JP3903297B2 - Dezincing resistant copper base alloy - Google Patents

Dezincing resistant copper base alloy Download PDF

Info

Publication number
JP3903297B2
JP3903297B2 JP2000198825A JP2000198825A JP3903297B2 JP 3903297 B2 JP3903297 B2 JP 3903297B2 JP 2000198825 A JP2000198825 A JP 2000198825A JP 2000198825 A JP2000198825 A JP 2000198825A JP 3903297 B2 JP3903297 B2 JP 3903297B2
Authority
JP
Japan
Prior art keywords
copper
dezincing
phase
total
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000198825A
Other languages
Japanese (ja)
Other versions
JP2002012927A (en
Inventor
樹新 董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2000198825A priority Critical patent/JP3903297B2/en
Priority to US09/891,650 priority patent/US20020015657A1/en
Publication of JP2002012927A publication Critical patent/JP2002012927A/en
Priority to US10/302,037 priority patent/US20030095887A1/en
Application granted granted Critical
Publication of JP3903297B2 publication Critical patent/JP3903297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Description

【0001】
【発明の属する技術分野】
本発明は、腐食水溶液存在下で使用しても脱亜鉛腐食に優れた耐食性を有し、かつ熱間加工性および切削加工性に優れた銅基合金に関するものである。
【0002】
【従来の技術】
Cu-Zn系合金、いわゆる黄銅材は優れる熱間、冷間加工性等から古くから広く使用されてきた。一般に鍛造用黄銅棒(JIS C3771)、快削黄銅棒(JIS C3604)、高力黄銅棒(JIS C6782)等が知られているが、これらの銅基合金は、加工性を向上する目的でいずれも組織中に連続するβ相が存在する。
【0003】
自然環境において特に腐食水溶液が存在する場合、β相中のZnのイオン化傾向が強く優先的に溶け出すためこれらの合金は耐脱亜鉛性に極めて劣る。
【0004】
近来、接水部品等に使われる黄銅材の耐脱亜鉛性を向上させるため、種々の提案がなされている。例えば、特開平10−183275号公報には、Cu-Zn合金にSnを添加し、さらに熱間押し出し後に様々な熱処理を通じてγ相の比率およびγ相中のSn濃度を制御し、耐脱亜鉛性を向上することが公開されている。
【0005】
また、特開平6−108184号公報には、Cu-Zn合金にSnを添加して、熱間押し出し後に熱処理を施すことによりα単相に制御し、耐脱亜鉛性を高めることが提案されている。すなわち、上述した合金は、いずれも従来の黄銅に比べてSnを多く添加することが特徴である。黄銅中にSnを多く含有するにより、新たな問題点があった。
【0006】
その一つは、Sn量の増加につれて黄銅のローカル凝固時間が長くなり、鋳造時にSnが逆偏析し、鋳塊の表面欠陥をもたらすと共に押し出し等の熱間加工性を損ない、製品の歩留まりが著しく低下するという問題点がある。
【0007】
また、Snによる耐脱亜鉛性向上効果を引き出すために熱間押し出し後にα相の粒界に一定面積のγ相を生成させ、かつSnをγ相中に均一に拡散させる熱処理を行うことを必要とし、コスト面で問題があった。
【0008】
具体的には、特開平10−183275号公報では、500℃以上550℃以下で30秒以上の熱処理を施し、次いで350℃までの冷却速度を0.4℃/秒以下として冷却する。または、400℃以上500℃以下で30秒以上の熱処理を施し、次いで冷却する。または、500℃以上550℃以下で30秒以上の熱処理を施し、次いで350℃までの冷却速度を0.4℃/秒以上4℃/秒以下として冷却する。
【0009】
特開平6−108184号公報では、熱間で押し出しまたは抽伸した後に500〜600℃、30分〜3時間の条件で熱処理する。このような熱処理は、条件を確保するための設備が高価となり、また、製品サイズによっては、製品の内部と外部のヒートパターンの違いにより、組織のバラツキを生む原因となり、歩留まり低下によるコストも問題となっていた。さらに、製品の形状が複雑な際は、製品の寸法変化、残留応力等の問題が生じる場合があった。
【0010】
また、最近Cu-Zn系にSiを添加する快削銅合金も提案された(特開2000-119774、特開2000-119775)。これらの合金は、1.8wt%以上のSiを含有し、α相の粒界にCuとSiで形成したγ相が多く存在する。実使用環境において、CuとSiで形成したγ相の耐脱亜鉛性はβ相より良いが、CuとSnで形成したγ相に劣るという欠点を有し、また、Siが1.8%以上になると、材料の熱伝導度が著しく低下し、切削する場合、刃先の温度上昇が大きくなり、刃物の寿命が短くなると共に切削精度も悪くなるし、切削速度も上げられない等多くの問題があった。
【0011】
【発明が解決しようとする課題】
本発明は、上記のような諸問題を解決して、耐脱亜鉛性、熱間鍛造性および切削性に優れ、しかも安価に製造することができる耐脱亜鉛性銅基合金を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
Sn添加による耐脱亜鉛性効果を最大限に引き出すには、Siを共に添加し、適正なSi/Sn値の範囲に調節することにより、凝固時にデントライトの2次枝がより細長く発達してSnの偏析を抑え、これを熱間加工に供するとγ相がα相の間に均一に分散することを見い出し、これが耐脱亜鉛性と共に熱間加工性の向上に大きな効果をおよぼすことを見出した。
すなわち、本発明は、
【0013】
(1)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。
(2)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。
(3)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてFe:0.01〜2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。
