JP3902495B2 - Method for forming fine particle fixing film - Google Patents

Method for forming fine particle fixing film Download PDF

Info

Publication number
JP3902495B2
JP3902495B2 JP2002087677A JP2002087677A JP3902495B2 JP 3902495 B2 JP3902495 B2 JP 3902495B2 JP 2002087677 A JP2002087677 A JP 2002087677A JP 2002087677 A JP2002087677 A JP 2002087677A JP 3902495 B2 JP3902495 B2 JP 3902495B2
Authority
JP
Japan
Prior art keywords
film
electric field
particles
fixed
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087677A
Other languages
Japanese (ja)
Other versions
JP2003282626A (en
Inventor
正彦 阿部
浩之 山崎
政紀 織田
晋也 塚本
俊郎 酒井
有朋 山口
秀樹 酒井
信幸 桃澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002087677A priority Critical patent/JP3902495B2/en
Publication of JP2003282626A publication Critical patent/JP2003282626A/en
Application granted granted Critical
Publication of JP3902495B2 publication Critical patent/JP3902495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Description

【0001】
【発明の属する技術分野】
本発明は、微小粒子固着被膜の形成方法に関し、更に詳細には、電極表面上に膜状に配列された微小粒子を固着する微小粒子固着被膜の形成方法に関する。
【0002】
【従来の技術】
純粋な金属表面は反応性が高いことが多く、そのままの状態では、空気中の酸素により酸化されて酸化皮膜が形成されたり、空気中に浮遊する各種成分が付着し、汚れてしまうことがある。
【0003】
このような問題を解決するためには、適当な物質で金属表面を被覆することが考えられ、一般的には、有機成分皮膜を形成する塗料等が使用されている。
【0004】
しかしながら、上記の塗料は、噴霧または塗布あるいは浸漬することにより有機成分の皮膜を形成するものであるが、塗布後の皮膜の厚みは不均一であったり、あるいは極めて厚いものになってしまうという問題があった。
【0005】
また塗料は、塗布後、塗布物上で反応し、皮膜を形成するものであるため、その成分は限られており、希望の有機材料で金属を被覆できるというものではなかった。
【0006】
【発明が解決しようとする課題】
本発明は、上記現状においてなされたものであり、金属等の電導体の表面上に、目的とする有機材料の微小粒子を極めて薄い膜状に接着、固定化させるための技術の提供をその課題とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を行った結果、微小粒子を電極表面上で膜状に配列させた後、これにパルス的な電場を印加することにより、膜状に配列した微小粒子同士が固着され、微小粒子の固着被膜が得られることを見出し、本発明を完成した。
【0008】
すなわち本発明は、電導体を電極とし、これに電場を印加して微小粒子を膜状に配列せしめた後、更にパルス的に電場を印加せしめることを特徴とする電導体表面上での微小粒子固着皮膜の形成方法を提供するものである。
【0009】
【発明の実施の形態】
本発明の微小粒子固着皮膜は、まず、電導体を電極とし、この上で微小粒子を膜状に配列し、次いで、この状態の微小粒子にパルス的な電場を印加することにより形成される。
【0010】
本発明において、固着皮膜を形成する微小粒子としては、種々の電荷を有する粒子が挙げられるが、その形状が均一な形状の、ほぼ10nmから数mmの範囲の粒径を有する粒子が好ましい。ここで、「均一な形状」とは、使用される粒子が配列されたときに規則的な構造体となる形状であることを意味し、特にその形状が制限されるものではないが、大きさや形状が揃っていることが重要であり、球状や、棒状、板状等の粒子が使用される。また、この微小粒子の材質については、特に制約はないが、有機物微小粒子が使用され、例えば、ポリスチレンラテックス粒子、ポリアクリレート粒子、ポリメチルメタクリレート粒子、ポリウレタン粒子等の高分子樹脂粒子が好ましい。
【0011】
また、上記微小粒子固着皮膜が形成される電導体としては、電極として用いることができるものであれば特に制約はなく、白金、金、銀、銅、鉄、マンガン、モリブデン、亜鉛等の金属やそれらの合金あるいは各種の導電性プラスチック等が用いられる。この電導体を電極とする場合の電極間の距離については特に制約はなく、0.1から500mm程度とすればよい。
【0012】
本発明の微小粒子固着皮膜の形成に当たっては、上記微小粒子を電極である電導体上で膜状に配列させることが必要であるが、微小粒子を配列させるための方法については特に制約はない。しかしながら、簡単に微小粒子を配列させる手段としては、2枚の電極を有するセル中に、水もしくは他の水溶性物質を含有した分散媒に分散させた微小粒子を入れ、ここに交流ないし直流の電場を印加する方法が挙げられる。
【0013】
微小粒子を膜状に配列するために必要な電場は、交流の場合は、0.5から1000Vrms程度であり、直流の場合は、0.5から3V程度である。また、電場の印加時間は、共に、2から5分程度である。なお、この電場の印加において、交流を用いた場合の方が膜状配列が広く大きなため好ましい。
【0014】
上記のようにして電導体上に膜状に配列された微小粒子は、次にパルス的な電場の印加により固着される。微粒子の固着のために印可される電場は、直流によるパルス的なものであることが好ましい。例えば、このパルス電場として、3から1000V程度の直流電圧を、例えば、3×10-6から5秒程度の短時間、0.1から1回/秒程度の間隔で印可させればよい。
【0015】
かくすることにより、電導体上に微小粒子固着皮膜が形成される。この微小粒子固着皮膜は、電導体上に強固に固着したものであるため、電極である電導体を、例えば高分子の微小粒子で被覆することができ、電導体に新たな性質を付与することができる。例えば、金属に疎水性表面を付与することができる。
【0016】
また、金属上に規則的に規則的にコロイド粒子を配列させ、これを固着させることにより、オパールのような輝きを放つ皮膜を形成することができ(遊色現象)、特徴のある金属表面外観を得ることができる。
【0017】
【実施例】
次に実施例および参考例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。
【0018】
参 考 例 1
観察用セルの作製:
電場印加のために、図1に示す装置を作成した。また、観察用セルは、図2に模式的に示すように、ITO(Indium Tin Oxide)製の透明電極をスライドグラスに取り付け、この透明電極を内側にし、電極に配線を行ったものであり、中に試料を充填した後、密閉できるようになっている。また、電場印加下での粒子の挙動は微分干渉光学顕微鏡により観察した。
【0019】
実 施 例 1
交流電場を用いる固着皮膜の形成:
直径が5μmのポリスチレンラテックス(Duke Scientific Corporation社製;以下、「PSL」という)を、蒸留水中に0.5wt%で加えて懸濁液とし、これを参考例1の観察用セル中に充填した。この観察用セルに、3Vrms、1kHzの交流電場を2分間印加したところ、PSLは膜状に配列した。
【0020】
次いで、3Vrms、1kHzの交流電場を印加した状態で、更に3〜5Vのパルス的なバイアス電圧(直流)を印加した。このパルス的なバイアス電圧は、1秒間隔で5回印加した。この結果、膜状に配列したPSLは、観察用セルの電極面に固着した(図3)。この固着皮膜は、電場を印加しない状態にしても、また、逆の電場を印加しても変化はなく、更に、蒸留水を除去しても、蒸留水をかけても壊れるものでなかった。
【0021】
実 施 例 2
直流電場を用いる固着被膜の形成:
直径が5μmのPSLを、蒸留水中に0.5wt%で加えて懸濁液とし、これを参考例1の観察用セル中に充填した。この観察用セルに、3Vの直流電場を2分間印加したところ、PSLは+電極側に膜状に配列した。
【0022】
次いで、上記観察セルに、単独で3〜5Vのパルス電圧(パルス時間1sec;パルス間隔1sec)を5回印加した。この結果、膜状に配列したPSLは、観察用セルの電極面に固着した。この固着皮膜は、電場を印加しない状態にしても、また、逆の電場を印加しても変化はなく、更に、蒸留水を除去しても、蒸留水で洗浄しても剥がれないものであった。
【0023】
実 施 例 3
固着皮膜のAFM観察:
直径が155nmのPSL(Duke Scientific Corporation社製)を、蒸留水中に0.5wt%で加えて懸濁液とし、これを参考例1の観察用セル中に充填した。この観察用セルに、3Vの直流電場を5分間印加し、その後合わせて3〜5Vの直流パルス(パルス時間1sec;パルス間隔1sec)を20回印加した。
【0024】
観察用セル中から水を除去し、+電極側に膜状に固着したPSLを、原子間力顕微鏡(Atomic Force Microscopy;AFM)(セイコー電子工業株式会社製)で観察した。この結果、電極上の吸着膜は、1層ないし6層の厚みを持つものであることが確認された。
【0025】
実 施 例 4
固着皮膜の接触角測定:
直径が2μmのPSLを用い、実施例1に従って固着皮膜を形成した。次いで、この固着皮膜の水との接触角をコンタクト−アングルメーター C-A型(協和界面化学(株)製)を用いて測定したところ、65°であった。これに対し、同じPSLを用い、移流集積法により形成した吸着膜は、外観的には上記固着皮膜と極めて類似していたが、形成される膜形状が異なるため、その接触角は、0°と大きく異なっていた。
【0026】
【発明の効果】
以上説明した本発明によれば、電導体上に微小粒子の膜を形成することができる。そして、この微小粒子皮膜は、電導体表面を撥水加工したり、表面の導電性を低下させる等の表面改質技術として利用することができるものである。
【図面の簡単な説明】
【図1】 電場印加装置のブロック図
【図2】 実施例で使用する観察用セルの模式図
【図3】 固着した微小粒子の光学顕微鏡写真(倍率400倍)
【符号の説明】
1 … … スライドグラス
2 … … ITO膜
3 … … 顕微鏡
以 上
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a fine particle fixed film, and more particularly to a method for forming a fine particle fixed film for fixing fine particles arranged in a film form on an electrode surface.
