conventional carbonitrided product, which is 5.33 J / cm 2. A high value of .30 to 6.65 J / cm 2 is obtained. Among these, the lower the secondary quenching temperature, the higher the Charpy impact value tends to be. The normally hardened product has a Charpy impact value as high as 6.70 J / cm 2 .
(4) Measurement of fracture stress value The fracture stress value corresponds to the crack resistance strength. According to Table 1, the conventional carbonitrided product has a fracture stress value of 2330 MPa. Compared to this, the fracture stress values of Samples B to D are improved to 2650 to 2840 MPa. The fracture stress value of the normally quenched product is 2770 MPa, which is equivalent to the fracture stress values of Samples B to F. Such improved cracking resistance strengths of Samples B to D are presumed to have a great effect by reducing the hydrogen content, along with the refinement of austenite crystal grains.
(5) According to the rolling contact fatigue test Table 1, usually sintered Irihin is reflecting that does not have a carbonitrided layer in the surface layer portion, the rolling fatigue life L 10 is the lowest. Compared to this, the rolling fatigue life of the conventional carbonitrided product is 3.1 times. The rolling fatigue life of Samples B to D is significantly improved as compared with the conventional carbonitrided product. Samples E and F of the present invention are substantially equivalent to conventional carbonitrided products.
[0026]
In summary, Samples B to D of the present invention have a reduced hydrogen content, an austenite crystal grain size of 11 or more, and improved Charpy impact value, crack resistance strength and rolling fatigue life. .
[0027]
(Example 2)
Next, Example 2 will be described. A series of tests were performed on the following A material, B material, and C material. JIS standard SUJ2 material (1.0% by weight C-0.25% by weight Si-0.4% by weight Mn-1.5% by weight Cr) is used for the material for heat treatment, which is common to materials A to C. did. The manufacturing histories of the A material to the C material are as follows.
(A material: comparative example): Only normal quenching (without carbonitriding).
(B material: comparative example): quenching as it is after carbonitriding (conventional carbonitriding quenching). Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of the carbonitriding process was RX gas + ammonia gas.
(C material: Example of the present invention): Bearing steel subjected to the heat treatment pattern of FIG. Carbonitriding temperature 845 ° C, holding time 150 minutes. The atmosphere of the carbonitriding process was RX gas + ammonia gas. The final quenching temperature was 800 ° C.
[0028]
(1) Rolling fatigue life Test conditions and test equipment for the rolling fatigue life test are as shown in Table 2 and FIG. 7 as described above. The rolling fatigue life test results are shown in Table 3.
[0029]
[Table 2]
Figure 0003905430
[0030]
[Table 3]
Figure 0003905430
[0031]
According to Table 3, the B material of the comparative example shows 3.1 times the L 10 life (the life that one of the 10 test pieces breaks) of the A material, which was also subjected to normal quenching in the comparative example, The effect of extending the life by carbonitriding is recognized. On the other hand, the C material of the present invention example has a long life of 1.74 times that of the B material and 5.4 times that of the A material. The main reason for this improvement is thought to be the refinement of the microstructure.
[0032]
(2) Charpy impact test The Charpy impact test was performed by the method according to the above-mentioned JISZ2242 using the U notch test piece. The test results are shown in Table 4.
[0033]
[Table 4]
Figure 0003905430
[0034]
The Charpy impact value of the B material (comparative example) subjected to carbonitriding was not higher than that of the normally quenched A material (comparative example), but the C material had the same value as the A material.
[0035]
(3) Test of Static Fracture Toughness Value FIG. 8 is a diagram showing a test piece of a static fracture toughness test. After introducing a precrack about 1 mm into the notch portion of this test piece, a static load by three-point bending was applied to determine the fracture load P. The following formula (I) was used for calculation of the fracture toughness value (K Ic value). The test results are shown in Table 5.