(4)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、かつ重量%においてFe:0.01〜0.2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。
(5)重量%においてCu:59〜63% 、Sn:0.5〜2%、Si:0.06〜0.6%、Pb:1.5〜2.3%を含み、さらに重量%においてSi/Snの値が0.1〜0.5であることを特徴とする請求項1〜4に記載の銅基合金。
(6)脱亜鉛試験(JBMA T303-1988)を実施したときに、最大脱亜鉛深さが65μm以下であることを特徴とする請求項1〜5に記載の銅基合金。
(7)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。
(8)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。
(9)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてFe:0.01〜2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。
(10)重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、かつ重量%においてFe:0.01〜0.2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。
(11)重量%において、Cu:59〜63% 、Sn:0.5〜2%、Si:0.06〜0.6%、Pb:1.5〜2.3%であり、さらに重量%においてSi/Snの値が0.1〜0.5の範囲であることを特徴とする請求項7〜10に記載の銅基合金棒の製造方法。
【0018】
【作用】
以下に本発明における銅基合金の組成範囲の選定理由について説明する。
Cu:
Cuを増やすと、α相が増え、耐食性は高まるが、69%を超えると熱間鍛造性が急激に低下する。しかも、CuはZnより高価なため、経済的な面からもCu量をできるだけ減らすことが望ましい。また、Cuを57%よりも少なくするとβ相が増え、高温鍛造性は向上するが、耐脱亜鉛性は低下し、材料の強度、伸びも低下する。上記のバランスを考慮して、Cuの組成範囲を重量%で、57〜69%とした。更に、59〜63%の範囲が好ましい。
【0019】
Sn:
Snを0.3%以上添加することにより、耐脱亜鉛性向上効果が得られる。しかも、Sn量の増加につれて耐脱亜鉛性は著しく向上する。しかし、Sn量が3%を超えると鋳造時インゴットの表面に深い欠陥をもたらすと共に、Snの添加量に見合った耐脱亜鉛向上効果が得られず、また、SnはZn、Cuより高価のため、コストアップに繋がる。従って、Sn量を0.3〜3%とした。更に、0.5〜2%の範囲が好ましい。
【0020】
Si:
鋳造性改善及びSnの耐脱亜鉛性向上効果を引き出す目的でSiを添加する。適量なSiを添加することにより鋳造時溶湯の流動性を改善すると共にSnの偏析を抑制し、熱間押し出しおよび熱間鍛造後の熱処理がなくても、Snの耐脱亜鉛性向上効果を完全に引き出し、安定的かつ優れた耐脱亜鉛性、機械特性が得られる。
【0021】
しかし、Siは1.5%を超えると、α相の粒界にSiとCuで形成したγ相、κ相またはβ相が多くなり、耐脱亜鉛性を劣化させると共に多量のSi酸化物による鋳造性、熱間加工性の低下が起こる。さらに、Si量が1.8%以上になると、材料の熱伝導度が著しく低下し、切削する場合、刃先の温度上昇が大きくなり、刃物の寿命が短くなると共に切削精度も悪くなり、切削速度も上げられない等多くの問題を引き起こす。
【0022】
また、Siは0.02%より低いと上記の鋳造性向上効果またはSnの偏析を抑える効果が得られない。上記の理由から、Siの組成範囲を0.02〜1.5%とした。更に、0.06〜0.6%の範囲が好ましい。
【0023】
Si/Sn: Si/Sn値を規定する目的はSnの耐脱亜鉛性向上効果を最大限に引き出すために、Snの添加量に応じて最適なSi添加量が必要である。適切なSi/Sn値を制御することにより、凝固時にデントライトの2次枝がより細長く発達し、Snの偏析を抑え、熱間加工後にγ相がα相の間に均一に分散して、耐脱亜鉛性を向上すると共に熱間変形性を確保する。重量%におけるSi/Sn値が1より大きい場合には、Si量が過剰になる。Siの亜鉛当量が大きいため、β相が多く析出し、α相の周りに存在するβ層はγ層による分断ができなくなり、耐脱亜鉛性を損なう。また、重量%におけるSi/Sn値が0.05より小さいとSnの偏析を抑える効果が十分現れず、耐脱亜鉛性向上効果を引き出すために熱間加工後の熱処理が必要になる。従って、重量%におけるSi/Sn値の範囲は0.05〜1が好ましい。更に好ましくは、0.1〜0.5の範囲である。
【0024】
P、Sb、As:
これらの元素の添加により、切削性、鍛造性を害することなく、脱亜鉛の抑制に効果がある。しかし、0.02%より少ない添加では、脱亜鉛の抑制効果が十分に現れない。一方、0.2%を超えて添加すると粒界偏析が生じ、延性が低下すると共に応力腐食割れ感受性が増加する。従って、P、Sb、Asの含有量をそれぞれ0.02〜0.2%とした。
【0025】
Pb:
Pbは材料の切削加工性の向上を目的とする。0.5%以下では十分な切削加工性が得られず、また、3%を超えると、押し出し、鍛造等の熱間加工が困難になる。Pbを添加する際の組成範囲は0.5〜3%であり、更に、1.5〜2.3%の範囲が好ましい。
【0026】
さらに、添加元素として、Fe0.01〜2%、Mn0.01〜2%、Cr0.01〜2%、Bi0.01〜3%、Be0.01〜2%、Zr0.01〜2%、Ce0.01〜3%、Ag0.01〜2%、Ti0.01〜2%、Mg0.01〜2%、Co0.01〜2%、Te0.01〜1%、Au0.01〜2%、Y0.01〜2%、La0.01〜2%、Cd0.01〜2%、Ca0.01〜1%の内少なくとも一種以上の元素を含み、その総量が0.01〜3%を含んでも良い。これらの元素を上記範囲内に添加することにより、耐脱亜鉛性、切削性および熱間加工性を害することなく、機械的特性および切削加工性を向上する効果がある。
【0027】
このような成分範囲に調整した本発明の銅基合金は、耐脱亜鉛性、熱間鍛造性および切削性に優れ、しかも安価に製造することができる。
【0028】
次に、本発明に係る発明の実施の形態を実施例により説明する。
【発明の実施の形態】
実施例
本発明における耐脱亜鉛性銅基合金を適用した実施例並びに比較例を説明する。表1に示す化学成分をそれぞれ誘導炉で溶解した後、液相線温度+100℃前後で、80mm直径のビレットを半連続鋳造した。各組成について鋳造したビレットの表面巻き込み等の表面欠陥深さを用いて鋳造性を評価した。表面欠陥深さ1mm以下は◎印、1〜3mmは○印、3mm以上は×印で示した。
【0029】
【表1】