[0002]
[Prior art]
Pure metal surfaces are often highly reactive, and if left as they are, they may be oxidized by oxygen in the air to form an oxide film, or various components floating in the air may adhere and become dirty. .
[0003]
In order to solve such a problem, it is conceivable to coat the metal surface with an appropriate substance, and generally a paint or the like for forming an organic component film is used.
[0004]
However, although the above-mentioned paint forms a film of organic components by spraying, coating or dipping, the film thickness after coating is not uniform or becomes extremely thick. was there.
[0005]
In addition, since the paint reacts on the coated material after application to form a film, its components are limited and the metal cannot be coated with a desired organic material.
[0006]
[Problems to be solved by the invention]
The present invention has been made under the above circumstances, and it is an object of the present invention to provide a technique for adhering and immobilizing fine particles of an organic material of interest on a surface of an electric conductor such as a metal in an extremely thin film shape. It is what.
[0007]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors have arranged microparticles in a film shape on the electrode surface, and then applied a pulsed electric field thereto to arrange the microparticles in a film shape. It was found that the fine particles adhered to each other and a fixed coating of fine particles was obtained, and the present invention was completed.
[0008]
That is, the present invention provides a microparticle on the surface of a conductor characterized in that an electric field is applied to the conductor, and an electric field is applied thereto to arrange the microparticles in a film shape, and then the electric field is further applied in a pulsed manner. A method for forming a fixed film is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The fine particle fixing film of the present invention is formed by first using an electric conductor as an electrode, arranging the fine particles in a film shape thereon, and then applying a pulsed electric field to the fine particles in this state.
[0010]
In the present invention, the fine particles forming the fixed film include particles having various charges, and particles having a uniform shape and a particle size in the range of about 10 nm to several mm are preferable. Here, the “uniform shape” means a shape that becomes a regular structure when the particles to be used are arranged, and the shape is not particularly limited. It is important that the shapes are uniform, and spherical, rod-like, plate-like, etc. particles are used. The material of the fine particles is not particularly limited, but organic fine particles are used. For example, polymer resin particles such as polystyrene latex particles, polyacrylate particles, polymethyl methacrylate particles, and polyurethane particles are preferable.
[0011]
In addition, the conductor on which the fine particle fixing film is formed is not particularly limited as long as it can be used as an electrode, such as platinum, gold, silver, copper, iron, manganese, molybdenum, and zinc, Those alloys or various conductive plastics are used. There is no restriction | limiting in particular about the distance between electrodes when making this conductor into an electrode, What is necessary is just to be about 0.1-500 mm.
[0012]
In forming the fine particle fixing film of the present invention, it is necessary to arrange the fine particles in the form of a film on an electric conductor as an electrode, but there is no particular restriction on the method for arranging the fine particles. However, as a means for easily arranging microparticles, microparticles dispersed in a dispersion medium containing water or other water-soluble substance are placed in a cell having two electrodes, and AC or DC There is a method of applying an electric field.
[0013]
The electric field required to arrange the microparticles in the form of a film is about 0.5 to 1000 Vrms for alternating current and about 0.5 to 3 V for direct current. The electric field application time is about 2 to 5 minutes. In addition, in the application of this electric field, the case where alternating current is used is preferable because the film arrangement is wide and large.
[0014]
The fine particles arranged in a film shape on the conductor as described above are then fixed by applying a pulsed electric field. The electric field applied to fix the fine particles is preferably pulsed by direct current. For example, as this pulse electric field, a DC voltage of about 3 to 1000 V may be applied at a time interval of about 0.1 to 1 time / second for a short time of about 3 × 10 −6 to about 5 seconds.
[0015]