K Ic = (PL√a / BW 2 ) {5.8−9.2 (a / W) +43.6 (a / W) 2 −75.3 (a / W) 3 +77.5 (a / W 4 }… (I)
[0036]
[Table 5]
Figure 0003905430
[0037]
Since the pre-crack depth is larger than the carbonitrided layer depth, there is no difference between the A material and B material of the comparative example. However, the C material of the present invention example was able to obtain a value about 1.2 times that of the comparative example.
[0038]
(4) Static crush strength test (measurement of fracture stress value)
As described above, the static crushing strength test piece had the shape shown in FIG. In the figure, a static crushing strength test was performed by applying a load in the P direction. The test results are shown in Table 6.
[0039]
[Table 6]
Figure 0003905430
[0040]
The B material subjected to the carbonitriding process has a slightly lower value than the A material subjected to normal quenching. However, the C material of the present invention has higher static crushing strength than the B material, and a level comparable to that of the A material is obtained.
[0041]
(5) Table 7 shows the measurement results of the aging dimensional change rate at a aging change rate of 130 ° C. and a holding time of 500 hours, together with the surface hardness and the retained austenite amount (0.1 mm depth).
[0042]
[Table 7]
Figure 0003905430
[0043]
It can be seen that the C material of the example of the present invention is suppressed to half or less compared to the dimensional change rate of the B material having a large amount of retained austenite.
[0044]
(6) Life test under lubrication mixed with foreign matter Using a ball bearing 6206, a rolling fatigue life under lubrication mixed with a predetermined amount of standard foreign matter was evaluated. The test conditions are shown in Table 8, and the test results are shown in Table 9.
[0045]
[Table 8]
Figure 0003905430
[0046]
[Table 9]
Figure 0003905430
[0047]
Compared to the A material, the B material subjected to the conventional carbonitriding treatment was about 2.5 times longer, and the C material of the example of the present invention had a long life of about 2.3 times. Although the C material of the present invention has less retained austenite than the B material of the comparative example, it has a substantially equivalent long life due to the intrusion of nitrogen and the influence of the refined microstructure.
[0048]
From the above results, the material C of the example of the present invention, that is, the bearing part produced by the heat treatment method of the present invention, has a long rolling fatigue life, which is difficult with the conventional carbonitriding process, and an improved crack strength. It was found that the three items of reduction of the aging dimensional change rate can be satisfied simultaneously.
[0049]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0050]
【The invention's effect】
By using the bearing component and the rolling bearing of the present invention, the carbonitriding layer is formed, the austenite grain size of the bearing component is refined to 11 or more in the particle size number, and the hydrogen content is also reduced. The dynamic fatigue life is greatly improved, and excellent crack strength and aging resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a rolling bearing in an embodiment of the present invention.
FIG. 2 is a diagram illustrating a heat treatment method according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining a modification of the heat treatment method in the embodiment of the present invention.
FIG. 4 is a diagram showing the microstructure of bearing parts, particularly austenite grains. (a) is a bearing part of the example of the present invention, and (b) is a conventional bearing part.
5A shows an austenite grain boundary illustrated in FIG. 4A, and FIG. 5B shows an austenite grain boundary illustrated in FIG. 4B.
FIG. 6 is a view showing a test piece of a static crushing strength test (measurement of a breaking stress value).
FIG. 7 is a schematic view of a rolling fatigue life tester. (a) is a front view, (b) is a side view.
FIG. 8 is a view showing a test piece of a static fracture toughness test.
[Explanation of symbols]
1 outer ring, 2 inner ring, 3 rolling element, 10 rolling bearing, 11 drive roll, 12 guide roll, 13 (3/4) "ball, 21 rolling fatigue life test piece, T1 carbonitriding temperature, T2 quenching heating temperature.