Figure 0003903297
【0030】
鋳造で得られた80mm直径のビレットを800℃で、30分保持した後、熱間押し出しを行った。何れも80mm直径から30mm直径まで熱間押し出し加工した。
【0031】
熱間押し出しで得られた棒を用いて、さらに耐脱亜鉛性、熱間変形抵抗、硬さ、引張強さ及び伸びを評価した。脱亜鉛試験はJBMA T303―1988に指定された試験方法、条件により、試験片は押し出し棒から切り出したもので、腐食方向が押し出し方向と一致するようにセットした。また、各組成において、熱処理による耐脱亜鉛性変化の程度を調べるために、それぞれ400℃×3hで熱処理を行ったものについても、耐脱亜鉛性を評価した。
【0032】
熱間変形抵抗測定は落下ハンマー試験により、押し出し棒から旋盤で切削した直径15mm、高さ15mmの円柱試験片を用いた。試験温度、歪み速度をそれぞれ750℃、180s-1とした。
【0033】
切削性試験は旋盤切削により、切屑の分断性についてはすべての切屑が完全分断した場合を○とし、切屑が分断できなかった場合を×として示した。また、融着性については、連続送り量100mmで、10回切削試験して刃物の先に銅分が付着した場合を×とし、銅分が付着しなかった場合を○とした。なお、切削条件は、回転速度950rpm、切り込み量0.5mm、送り速度0.06mm/rev.、送り量は100mm、切削油はなし、切削工具の材質は超硬鋼であった。銅基合金の硬さはビッカース硬さで、JIS Z 2244により、試験力49Nで、押し出し方向と直交する断面上で測定したものである。引張試験はJIS Z 2241の規定により、4号試験片を用いて、押し出し方向と平行する方向で行った。
【0034】
【表2】
Figure 0003903297
【0035】
表2に上記の試験結果を示している。本発明の組成を適用した例No.1〜No.9は何れも優れた鋳造性、機械特性、切削性及び熱間鍛造用合金C3771並(変形抵抗70MPa)の熱間変形抵抗を示した。最大脱亜鉛深さはいずれも65μm以下であり、耐脱亜鉛性に優れていることが明らかである。
【0036】
また、注目すべきなのは、熱処理前後のサンプルの最大脱亜鉛深さに差がなく、いずれも低いことである。すなわち、Siを適量に配合することより、特殊な熱処理を加えることがなく、熱間加工したままでも安定的かつ優れた耐脱亜鉛性が得られる。
【0037】
一方、比較例のNo.10では、Siを含有していないため、鋳造性、耐脱亜鉛性が劣ると共に、熱処理前後の最大脱亜鉛深さに大きな差を生じた。No.11では、Si/Sn比率が本発明の範囲を超えたため、耐脱亜鉛性にも劣る。
【0038】
また、No.12では、Sn含有量、Si含有量が共に本発明の下限よりも低くなっており、耐脱亜鉛性が著しく低下した。No.13、No.14では、Si量が本発明の範囲より多いため、刃先の融着が生じ、耐脱亜鉛性および鋳造性も劣る。
【0039】
No.15では、Sn、Siを同時に含有するものの、Si量とSi/Sn比は本発明の範囲を超え、また、Siが1.8%より多いため、やはり、耐脱亜鉛性及び鋳造性が劣り、刃先の融着も生じた。またPbを含有していないため、切屑も分断しなかった。
【0040】
【発明の効果】
以上のように、本発明によれば、耐脱亜鉛性、熱間鍛造性及び切削性に優れ、しかも安価で製造できる耐脱亜鉛性銅基合金が得られるのである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-based alloy having corrosion resistance excellent in dezincification corrosion and excellent in hot workability and cutting workability even when used in the presence of a corrosive aqueous solution.
[0002]
[Prior art]
Cu-Zn alloys, so-called brass materials, have been widely used for a long time because of their excellent hot and cold workability. Forging brass bars (JIS C3771), free-cutting brass bars (JIS C3604), high-strength brass bars (JIS C6782), etc. are generally known. There is also a continuous β phase in the tissue.
[0003]
Particularly in the presence of a corrosive aqueous solution in the natural environment, these alloys are extremely inferior in dezincing resistance because the ionization tendency of Zn in the β phase is strongly preferentially dissolved.
[0004]
Recently, various proposals have been made to improve the dezincing resistance of brass materials used for water contact parts. For example, in JP-A-10-183275, Sn is added to a Cu—Zn alloy, and after hot extrusion, the ratio of the γ phase and the Sn concentration in the γ phase are controlled through various heat treatments. Has been published to improve.
[0005]
JP-A-6-108184 proposes to add Sn to a Cu-Zn alloy and control it to α single phase by applying heat treatment after hot extrusion to improve dezincing resistance. Yes. That is, all of the above-described alloys are characterized in that Sn is added more than conventional brass. There was a new problem because brass contained a large amount of Sn.
[0006]
For example, as the Sn content increases, the local solidification time of brass increases, Sn reversely segregates during casting, causing surface defects in the ingot and detracting from hot workability such as extrusion, resulting in a remarkable product yield. There is a problem that it decreases.
[0007]
In addition, in order to extract the dezincing resistance improvement effect by Sn, it is necessary to perform heat treatment to generate a constant γ phase at the grain boundary of the α phase after hot extrusion and to diffuse Sn uniformly in the γ phase. There was a problem in terms of cost.
[0008]
Specifically, in JP-A-10-183275, heat treatment is performed at 500 ° C. or more and 550 ° C. or less for 30 seconds or more, and then the cooling rate to 350 ° C. is set to 0.4 ° C./second or less. Alternatively, heat treatment is performed at 400 ° C. or higher and 500 ° C. or lower for 30 seconds or longer, and then cooled. Alternatively, heat treatment is performed at 500 ° C. or more and 550 ° C. or less for 30 seconds or more, and then the cooling rate to 350 ° C. is cooled to 0.4 ° C./second or more and 4 ° C./second or less.
[0009]
In JP-A-6-108184, after hot extrusion or drawing, heat treatment is performed under conditions of 500 to 600 ° C. and 30 minutes to 3 hours. Such heat treatment requires expensive equipment to secure the conditions, and depending on the product size, it may cause variation in the structure due to the difference between the heat pattern inside and outside the product, and the cost due to yield reduction is also a problem. It was. Further, when the shape of the product is complicated, problems such as dimensional change of the product and residual stress may occur.
[0010]
Recently, free-cutting copper alloys in which Si is added to a Cu—Zn system have also been proposed (Japanese Patent Laid-Open Nos. 2000-119774 and 2000-119775). These alloys contain 1.8 wt% or more of Si, and there are many γ phases formed of Cu and Si at the α phase grain boundaries. In actual use environment, the dezincing resistance of the γ phase formed with Cu and Si is better than the β phase, but it has the disadvantage of being inferior to the γ phase formed with Cu and Sn, and when Si becomes 1.8% or more The material has a significant decrease in thermal conductivity, and when cutting, the temperature rise of the cutting edge increases, the blade life is shortened, the cutting accuracy is deteriorated, and the cutting speed cannot be increased. .
[0011]
[Problems to be solved by the invention]
The present invention solves the above problems and provides a dezincing-resistant copper-based alloy that is excellent in dezincing resistance, hot forgeability and machinability, and can be manufactured at low cost. It is the purpose.
[0012]
[Means for Solving the Problems]
In order to maximize the dezincing resistance effect due to the addition of Sn, by adding Si together and adjusting it to the appropriate Si / Sn value range, the secondary branch of dentite develops longer and narrower during solidification. We found that when segregation of Sn was suppressed and this was subjected to hot working, the γ phase was uniformly dispersed between the α phases, and this has a great effect on improving hot workability as well as dezincing resistance. It was.
That is, the present invention
[0013]
(1) Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in wt%, and further Si / Sn value of 0.05 to 1 in wt% A dezincing-resistant copper-based alloy having a structure in which the balance is composed of Zn and inevitable impurities, and the γ phase is uniformly dispersed between the α phases.
(2) Including Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn value of 0.05-1 in wt% In addition, the total amount of at least one element selected from P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, and As: 0.02 to 0.2% in terms of% by weight includes 0.02 to 0.2% in total, and the balance A dezincing-resistant copper-based alloy comprising Zn and inevitable impurities and having a structure in which a γ phase is uniformly dispersed between α phases.
(3) Including Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in wt%, and Si / Sn value of 0.05 to 1 in wt% Further, in terms of% by weight, Fe: 0.01-2%, Mn: 0.01-2%, Cr: 0.01-2%, Bi: 0.01-3%, Be: 0.01-2%, Zr: 0.01-2%, Ce: 0.01-3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y : 0.01 to 2%, La: 0.01 to 2%, Cd: 0.01 to 2%, Ca: 0.01 to 1% of a total of at least one element selected from 0.01 to 3%, with the balance being Zn A dezincing-resistant copper-based alloy comprising an inevitable impurity and having a structure in which a γ phase is uniformly dispersed between α phases.
(4) Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in weight%, and Si / Sn value of 0.05 to 1 in weight% Further, in terms of% by weight, P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, As: at least one element selected from 0.02 to 0.2% includes 0.02 to 0.2% in total, and weight %: Fe: 0.01 to 0.2%, Mn: 0.01 to 2%, Cr: 0.01 to 2%, Bi: 0.01 to 3%, Be: 0.01 to 2%, Zr: 0.01 to 2%, Ce: 0.01 to 3% , Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01-2%, La: 0.01 to 2%, Cd: 0.01 to 2%, Ca: 0.01 to 1% of a total of at least one element selected from 0.01 to 1%, with the balance being Zn and inevitable impurities, γ A dezincing-resistant copper-based alloy having a structure in which phases are uniformly dispersed between α phases.
(5) Including Cu: 59 to 63%, Sn: 0.5 to 2%, Si: 0.06 to 0.6%, Pb: 1.5 to 2.3% in wt%, and further Si / Sn values in 0.1 to 0.5 wt% The copper-base alloy according to claim 1, wherein the copper-base alloy is present.
(6) The copper-based alloy according to any one of claims 1 to 5, wherein a maximum dezincing depth is 65 μm or less when a dezincing test (JBMA T303-1988) is performed.
(7) Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in weight%, and Si / Sn value of 0.05 to 1 in weight% The structure is such that the γ phase is uniformly dispersed between the α phases by hot extrusion after casting a copper-based alloy having a composition consisting of Zn and inevitable impurities in the balance. A method for producing a copper-based alloy bar characterized by the following.
(8) Including Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn value of 0.05-1 in wt% In addition, the total amount of at least one element selected from P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, and As: 0.02 to 0.2% in terms of% by weight includes 0.02 to 0.2% in total, and the balance A copper base characterized by forming a structure in which a γ phase is uniformly dispersed between α phases by casting a copper base alloy having a composition composed of Zn and inevitable impurities and then performing a hot extrusion process. A method for manufacturing an alloy bar.
(9) Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in wt%, and further Si / Sn value of 0.05 to 1 in wt% Further, in terms of% by weight, Fe: 0.01-2%, Mn: 0.01-2%, Cr: 0.01-2%, Bi: 0.01-3%, Be: 0.01-2%, Zr: 0.01-2%, Ce: 0.01-3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y : 0.01 to 2%, La: 0.01 to 2%, Cd: 0.01 to 2%, Ca: 0.01 to 1% of a total of at least one element selected from 0.01 to 3%, with the balance being Zn A copper-based alloy rod characterized by forming a structure in which the γ phase is uniformly dispersed between the α phases by performing hot extrusion after casting a copper-based alloy having a composition composed of inevitable impurities Manufacturing method.
(10) Cu: 57 to 69%, Sn: 0.3 to 3%, Si: 0.02 to 1.5%, Pb: 0.5 to 3% in wt%, and further Si / Sn value of 0.05 to 1 in wt% Further, in terms of% by weight, P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, As: at least one element selected from 0.02 to 0.2% includes 0.02 to 0.2% in total, and weight %: Fe: 0.01 to 0.2%, Mn: 0.01 to 2%, Cr: 0.01 to 2%, Bi: 0.01 to 3%, Be: 0.01 to 2%, Zr: 0.01 to 2%, Ce: 0.01 to 3% , Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01-2%, A composition comprising at least one element selected from La: 0.01 to 2%, Cd: 0.01 to 2%, and Ca: 0.01 to 1% in a total amount of 0.01 to 3%, with the balance being Zn and inevitable impurities. After casting a copper-based alloy having a hot-extrusion process, a structure in which the γ phase is uniformly dispersed between the α phases is obtained. Manufacturing method of the base alloy rod.
(11) In weight%, Cu: 59 to 63%, Sn: 0.5 to 2%, Si: 0.06 to 0.6%, Pb: 1.5 to 2.3%, and further, Si / Sn value is 0.1 to 0.5% in weight%. The method for producing a copper-based alloy rod according to claim 7, wherein the copper-based alloy rod is in a range of
[0018]
[Action]
The reason for selecting the composition range of the copper-based alloy in the present invention will be described below.
Cu:
Increasing Cu increases the α phase and increases the corrosion resistance, but if it exceeds 69%, the hot forgeability decreases rapidly. Moreover, since Cu is more expensive than Zn, it is desirable to reduce the amount of Cu as much as possible from an economical viewpoint. Further, if Cu is less than 57%, the β phase is increased and the high temperature forgeability is improved, but the dezincing resistance is lowered, and the strength and elongation of the material are also lowered. Considering the above balance, the composition range of Cu is 57% to 69% by weight. Furthermore, the range of 59 to 63% is preferable.
[0019]
Sn:
By adding Sn in an amount of 0.3% or more, an effect of improving dezincing resistance can be obtained. Moreover, the dezincing resistance is remarkably improved as the Sn amount increases. However, if the Sn content exceeds 3%, it causes deep defects on the surface of the ingot at the time of casting, and the effect of improving the dezincing resistance corresponding to the added amount of Sn cannot be obtained, and Sn is more expensive than Zn and Cu. , Leading to increased costs. Therefore, the Sn amount is set to 0.3 to 3%. Furthermore, the range of 0.5 to 2% is preferable.
[0020]
Si:
Si is added for the purpose of improving the castability and improving the dezincing resistance of Sn. Addition of an appropriate amount of Si improves the fluidity of the molten metal during casting and suppresses segregation of Sn, completely improving the dezincing resistance of Sn without hot extrusion and heat treatment after hot forging. To provide stable and excellent dezincing resistance and mechanical properties.
[0021]
However, if Si exceeds 1.5%, the γ phase, κ phase, or β phase formed by Si and Cu at the α phase grain boundary increases, which deteriorates the dezincing resistance and castability by a large amount of Si oxide. The hot workability is reduced. Furthermore, if the Si content exceeds 1.8%, the thermal conductivity of the material will decrease significantly, and when cutting, the temperature of the cutting edge will increase, shortening the tool life, cutting the cutting accuracy, and increasing the cutting speed. Cause many problems.
[0022]
On the other hand, if Si is less than 0.02%, the effect of improving castability or the effect of suppressing the segregation of Sn cannot be obtained. For the above reasons, the composition range of Si is set to 0.02 to 1.5%. Furthermore, the range of 0.06 to 0.6% is preferable.
[0023]
Si / Sn: The purpose of prescribing the Si / Sn value is to obtain an optimum Si addition amount according to the addition amount of Sn in order to maximize the effect of improving the dezincing resistance of Sn. By controlling the appropriate Si / Sn value, the secondary branch of dentite develops longer and narrower during solidification, suppresses the segregation of Sn, and after hot working, the γ phase is uniformly dispersed between the α phases, Improves dezincing resistance and ensures hot deformation. When the Si / Sn value in weight% is larger than 1, the Si amount becomes excessive. Since the zinc equivalent of Si is large, a large amount of β phase is precipitated, and the β layer existing around the α phase cannot be divided by the γ layer, thereby deteriorating dezincing resistance. Further, if the Si / Sn value in% by weight is smaller than 0.05, the effect of suppressing the segregation of Sn does not appear sufficiently, and a heat treatment after hot working is necessary in order to bring out the effect of improving the dezincing resistance. Therefore, the range of Si / Sn value in% by weight is preferably 0.05-1. More preferably, it is the range of 0.1-0.5.
[0024]
P, Sb, As:
Addition of these elements is effective in suppressing dezincification without impairing the machinability and forgeability. However, if the addition is less than 0.02%, the dezincification suppressing effect is not sufficiently exhibited. On the other hand, if added over 0.2%, grain boundary segregation occurs, ductility decreases and stress corrosion cracking susceptibility increases. Therefore, the contents of P, Sb, and As are 0.02 to 0.2%, respectively.
[0025]
Pb:
Pb aims to improve the machinability of the material. If it is less than 0.5%, sufficient machinability cannot be obtained, and if it exceeds 3%, hot working such as extrusion and forging becomes difficult. The composition range when adding Pb is 0.5 to 3%, and more preferably 1.5 to 2.3%.
[0026]