Thus, a fine particle fixed film is formed on the conductor. Since this fine particle fixed film is firmly fixed on the conductor, the electrode conductor can be covered with, for example, polymer fine particles, and a new property is imparted to the conductor. Can do. For example, a hydrophobic surface can be imparted to the metal.
[0016]
In addition, colloidal particles are regularly and regularly arranged on the metal, and this is fixed to form an opal-like shining film (play-color phenomenon), which has a distinctive metal surface appearance. Can be obtained.
[0017]
【Example】
EXAMPLES Next, although an Example and a reference example are given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.
[0018]
Reference example 1
Production of observation cell:
The apparatus shown in FIG. 1 was created for applying an electric field. In addition, as schematically shown in FIG. 2, the observation cell is obtained by attaching a transparent electrode made of ITO (Indium Tin Oxide) to a slide glass, setting the transparent electrode inside, and wiring the electrode. After filling the sample, it can be sealed. Moreover, the behavior of the particles under the application of an electric field was observed with a differential interference optical microscope.
[0019]
Example 1
Formation of a fixed film using an alternating electric field:
A polystyrene latex having a diameter of 5 μm (manufactured by Duke Scientific Corporation; hereinafter referred to as “PSL”) was added to distilled water at 0.5 wt% to form a suspension, which was filled in the observation cell of Reference Example 1. . When an alternating electric field of 3 Vrms and 1 kHz was applied to this observation cell for 2 minutes, the PSL was arranged in a film shape.
[0020]
Next, in the state where an AC electric field of 3 Vrms and 1 kHz was applied, a pulsed bias voltage (DC) of 3 to 5 V was further applied. This pulsed bias voltage was applied 5 times at 1 second intervals. As a result, the PSL arranged in the form of a film adhered to the electrode surface of the observation cell (FIG. 3). This fixed film did not change even when an electric field was not applied or when a reverse electric field was applied, and even when distilled water was removed, it was not broken even when distilled water was applied.
[0021]
Example 2
Formation of a fixed film using a direct current electric field:
PSL having a diameter of 5 μm was added to distilled water at 0.5 wt% to form a suspension, and this was filled in the observation cell of Reference Example 1. When a DC electric field of 3 V was applied to this observation cell for 2 minutes, the PSL was arranged in a film on the + electrode side.
[0022]
Next, a pulse voltage of 3 to 5 V (pulse time 1 sec; pulse interval 1 sec) was applied to the observation cell 5 times. As a result, the PSL arranged in a film form was fixed to the electrode surface of the observation cell. This fixed film does not change even when an electric field is not applied or when a reverse electric field is applied, and it does not peel off even if distilled water is removed or washed with distilled water. It was.
[0023]
Example 3
AFM observation of fixed film:
PSL (manufactured by Duke Scientific Corporation) having a diameter of 155 nm was added to distilled water at 0.5 wt% to make a suspension, and this was filled in the observation cell of Reference Example 1. A 3V DC electric field was applied to the observation cell for 5 minutes, and then 3 to 5 V DC pulses (pulse time 1 sec; pulse interval 1 sec) were applied 20 times.
[0024]
Water was removed from the observation cell, and the PSL fixed in the form of a film on the + electrode side was observed with an atomic force microscope (AFM) (manufactured by Seiko Denshi Kogyo Co., Ltd.). As a result, it was confirmed that the adsorption film on the electrode had a thickness of 1 to 6 layers.
[0025]
Example 4
Contact angle measurement of fixed film:
A fixed film was formed according to Example 1 using PSL having a diameter of 2 μm. Subsequently, the contact angle of this fixed film with water was measured using a contact-angle meter C-A type (manufactured by Kyowa Interface Chemical Co., Ltd.) and found to be 65 °. On the other hand, the adsorption film formed by the advection accumulation method using the same PSL was very similar in appearance to the above-described fixed film, but the contact angle was 0 ° because the formed film shape was different. It was very different.
[0026]
【The invention's effect】
According to the present invention described above, a film of fine particles can be formed on a conductor. The fine particle coating can be used as a surface modification technique such as water repellent treatment of the surface of the conductor or reduction of the surface conductivity.
[Brief description of the drawings]
1 is a block diagram of an electric field application device. FIG. 2 is a schematic diagram of an observation cell used in the examples. FIG. 3 is an optical micrograph of a fixed microparticle (400 × magnification).
[Explanation of symbols]
1…… Slide glass 2…… ITO film 3…… Microscope or higher