Claims (2)

内輪、外輪および複数の転動体を有する転がり軸受において、
前記内輪、外輪および転動体のうち少なくともいずれか一つの部材が浸炭窒化層を有し、前記部材のオーステナイト結晶粒の粒度番号が10番を超える範囲にあり、
前記部材の水素量は0.4ppm以下であり、
前記部材はJIS規格SUJ2からなっている、転がり軸受。
In a rolling bearing having an inner ring, an outer ring and a plurality of rolling elements,
At least one member of the inner ring, the outer ring and the rolling element has a carbonitriding layer, and the particle size number of the austenite crystal grains of the member is in a range exceeding 10;
Hydrogen content of the members Ri der below 0.4 ppm,
The member is a rolling bearing made of JIS standard SUJ2 .
転がり軸受に組み込まれる軸受部品であって、
浸炭窒化処理層を有し、オーステナイト結晶粒の粒度番号が10番を超える範囲にあり、水素量は0.4ppm以下であり、JIS規格SUJ2からなっている、軸受部品。
A bearing component incorporated in a rolling bearing,
Has a carbonitrided layer, in the range of grain size number of austenite crystal grains exceeds number 10, the amount of hydrogen Ri der below 0.4 ppm, consists JIS standard SUJ2, bearing components.
JP2002194793A 2001-11-29 2002-07-03 Bearing parts and rolling bearings Expired - Lifetime JP3905430B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002194793A JP3905430B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings
US10/300,590 US7438477B2 (en) 2001-11-29 2002-11-21 Bearing part, heat treatment method thereof, and rolling bearing
KR1020020073071A KR100951216B1 (en) 2001-11-29 2002-11-22 Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
DE10254635A DE10254635B4 (en) 2001-11-29 2002-11-22 Bearing part, heat treatment method and rolling bearings
CNB021543194A CN1304625C (en) 2001-11-29 2002-11-29 Bearing parts, heat treatment method of bearing parts and rolling bearing
FR0306034A FR2841907B1 (en) 2002-07-03 2003-05-20 BEARING PIECE, METHOD FOR THERMALLY PROCESSING SUCH A BEARING PIECE
US11/118,385 US8425690B2 (en) 2001-11-29 2005-05-02 Bearing part, heat treatment method thereof, and rolling bearing
US13/291,839 US20120051682A1 (en) 2001-11-29 2011-11-08 Bearing part, heat treatment method thereof, and rolling bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001364516 2001-11-29
JP2001-364516 2001-11-29
JP2002194793A JP3905430B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003209737A Division JP3961460B2 (en) 2001-11-29 2003-08-29 Bearing parts and rolling bearings
JP2006139254A Division JP4382769B2 (en) 2001-11-29 2006-05-18 Heat treatment method for bearing parts, bearing parts and rolling bearing

Publications (2)

Publication Number Publication Date
JP2003226919A JP2003226919A (en) 2003-08-15
JP3905430B2 true JP3905430B2 (en) 2007-04-18

Family

ID=27759465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194793A Expired - Lifetime JP3905430B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings

Country Status (1)

Country Link
JP (1) JP3905430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189087A1 (en) 2018-03-30 2019-10-03 Ntn株式会社 Bearing part
WO2021065809A1 (en) 2019-10-01 2021-04-08 Ntn株式会社 Bearing component
DE112020004584T5 (en) 2019-09-26 2022-06-09 Ntn Corporation ROLLER BEARING