Further, as additive elements, Fe0.01-2%, Mn0.01-2%, Cr0.01-2%, Bi0.01-3%, Be0.01-2%, Zr0.01-2%, Ce0. 01-3%, Ag0.01-2%, Ti0.01-2%, Mg0.01-2%, Co0.01-2%, Te0.01-1%, Au0.01-2%, Y0.01 It may contain at least one element of ˜2%, La0.01˜2%, Cd0.01˜2%, Ca0.01˜1%, and the total amount may contain 0.01˜3%. By adding these elements within the above range, there is an effect of improving mechanical properties and machinability without deteriorating dezincing resistance, machinability and hot workability.
[0027]
The copper-based alloy of the present invention adjusted to such a component range is excellent in dezincing resistance, hot forgeability, and machinability, and can be manufactured at a low cost.
[0028]
Next, embodiments of the present invention will be described with reference to examples.
DETAILED DESCRIPTION OF THE INVENTION
Examples Examples and comparative examples to which the dezincing resistant copper-based alloy of the present invention is applied will be described. Each chemical component shown in Table 1 was melted in an induction furnace, and then a 80 mm diameter billet was semi-continuously cast at a liquidus temperature of about + 100 ° C. Castability was evaluated using the surface defect depth such as surface entrainment of the billet cast for each composition. A surface defect depth of 1 mm or less is indicated by ◎, 1 to 3 mm is indicated by ○, and 3 mm or more is indicated by ×.
[0029]
[Table 1]
Figure 0003903297
[0030]
The 80 mm diameter billet obtained by casting was held at 800 ° C. for 30 minutes, and then hot extruded. All were hot extruded from 80 mm diameter to 30 mm diameter.
[0031]
Using the rod obtained by hot extrusion, dezincing resistance, hot deformation resistance, hardness, tensile strength and elongation were further evaluated. In the dezincing test, according to the test method and conditions specified in JBMA T303-1988, the test piece was cut out from the extruded bar and set so that the corrosion direction coincided with the extruded direction. In addition, in each composition, in order to examine the degree of change in dezincing resistance due to heat treatment, dezincing resistance was also evaluated for those subjected to heat treatment at 400 ° C. for 3 hours.
[0032]
The hot deformation resistance was measured by a drop hammer test using a cylindrical test piece having a diameter of 15 mm and a height of 15 mm cut from a push bar with a lathe. The test temperature and strain rate were 750 ° C. and 180 s −1 , respectively.
[0033]
In the machinability test, by lathe cutting, the chip breaking property is indicated by ◯ when all the chips are completely cut, and by x when the chips cannot be cut. Regarding the fusing property, the case where the copper content adhered to the tip of the blade after 10 cutting tests at a continuous feed amount of 100 mm was evaluated as x, and the case where the copper content did not adhere was evaluated as ◯. The cutting conditions were a rotation speed of 950 rpm, a cutting depth of 0.5 mm, a feeding speed of 0.06 mm / rev., A feeding amount of 100 mm, no cutting oil, and the cutting tool material was cemented steel. The hardness of the copper-based alloy is Vickers hardness, measured according to JIS Z 2244 at a test force of 49 N on a cross section perpendicular to the extrusion direction. The tensile test was performed in a direction parallel to the extrusion direction using a No. 4 test piece according to JIS Z 2241.
[0034]
[Table 2]
Figure 0003903297
[0035]
Table 2 shows the test results. Examples No. 1 to No. 9 to which the composition of the present invention was applied all exhibited excellent castability, mechanical properties, machinability, and hot deformation resistance comparable to that of hot forging alloy C3771 (deformation resistance 70 MPa). The maximum dezincing depth is 65 μm or less, and it is clear that the dezincing resistance is excellent.
[0036]
It should also be noted that there is no difference in the maximum dezincing depth of the samples before and after the heat treatment, and both are low. That is, by blending Si in an appropriate amount, a stable and excellent dezincing resistance can be obtained without any special heat treatment and with hot working.
[0037]
On the other hand, since No. 10 of the comparative example did not contain Si, castability and dezincing resistance were inferior, and a great difference was produced in the maximum dezincing depth before and after the heat treatment. In No. 11, since the Si / Sn ratio exceeded the range of the present invention, the dezincing resistance was also poor.
[0038]
In No. 12, the Sn content and the Si content were both lower than the lower limit of the present invention, and the dezincing resistance was significantly lowered. In No. 13 and No. 14, since the Si amount is larger than the range of the present invention, the cutting edge is fused, and the dezincing resistance and castability are also inferior.
[0039]
No.15 contains Sn and Si at the same time, but the Si content and Si / Sn ratio exceed the scope of the present invention, and since Si is more than 1.8%, dezincing resistance and castability are also poor. The blade edge was also fused. Moreover, since it did not contain Pb, chips were not divided.
[0040]
【The invention's effect】
As described above, according to the present invention, a dezincing-resistant copper-based alloy that is excellent in dezincing resistance, hot forgeability, and machinability and can be manufactured at low cost can be obtained.