Claims (4)

電導体を電極とし、これに電場を印加して粒子を膜状に配列せしめた後、更にパルス的に電場を印加せしめることを特徴とする電導体表面上での粒子固着皮膜の形成方法。  A method for forming a particle-fixing film on a surface of an electric conductor, comprising using an electric conductor as an electrode, applying an electric field to the electric conductor to arrange particles in a film, and further applying an electric field in pulses. 交流電場を印加することにより粒子を電極表面上に膜状に配列せしめるものである請求項第1項記載の粒子固着皮膜の形成方法。  2. The method for forming a fixed particle coating according to claim 1, wherein the particles are arranged in a film form on the electrode surface by applying an alternating electric field. パルス的に印加される電場が、直流電圧により得られる電場である請求項第1項または第2項記載の粒子固着皮膜の形成方法。  3. The method for forming a particle fixed film according to claim 1, wherein the pulsed electric field is an electric field obtained by a DC voltage. 粒子がポリスチレン粒子である請求項第1項ないし第3項の何れかの項記載の粒子固着皮膜の形成方法。  4. The method for forming a particle fixing film according to any one of claims 1 to 3, wherein the particles are polystyrene particles.
JP2002087677A 2002-03-27 2002-03-27 Method for forming fine particle fixing film Expired - Fee Related JP3902495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087677A JP3902495B2 (en) 2002-03-27 2002-03-27 Method for forming fine particle fixing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087677A JP3902495B2 (en) 2002-03-27 2002-03-27 Method for forming fine particle fixing film