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
JP4718781B2 (en) 2003-02-28 2011-07-06 Ntn株式会社 Transmission components and tapered roller bearings
JP2004301321A (en) 2003-03-14 2004-10-28 Ntn Corp Bearing for alternator and bearing for pulley
JP4152283B2 (en) * 2003-08-29 2008-09-17 Ntn株式会社 Heat treatment method for bearing parts
JP2005113257A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
WO2005036003A1 (en) * 2003-10-10 2005-04-21 Ntn Corporation Rolling bearing
JP2005114145A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
JP2005114146A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
JP2005133921A (en) * 2003-10-10 2005-05-26 Ntn Corp Steel machine part and rolling bearing
JP4319001B2 (en) * 2003-10-10 2009-08-26 Ntn株式会社 Rolling bearing
JP2005195148A (en) * 2004-01-09 2005-07-21 Ntn Corp Thrust needle roller bearing
US7594762B2 (en) * 2004-01-09 2009-09-29 Ntn Corporation Thrust needle roller bearing, support structure receiving thrust load of compressor for car air-conditioner, support structure receiving thrust load of automatic transmission, support structure for continuously variable transmission, and support structure receivin
JP4540351B2 (en) * 2004-01-15 2010-09-08 Ntn株式会社 Steel heat treatment method and bearing part manufacturing method
JP2005256897A (en) 2004-03-10 2005-09-22 Ntn Corp Machine element and its manufacturing method
JP3974115B2 (en) 2004-03-10 2007-09-12 Ntn株式会社 Wheel bearing device
DE602005027842D1 (en) * 2004-06-25 2011-06-16 Ntn Toyo Bearing Co Ltd ROLLER BEARING
EP1770292A4 (en) * 2004-06-25 2007-08-01 Ntn Toyo Bearing Co Ltd Rolling bearing
JP4881577B2 (en) * 2005-05-18 2012-02-22 株式会社神戸製鋼所 Vacuum carburized parts and manufacturing method thereof
JP2007046717A (en) 2005-08-10 2007-02-22 Ntn Corp Rolling-contact shaft with joint claw
JP2007169673A (en) * 2005-12-19 2007-07-05 Nsk Ltd Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device
JP2007271081A (en) * 2007-03-26 2007-10-18 Ntn Corp Wheel bearing device
JP4802273B2 (en) * 2009-10-06 2011-10-26 Ntn株式会社 bearing
JP7238620B2 (en) * 2019-06-20 2023-03-14 日本精工株式会社 Fatigue progress evaluation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189087A1 (en) 2018-03-30 2019-10-03 Ntn株式会社 Bearing part
JP2019178727A (en) * 2018-03-30 2019-10-17 Ntn株式会社 Bearing component
CN112119169A (en) * 2018-03-30 2020-12-22 Ntn株式会社 Bearing component
DE112020004584T5 (en) 2019-09-26 2022-06-09 Ntn Corporation ROLLER BEARING
WO2021065809A1 (en) 2019-10-01 2021-04-08 Ntn株式会社 Bearing component

Also Published As

Publication number Publication date
JP2003226919A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP3905430B2 (en) Bearing parts and rolling bearings
KR100951216B1 (en) Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
JP4718781B2 (en) Transmission components and tapered roller bearings
JP4319001B2 (en) Rolling bearing
JP2004301321A (en) Bearing for alternator and bearing for pulley
JP3990213B2 (en) Bearing parts and rolling bearings
JP4573535B2 (en) Differential support structure and differential components
JP2005114144A (en) Rolling bearing
JP3990212B2 (en) Bearing parts and rolling bearings
JP5318528B2 (en) Manufacturing method of cam follower with roller of engine
JP2005114148A (en) Rolling bearing
JP2005113257A (en) Rolling bearing
JP4000105B2 (en) Rolling bearing
JP3987023B2 (en) Steel heat treatment method and steel
JP3961460B2 (en) Bearing parts and rolling bearings
JP4459240B2 (en) Bearing parts and rolling bearings
JP4382769B2 (en) Heat treatment method for bearing parts, bearing parts and rolling bearing
JP4362394B2 (en) Compressor bearing
JP2006046417A (en) Rolling bearing for rocker arm
JP2004278528A (en) Cam follower with roller and steel member of engine
JP2005133922A (en) Steel machine part and rolling bearing
JP2005114145A (en) Rolling bearing
JP2005114146A (en) Rolling bearing
JP2004278789A (en) Component of planetary gear mechanism, and bearing member of planetary gear mechanism
JP2005114147A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3905430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term