Claims (11)

重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% A dezincing-resistant copper-based alloy having a structure in which the balance is composed of Zn and inevitable impurities and the γ phase is uniformly dispersed between the α phases. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% In addition, the total amount of at least one element selected from P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, and As: 0.02 to 0.2% in a weight percent is 0.02 to 0.2% in total, and the balance is inevitable with Zn. A dezincing-resistant copper-based alloy comprising a structure composed of mechanical impurities and having a structure in which a γ phase is uniformly dispersed between α phases. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてFe:0.01〜2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避的不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% Further, in wt%, Fe: 0.01-2%, Mn: 0.01-2%, Cr: 0.01-2%, Bi: 0.01-3%, Be: 0.01-2%, Zr: 0.01-2%, Ce: 0.01 ~ 3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01- 2%, La: 0.01-2%, Cd: 0.01-2%, Ca: 0.01-1% in total, containing 0.01-3% in total, the balance being Zn and inevitable impurities A dezincing-resistant copper-based alloy comprising a structure in which a γ phase is uniformly dispersed between α phases. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、かつ重量%においてFe:0.01〜0.2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避不純物からなり、γ相がα相の間に均一に分散している組織を有することを特徴とする耐脱亜鉛性銅基合金。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% Further, in a weight percentage, P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, As: 0.02 to 0.2% in total, at least one element selected from 0.02 to 0.2%, and Fe in weight percentage : 0.01 to 0.2%, Mn: 0.01 to 2%, Cr: 0.01 to 2%, Bi: 0.01 to 3%, Be: 0.01 to 2%, Zr: 0.01 to 2%, Ce: 0.01 to 3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01-2%, La: 0.01 ~ 2%, Cd: 0.01-2%, Ca: 0.01-1% in total including at least one element selected from 0.01 to 3%, the balance is composed of Zn and inevitable impurities, and the γ phase is α A dezincing-resistant copper-base alloy characterized by having a structure that is uniformly dispersed between phases. 重量%においてCu:59〜63% 、Sn:0.5〜2%、Si:0.06〜0.6%、Pb:1.5〜2.3%を含み、さらに重量%においてSi/Snの値が0.1〜0.5であることを特徴とする請求項1〜4に記載の銅基合金。  Cu: 59 to 63% in weight%, Sn: 0.5 to 2%, Si: 0.06 to 0.6%, Pb: 1.5 to 2.3%, and further Si / Sn value in weight% is 0.1 to 0.5 The copper base alloy according to claim 1, wherein 脱亜鉛試験(JBMA T303-1988)を実施したときに、最大脱亜鉛深さが65μm以下であることを特徴とする請求項1〜5に記載の銅基合金。  The copper-based alloy according to claim 1, wherein a maximum dezincing depth is 65 μm or less when a dezincing test (JBMA T303-1988) is performed. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% In addition, after casting a copper base alloy having a composition consisting of Zn and inevitable impurities in the balance, hot extrusion is performed to form a structure in which the γ phase is uniformly dispersed between the α phases. A method for manufacturing a copper-based alloy rod. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% In addition, the total amount of at least one element selected from P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, and As: 0.02 to 0.2% in a weight percent is 0.02 to 0.2% in total, and the balance is inevitable with Zn. A copper-based alloy rod characterized by forming a structure in which a γ-phase is uniformly dispersed between α-phases by casting a copper-based alloy having a composition composed of mechanical impurities and then performing hot extrusion. Production method. 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてFe:0.01〜2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避的不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% Further, in wt%, Fe: 0.01-2%, Mn: 0.01-2%, Cr: 0.01-2%, Bi: 0.01-3%, Be: 0.01-2%, Zr: 0.01-2%, Ce: 0.01 ~ 3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01- 2%, La: 0.01-2%, Cd: 0.01-2%, Ca: 0.01-1% in total, containing 0.01-3% in total, the balance being Zn and inevitable impurities A copper-based alloy rod manufacturing method characterized by forming a structure in which a γ-phase is uniformly dispersed between α-phases by casting a copper-based alloy having a composition comprising: . 重量%においてCu:57〜69%、Sn:0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、さらに重量%においてSi/Snの値が0.05〜1の範囲であり、さらに重量%においてP:0.02〜0.2%、Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも一種以上の元素を総量で0.02〜0.2%を含み、かつ重量%においてFe:0.01〜0.2%、Mn:0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以上の元素を総量で0.01〜3%を含み、残部がZnと不可避不純物からなる組成を有する銅基合金を鋳造した後、熱間押し出し加工をすることによりγ相がα相の間に均一に分散している組織とすることを特徴とする銅基合金棒の製造方法。  Cu: 57-69%, Sn: 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3% in wt%, and Si / Sn values in the range of 0.05-1 in wt% Further, in a weight percentage, P: 0.02 to 0.2%, Sb: 0.02 to 0.2%, As: 0.02 to 0.2% in total, at least one element selected from 0.02 to 0.2%, and Fe in weight percentage : 0.01 to 0.2%, Mn: 0.01 to 2%, Cr: 0.01 to 2%, Bi: 0.01 to 3%, Be: 0.01 to 2%, Zr: 0.01 to 2%, Ce: 0.01 to 3%, Ag: 0.01-2%, Ti: 0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01-2%, La: 0.01 ~ 2%, Cd: 0.01-2%, Ca: 0.01 to 1% of at least one element selected from a total of 0.01 to 3%, with the balance being a copper group having a composition consisting of Zn and inevitable impurities A copper-base alloy characterized by forming a structure in which the γ-phase is uniformly dispersed between the α-phases by hot extrusion after casting the alloy The method of production. 重量%において、Cu:59〜63% 、Sn:0.5〜2%、Si:0.06〜0.6%、Pb:1.5〜2.3%であり、さらに重量%においてSi/Snの値が0.1〜0.5の範囲であることを特徴とする請求項7〜10に記載の銅基合金棒の製造方法。  In wt%, Cu: 59 to 63%, Sn: 0.5 to 2%, Si: 0.06 to 0.6%, Pb: 1.5 to 2.3%, and in wt%, the value of Si / Sn is in the range of 0.1 to 0.5 It exists, The manufacturing method of the copper base alloy bar | burr of Claims 7-10 characterized by the above-mentioned.
JP2000198825A 2000-06-30 2000-06-30 Dezincing resistant copper base alloy Expired - Lifetime JP3903297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000198825A JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy
US09/891,650 US20020015657A1 (en) 2000-06-30 2001-06-26 Copper-base alloys having resistance to dezincification
US10/302,037 US20030095887A1 (en) 2000-06-30 2002-11-22 Copper-base alloys having resistance to dezincification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198825A JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy

Publications (2)

Publication Number Publication Date
JP2002012927A JP2002012927A (en) 2002-01-15
JP3903297B2 true JP3903297B2 (en) 2007-04-11

Family

ID=18696927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198825A Expired - Lifetime JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy

Country Status (2)

Country Link
US (1) US20020015657A1 (en)
JP (1) JP3903297B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) * 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US6929652B1 (en) * 2001-06-01 2005-08-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery systems having steerability and rapid exchange operating modes for embolic protection systems
JP3824944B2 (en) * 2002-02-25 2006-09-20 同和鉱業株式会社 Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
JP2003277855A (en) * 2002-03-22 2003-10-02 San-Etsu Metals Co Ltd Lead-free, free-cutting brass alloy material and production method thereof
US7172614B2 (en) * 2002-06-27 2007-02-06 Advanced Cardiovascular Systems, Inc. Support structures for embolic filtering devices
US7252675B2 (en) * 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US20040088000A1 (en) * 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
US20040155097A1 (en) * 2003-02-04 2004-08-12 Matsushita Electric Industrial Co., Ltd. Soldering method and method for manufacturing component mounting board
JP2004244672A (en) 2003-02-13 2004-09-02 Dowa Mining Co Ltd Copper-base alloy with excellent dezincification resistance
DE10308778B3 (en) * 2003-02-28 2004-08-12 Wieland-Werke Ag Lead-free brass with superior notch impact resistance, used in widely ranging applications to replace conventional brasses, has specified composition
FR2856411B1 (en) * 2003-06-17 2007-03-02 Trefimetaux CuZnPbSn ALLOYS FOR HOT MATRIXING
US20050039827A1 (en) * 2003-08-20 2005-02-24 Yoshinori Yamagishi Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
CN100415911C (en) * 2003-08-25 2008-09-03 同和矿业株式会社 Copper alloy with high corrosion-and dezincification-resisting performance and mfg. method thereof
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
KR101040909B1 (en) * 2004-03-29 2011-06-10 산에츠긴조쿠가부시키가이샤 Brass material
JP4522736B2 (en) * 2004-03-30 2010-08-11 株式会社キッツ Copper-base alloy for die casting and ingots and products using this alloy
JP4118832B2 (en) * 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
CN100404713C (en) * 2005-11-28 2008-07-23 浙江大学 Lead-free easy-to-cut zinc white copper alloy
JP2008001964A (en) * 2006-06-26 2008-01-10 Chuetsu Metal Works Co Ltd Method for producing valve plate
DE102009038657A1 (en) * 2009-08-18 2011-02-24 Aurubis Stolberg Gmbh & Co. Kg brass alloy
CN101787461B (en) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 Environment-friendly manganese brass alloy and manufacturing method thereof
JP5591661B2 (en) * 2010-03-25 2014-09-17 サンエツ金属株式会社 Copper-based alloy for die casting with excellent dezincification corrosion resistance
JP2011214094A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining brass alloy
JP2011214095A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining bronze casting alloy
CN101812611A (en) * 2010-04-29 2010-08-25 路达(厦门)工业有限公司 Lead-free corrosion resistant brass alloy and manufacturing method thereof
CN101851711A (en) * 2010-06-09 2010-10-06 襄樊博亚精工机器有限公司 Copper alloy weld wheel and manufacturing method thereof
KR101832289B1 (en) * 2011-04-13 2018-02-26 산에츠긴조쿠가부시키가이샤 Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
US8721765B2 (en) * 2011-11-14 2014-05-13 Mueller Industries, Inc. Lead free dezincification alloy and method of making same
JPWO2013115363A1 (en) * 2012-02-01 2015-05-11 Toto株式会社 Brass with excellent corrosion resistance
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
CN104630555A (en) * 2015-03-10 2015-05-20 济南大学 High-strength corrosion resisting brass material and preparation method thereof
WO2017204252A1 (en) * 2016-05-25 2017-11-30 三菱伸銅株式会社 Brass alloy hot-worked article and method for producing brass alloy hot-worked article

Also Published As

Publication number Publication date
US20020015657A1 (en) 2002-02-07
JP2002012927A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP3903297B2 (en) Dezincing resistant copper base alloy
US6942742B2 (en) Copper-based alloy excellent in dezincing resistance
EP1777305B1 (en) Copper-base alloy casting with refined crystal grains
JP3734372B2 (en) Lead-free free-cutting copper alloy
JP3966896B2 (en) Brass
JP3544669B2 (en) Lead-free 6XXX aluminum alloy and manufacturing method
JP5868510B2 (en) Free-cutting lead-free copper alloy and manufacturing method thereof
EP1508626B1 (en) Free-cutting copper alloys
JP5135491B2 (en) Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP6391201B2 (en) Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JP6795872B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP6796356B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US20030095887A1 (en) Copper-base alloys having resistance to dezincification
JP2000239765A (en) Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
US4130421A (en) Free machining Cu-Ni-Sn alloys
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
USRE30854E (en) Free machining Cu--Ni--Sn alloys
JP6796355B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP5062829B2 (en) Brass material and method for producing brass material
JP2841270B2 (en) Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy
US2849310A (en) Copper-base alloy
KR100834201B1 (en) Copper-base alloy casting with refined crystal grains
JP2001294956A (en) Free cutting brass excellent in dezincification resistance and its producing method
JP2841269B2 (en) Copper-based alloy with excellent corrosion resistance and machinability, and valve parts using the alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3903297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term