Publications (2)

Publication Number Publication Date
JP2003282626A JP2003282626A (en) 2003-10-03
JP3902495B2 true JP3902495B2 (en) 2007-04-04

Family

ID=29233782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087677A Expired - Fee Related JP3902495B2 (en) 2002-03-27 2002-03-27 Method for forming fine particle fixing film

Country Status (1)

Country Link
JP (1) JP3902495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135924A1 (en) * 2010-04-27 2011-11-03 独立行政法人物質・材料研究機構 Metal nanoparticle array structure, device for producing same, and method for producing same

Also Published As

Publication number Publication date
JP2003282626A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
US6033547A (en) Apparatus for electrohydrodynamically assembling patterned colloidal structures
US10233559B2 (en) High rate electric field driven nanoelement assembly on an insulated surface
Maijenburg et al. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes
Xiang et al. Fabrication of self-assembled monolayers (SAMs) and inorganic micropattern on flexible polymer substrate
JP5744720B2 (en) Coating a substrate with a polymer film stable in a liquid medium
Masuda et al. Two-dimensional self-assembly of spherical particles using a liquid mold and its drying process
Jin et al. Bio-inspired special wetting surfaces via self-assembly
CA2822779A1 (en) Dissymmetric particles (janus particles), and method for synthesizing same by means of bipolar electrochemistry
KR100499594B1 (en) Method for forming ordered structure of fine metal particles
Ren et al. A cauliflower-like gold structure for superhydrophobicity
CN101613872B (en) Method for preparing super-hydrophobic surface with electro-wetting property
Yamamoto et al. An electroless plating method for conducting microbeads using gold nanoparticles
Chai et al. Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis
Tanimura et al. Active carboxylic acid-terminated alkanethiol self-assembled monolayers on gold bead electrodes for immobilization of cytochromes c
JP3902495B2 (en) Method for forming fine particle fixing film
Byeon et al. Fabrication of a pure, uniform electroless silver film using ultrafine silver aerosol particles
Lin et al. Site-selective deposition of gold on photo-patterned self-assembled monolayers
Choi et al. Electrochemical preparation of cadmium selenide nanoparticles by the use of molecular templates
KR20160021798A (en) Method of manufacturing dielectrophoresis device using transparent electrode
Liu et al. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition
Winkin et al. Nanomaterial-modified flexible micro-electrode array by electrophoretic deposition of carbon nanotubes
Hsieh et al. Pencil lead microelectrode and the application on cell dielectrophoresis
CN101613871B (en) Method for preparing super-hydrophobic surface
Monnin et al. Electrodeposition and characterisation of polythiophene films on gold substrates
Zhou et al. Silver-enhanced conductivity of magnetoplasmonic nanochains

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3902495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees