JP3901391B2 - Coagulation sedimentation equipment - Google Patents

Coagulation sedimentation equipment Download PDF

Info

Publication number
JP3901391B2
JP3901391B2 JP13249099A JP13249099A JP3901391B2 JP 3901391 B2 JP3901391 B2 JP 3901391B2 JP 13249099 A JP13249099 A JP 13249099A JP 13249099 A JP13249099 A JP 13249099A JP 3901391 B2 JP3901391 B2 JP 3901391B2
Authority
JP
Japan
Prior art keywords
precipitation
tank
coagulation
promoting means
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13249099A
Other languages
Japanese (ja)
Other versions
JP2000317217A (en
Inventor
和彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP13249099A priority Critical patent/JP3901391B2/en
Publication of JP2000317217A publication Critical patent/JP2000317217A/en
Application granted granted Critical
Publication of JP3901391B2 publication Critical patent/JP3901391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原水中の懸濁物質を凝集沈澱させることにより汚泥と処理水とに分離する凝集沈澱装置に関し、とくに沈澱槽における沈澱をより適切に行わせて処理水水質の向上、高速処理を可能にした凝集沈澱装置に関する。
【0002】
【従来の技術】
原水中に懸濁している物質(以下、SS[Suspended Solid] と称することもある。)を凝集沈澱により分離除去する装置が知られている。従来の原水中のSSを除去するための凝集沈澱装置として、原水に単に凝集剤を添加して凝集物を沈澱させ、凝集物を汚泥として引き抜くとともに上部から処理水を導出するようにした装置はよく知られている。
【0003】
たとえば図6に示すように、原水にたとえば凝集剤をライン注入し、その原水を原水入口101から凝集筒102に流入させ、流入された被処理水を凝集筒102の下部開口から沈澱槽103内に流入させ、凝集されたSSを含むフロック104を下方に沈澱させるとともに、分離された処理水105を上部の処理水出口106から取り出すようにした凝集沈澱装置が知られている。
【0004】
このような一般的な凝集沈澱装置では、凝集物の沈澱に長時間を要し、沈澱槽としても極めて大型のものが要求されることから、より効率よく凝集沈澱を行わせるために、凝集に凝集剤とともに粒状物(代表的には、砂)を用いるようにした凝集沈澱装置が提案されている。
【0005】
たとえばフランス特許第1411792号には、凝集槽において、原水に凝集剤とともに、粒径10〜200μm程度の粒状物(砂)を添加し、原水中のSSを比重の大きい粒状物を含んだ比較的大きなフロックとして凝集させ、沈澱槽において凝集槽から導入された被処理水中のフロックを沈澱させて処理水と分離する凝集沈澱装置が開示されている。沈澱槽から引き抜かれた沈澱フロックは、サイクロン等の分離器により汚泥と粒状物とに分離され、分離された粒状物は凝集槽に戻されて循環使用される。
【0006】
ところが現実には、凝集槽内における攪拌により、フロックを次の沈澱工程における最適な大きさや比重にまで成長させることが困難で、迅速かつ分離効率のよい沈澱を実現させるだけの状態にすることが困難であった。したがって、現実の運転においては、沈澱槽における水処理の線速度は6〜8m/h程度しか達成できず、より高流速の線速度の達成は困難であるというのが実情であった。
【0007】
このような実情に対し、特許第2634230号公報には、凝集槽と沈澱槽との間に攪拌機を備えた中間槽を設けることにより、高流速の線速度での処理を可能とした凝集沈澱装置が開示されている。
【0008】
この凝集沈澱装置では、原水にたとえば無機凝集剤と高分子凝集剤とともに粒状物としての砂が添加され、凝集槽内で攪拌機で攪拌されつつ原水中のSSが凝集され、その被処理水が中間槽に導入されて、さらに攪拌機で攪拌されつつ、フロックの成長がより助長されるようになっている。成長した砂含有のフロックを含む被処理水が沈澱槽に導入されるので、フロックはより効率よく迅速に沈澱し、より短時間で処理水と分離できるようになる。沈澱槽の底部に沈澱したフロックは汚泥として引き抜かれ、サイクロン等からなる分離器によって汚泥と砂とに分離され、分離された砂が凝集槽に戻されて循環使用されるようになっている。特許第2634230号公報によると、この凝集沈澱装置により、線速度が30〜60m/h、さらには90m/hという高流速での処理が可能になると記載されている。
【0009】
しかしながら、上記特許第2634230号に提案されている装置においては、凝集槽と沈澱槽の間に攪拌を伴う中間槽を設ける必要があるので、その分、設備費、電力量、設置面積の増大を招くことになっている。
【0010】
そこで、未だ出願未公開の段階にあるが、本出願人により、先に、上記のような中間槽を設けることなく、凝集槽に対して沈澱槽を隣接配置し、凝集槽内におけるフロックの形成をより最適に行わせることにより、線速度が30〜100m/hという高流速での処理が可能で、装置全体として小型かつ安価に構成できる凝集沈澱装置が提案されている(特願平11−130976号、特願平11−130977号、特願平11−130978号)。
【0011】
【発明が解決しようとする課題】
しかしながら、上記の本出願人により先に提案された凝集沈澱装置においては、未だ次のような問題が残されている。
【0012】
すなわち、凝集槽内における粒状物を含むフロックの凝集の最適化により、次の沈澱工程に適した凝集フロックを形成できるため、図6に示したような従来の一般的な凝集沈澱装置に比べ、はるかに高速の沈澱処理が可能になったが、この高速処理に対応して、沈澱槽へと流入される、凝集フロックを含む原水の流入速度も速くなるおそれがあり、たとえば、図6に示したような従来の一般的な凝集沈澱装置に比べ、流入速度が30倍以上にも速くなるおそれがある。このような高流入速度になると、たとえば図7に示すように、沈澱槽111に入口流路112を介して流入された原水113の流れに、沈澱槽111内において処理水流出側へのショートパスが発生するおそれがある。ショートパスが発生すると、沈澱槽111内を有効に使うことが難しくなり、それだけ、処理水と凝集フロックとの分離効率が低下し、処理速度が低く抑えられるとともに、処理水の水質が悪化するおそれが生じる。
【0013】
また、高流入速度になると、入口流路112を介して流入される原水113の流れと、入口流路112を形成する壁面に沿う沈澱槽111内の流れとの関係から、入口流路112の開口部直後近傍の部分に、渦114が発生しやすくなる。渦が発生すると、渦に巻き込まれたフロックが渦から逃れることができずに処理水中へと混入し、処理水水質の低下を来す原因となる。高流入速度になる程渦は発生しやすくなるから、この面からも、分離効率の向上が阻害されるとともに、処理速度が低く抑えられることとなっている。
【0014】
そこで本発明の課題は、とくに凝集槽において凝集剤とともに粒状物を用いて効率よく凝集フロックを形成できるようにした凝集沈澱装置において、沈澱槽におけるフロックと処理水との分離効率を高め、高い処理速度でも優れた処理水水質を得ることができる凝集沈澱装置を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明の凝集沈澱装置は、原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの原水中のフロックを沈澱させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置において、沈澱槽内に、沈澱槽への原水の入口流路の開口部に対し上下にわたって延びる沈澱促進手段設けられ、該沈澱促進手段が、沈澱槽への原水の入口流路を形成する壁の近傍に配置され、沈澱槽への原水の入口流路が、沈澱槽へ流入される原水が実質的に下降流となるように構成され、沈澱促進手段の後流側に生じた渦に捉えられた凝集フロックが沈澱促進手段に沿って下方に向けて案内され、処理水側への水流には乗らない静水域まで導かれるように、沈澱促進手段の下端が、沈澱槽への原水の入口流路の開口部よりも0.4〜1m下方に位置され、かつ、沈澱槽における処理速度が30〜100m/hであることを特徴とするものからなる。
【0017】
また、上記沈澱促進手段は、筒状や横断面コ字状に形成されていることが好ましいが、単なる平板形状に構成することも可能である。このような沈澱促進手段は、その上端が入口流路の開口部よりも上位に位置し、その下端が入口流路の開口部よりも下位に位置しているが、該下端は、沈澱槽への原水の入口流路の開口部よりも0.4〜1m下方に位置される。また、沈澱促進手段は一つだけ設けることもできるし、沈澱促進手段や入口流路の開口部の大きさに応じて複数並設することもできる。
【0018】
凝集槽での凝集に使用する粒状物としては、代表的には砂を使用することができ、とくに粒径を揃えたものが好ましい。また、凝集剤としては、通常、無機凝集剤と高分子凝集剤を使用することができる。無機凝集剤は、原水中の懸濁物質を効率よく凝集させることができ、高分子凝集剤は、無機凝集剤によって生成した微細な凝集フロックをさらにポリマーを絡めてより大きなフロックへと成長させる。この成長したフロック内に、比重の大きい砂等からなる粒状物が混在し、全体として比重(密度)の大きい沈澱しやすいフロックが形成されることになる。このような沈澱しやすい形状まで成長したフロックを含む原水が、沈澱槽に流入され、本発明に係る沈澱促進手段が活用されて、沈澱すべきフロックと処理水とに良好に分離される。
【0019】
上記のような本発明に係る凝集沈澱装置においては、入口流路を介して沈澱槽内へ流入された原水は、入口流路の開口部に対し上下にわたって延びる沈澱促進手段に衝突し、沈澱槽内における水流の流速が低下される。また、沈澱促進手段の後流側には、水平方向の渦が発生し、水流の運動エネルギーを減衰させる。これによって、上方に向けてショートパスしようとする流れの流速が大幅に低減され、結果的にショートパス流れが良好に抑えられる。したがって、原水中の凝集フロックは、処理水から良好に分離されて下方へと沈降され、凝集フロックから分離された処理水の水質が向上される。
【0020】
また、沈澱促進手段は上下方向に延びているから、沈降するフロックに対し下方沈澱方向への案内手段としても機能する。沈澱促進手段の後流側に生じた渦に捉えられた凝集フロックは、沈澱促進手段に沿って下方に向けて案内され、迅速に沈澱する。沈澱促進手段の下端を、入口流路の開口部に対して適切な距離下方に位置させ、沈澱促進手段を下方に向けて適切に長く形成しておくことにより、沈澱促進手段に沿って案内されるフロックを下方の静水域まで導くことが可能になる。静水域まで導かれたフロックは、もはや処理水側への水流には乗らないので、より確実に沈澱槽底部へと沈澱される。したがって、フロックと処理水との分離効率が一層高められ、処理水の水質が一層向上される。
【0021】
このように、ショートパス流れが良好に抑えられるとともに、フロックと処理水とが良好に分離されることにより、高い処理速度でも良好な処理水水質が得られることになり、30〜100m/hという高速処理と処理水水質の向上とが、同時に達成される。
【0022】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
図1は、本発明の一実施態様に係る凝集沈澱装置1を示している。凝集沈澱装置1は、凝集槽2と、それに隣接配置された沈澱槽3を備えている。凝集槽2には、原水供給ライン4を介して原水5が供給され、本実施態様では、無機凝集剤6と、高分子凝集剤7がライン注入される。無機凝集剤6の注入位置の下流側には、スタティックミキサー等からなるミキサ8が介装されており、注入された凝集剤が原水に良好に混合されるようになっている。ただし、これら凝集剤は、凝集槽2に直接投入することも可能である。
【0023】
無機凝集剤6としては、たとえばポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第二鉄を使用でき、高分子凝集剤7としては、たとえばノニオン性、アニオン性あるいは両性の高分子凝集剤を用いることができる。アニオン性の高分子凝集剤としては、たとえば、アクリル酸またはその塩の重合物、アクリル酸またはその塩とアクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2メチルプロパンスルホン酸塩の共重合物、アクリル酸またはその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の3元共重合物、ポリアクリルアミドの部分加水分解物などが挙げられるが、特にこれらに限定されるものではない。ノニオン性の高分子凝集剤としては、代表的なものとしてポリアクリルアミドが挙げられるが、特にこれに限定されるものではない。両性の高分子凝集剤としては、たとえば、ジメチルアミノエチル(メタ)アクリレートの3級塩および4級塩(塩化メチル塩等)等の少なくとも1種のカチオン性単量体と、アクリル酸およびその塩(ナトリウム、カルシウム等の塩類)、2−アクリルアミド−2−メチルプロパンスルホン酸塩(ナトリウム、カルシウム等の塩類)等の少なくとも1種のアニオン性単量体の共重合物、あるいは、上記の少なくとも1種のカチオン性単量体および上記の少なくとも1種のアニオン性単量体とアクリルアミド等の少なくとも1種のノニオン性単量体との三元もしくは四元以上の共重合物等が挙げられるが、特にこれらに限定されるものではない。高分子凝集剤の分子量の範囲は特に限定されないが、500万〜2000万の範囲が好ましい。これらの高分子凝集剤は、単独で又は混合物として用いることができる。高分子凝集剤の添加量は、一般的に経済的な観点から0.3〜2mg/l程度である。
【0024】
凝集槽2内には、粒状物としての砂9が添加される。凝集槽2には、モータ10によって駆動される攪拌機11が設けられており、攪拌機11による攪拌によって原水中の懸濁物質が、無機凝集剤6、高分子凝集剤7、砂9を含むフロックとして凝集される。
【0025】
この凝集においては、無機凝集剤6が懸濁物質を凝集させて微細なフロックを生成させ、それに高分子凝集剤7が絡まってより大きなフロックに成長させ、成長したフロックには比重の大きい粒状物としての砂9が含有され、全体として比較的大きな、比重の大きい沈澱しやすいフロックに成長する。
【0026】
成長した凝集フロック13を含む原水は、越流ぜき12を介して沈澱槽3へと導入される。沈澱槽3では、導入水中のフロックが下方に沈澱され、沈澱されたフロックは上方の処理水14に対して分離される。沈澱槽3内の上部には、複数の傾斜板15が並設されており、処理水14とともにフロックが流出するのを抑制している。
【0027】
沈澱槽3の底部には、沈澱されたフロックを引き抜くための引抜ライン16が接続されており、汚泥引抜ポンプ17によって、沈澱した凝集フロックを含むスラリーが引き抜かれる。引き抜かれたスラリーは、分離器としてのサイクロン18に送られ、サイクロン18内における遠心分離により、汚泥19と砂9とに分離される。分離された砂9は、再び凝集槽2内に戻されて循環使用される。
【0028】
基本的に上記のように構成された凝集沈澱装置1において、凝集槽2と沈澱槽3との間には、凝集槽2からの原水を沈澱槽3へと導く原水の入口流路21が設けられている。この入口流路21は、沈澱槽3内に向かって、実質的に下方に向かって開口する流路に形成されており、沈澱槽3へ流入される原水が実質的に下降流となるように構成されている。ただしこの開口方向は、沈澱槽3内へと流入される原水の流れが下降流とともに水平流成分を持つように設定されてもよい。本実施態様では、入口流路21は、その開口部22に向かってテーパ状に広がる形状に形成されている。
【0029】
沈澱槽3内には、上記入口流路21の開口部22に対し上下にわたって延びる沈澱促進手段23が設けられている。本実施態様では、沈澱促進手段23は、図2に示すように、筒状の手段(沈降筒)に形成され、複数(本実施態様では2つ)並設されている。これら沈澱促進手段23は、沈澱槽3内において、上記入口流路21を形成する壁24の近傍に配置されている。沈澱促進手段23の上端位置は、入口流路21の開口部22の上方に位置するかぎり、特に限定されない。沈澱促進手段23の下端位置は、入口流路21の開口部22よりも0.4m以上、とくに0.4〜1m下方に位置しているこのような下端位置まで沈澱促進手段23を延設しておくことにより、沈澱促進手段23に沿って凝集フロックを下方に生成される静水域まで導くことが可能になる。
【0030】
沈澱促進手段の形状としては、図2に示した筒状形状の他、たとえば図3に示すような横断面コ字状の沈澱促進手段31に形成してもよく、あるいは図示は省略するが、単なる平板の部材から構成してもよい。
【0031】
また、沈澱促進手段の配置については、入口流路の形状に応じて適宜変更してもよい。たとえば図4に示すように、沈澱槽41の中央部に入口流路42が配設されている場合には、その入口流路42を形成する筒状壁43の周囲に沈澱促進手段44を適当数配置することができる。
【0032】
上記のように構成された凝集沈澱装置1の作用を、図1、図2に示した装置について説明するに、凝集槽2内において、無機凝集剤6、高分子凝集剤7および砂9を含む凝集フロック13が、次の沈澱工程に適した大きさまで凝集、成長され、砂9を含有した比重の大きい、比較的大きく成長したフロックが、沈澱槽3においては迅速に沈澱されて処理水14と分離され、高い線速度での処理が可能となる。
【0033】
凝集槽2からの凝集フロック13を含む原水は、入口流路21を通して沈澱槽3へと流入されるが、流入した原水は、図1、図2にも示すように、沈澱槽3内において上方に向かって反転する、処理水として分離されるべき水の流れ25と、処理水と分離されて下方へと沈降する沈澱フロックの流れ26とに分離され、分離されたフロックは、沈澱槽3の底部に向かって沈澱する。このとき、入口流路21から沈澱槽3内に流入された原水は、先ず、沈澱促進手段23に衝突してその流速が低下される。また、沈澱促進手段23の後流側には、図5に示すように実質的に水平方向の渦27が生成され、この渦27によっても、流入した原水の運動エネルギーが減衰されて、水流の流速が低下される。その結果、上方の処理水流出側へのショートパス流れが生じることが抑えられ、処理水中に混入するフロックの量が低減されて分離効率が向上される。
【0034】
また、筒状の沈澱促進手段23の中を通して、あるいはそれに沿って、あるいは、横断面コ字状の沈澱促進手段31の場合にはそれに沿って、フロックを含む導入原水の流れが生じるので、沈澱すべきフロックもその流れに乗って案内されることになる。沈澱促進手段23は下方の沈澱方向へと延びているので、沈澱すべきフロックが沈澱方向に適切に案内されることになり、これによってもフロックの処理水からの分離効率が向上される。とくに、沈澱促進手段23が下方の静水域まで延びているので、沈降フロックをその静水域まで案内することが可能になり、静水域まで案内されたフロックは、再び上昇水流にのることはほとんどないから、分離効率が一層向上される。
【0035】
このようにフロックと処理水との分離効率が高められる結果、処理水の水質が大幅に向上される、また、処理水水質の向上の結果、沈澱槽3における処理速度が向上される。すなわち、30〜100m/hという高速の処理速度を達成しつつ、優れた処理水水質が得られることになる。
【0036】
本発明に係る凝集沈澱装置の効果を確認するために、以下のような実験を行った。
【0037】
〔実験〕
懸濁物質としてカオリンを原水に添加した人口濁水に、無機凝集剤としてPACを注入してラインミキシングし、高分子凝集剤としてのポリマーを注入し、凝集槽に粒状物としての砂を添加して以下の条件で実験し、処理水の濁度を測定した。実験は図1に示したフローで行い、沈澱促進手段23としては図2に示した沈降筒を用いた。また、その沈降筒には、長さが400mm(実施例1)と600mmのもの(実施例2)を用意し、原水入口流路壁下端より100mm上位に、沈降筒の上端が来るように設置した。
【0038】

Figure 0003901391
【0039】
結果を表1に示すが、比較例1と実施例1、2との結果の比較から、沈降筒を沈澱槽内に設置した場合、しない場合よりも水質が向上した。また、沈澱槽下部に設けた覗き窓からの観察の結果、実施例2に用いた沈降筒の下端は、沈澱槽下部の静水域にあり、実施例1に用いた短い沈降筒は静水域まで延びておらず原水入口(入口流路開口部)から続く流線の中にあり、沈降筒が静水域まで延びているほうが、そこまで延びていない場合に比べ、より効果的で処理水水質をより向上できることがわかった。
【0040】
【表1】
Figure 0003901391
【0041】
【発明の効果】
以上説明したように、本発明の凝集沈澱装置によれば、粒状物含有フロックを含む原水を沈澱槽に導入するに際し、沈澱槽内に入口流路開口部の上下にまたがって延びる沈澱促進手段を適切な形態で設けておくことにより、沈澱槽内における水流のショートパスを抑え、かつ、流速を適切に減速して、凝集フロックと処理水との分離効率を大幅に高めることができ、高い処理速度においても、優れた処理水水質を達成することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る凝集沈澱装置の全体構成図である。
【図2】図1の装置の沈澱槽における流れの状態を示す透視斜視図である。
【図3】本発明の別の実施態様に係る凝集沈澱装置の沈澱槽における流れの状態を示す透視斜視図である。
【図4】本発明のさらに別の実施態様に係る凝集沈澱装置の沈澱槽における流れの状態を示す透視斜視図である。
【図5】図1の装置の沈澱促進手段周りの流れの様子を示す概略斜視図である。
【図6】従来の一般的な凝集沈澱装置の全体構成図である。
【図7】沈澱槽における問題点を示す概略縦断面図である。
【符号の説明】
1 凝集沈澱装置
2 凝集槽
3、41 沈澱槽
4 原水供給ライン
5 原水
6 無機凝集剤
7 高分子凝集剤
8 ミキサー
9 粒状物としての砂
10 モータ
11 攪拌機
12 越流ぜき
13 成長したフロック
14 処理水
15 傾斜板
16 引抜ライン
17 汚泥引抜ポンプ
18 分離器としてのサイクロン
19 汚泥
21、42 入口流路
22 開口部
23、31、44 沈澱促進手段
24 入口流路を形成する壁
25 水の流れ
26 フロックの流れ
27 渦
43 入口流路を形成する筒状壁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coagulating sedimentation apparatus that separates sludge and treated water by coagulating and precipitating suspended solids in raw water, and in particular, the sedimentation in a sedimentation tank is more appropriately performed to improve the quality of treated water and to perform high-speed treatment. The present invention relates to a coagulating precipitation apparatus.
[0002]
[Prior art]
An apparatus for separating and removing a substance suspended in raw water (hereinafter sometimes referred to as SS [Suspended Solid]) by coagulation precipitation is known. As a conventional coagulating sedimentation apparatus for removing SS in raw water, an apparatus that simply adds a coagulant to raw water to precipitate the aggregate, pulls the aggregate as sludge, and derives treated water from the top is well known.
[0003]
For example, as shown in FIG. 6, for example, a flocculant is line-injected into the raw water, the raw water is caused to flow from the raw water inlet 101 into the agglomeration cylinder 102, and the treated water that has flowed into the sedimentation tank 103 from the lower opening of the agglomeration cylinder 102. A coagulating sedimentation apparatus is known in which the floc 104 containing the aggregated SS is allowed to flow downward and precipitate the treated water 105 from the upper treated water outlet 106.
[0004]
In such a general agglomeration precipitation apparatus, it takes a long time to precipitate the agglomerate, and a very large sedimentation tank is required. Therefore, in order to perform the agglomeration precipitation more efficiently, agglomeration is performed. There has been proposed an agglomeration-precipitation apparatus that uses a granular material (typically sand) together with an aggregating agent.
[0005]
For example, in French Patent No. 1411792, in a flocculation tank, a granular material (sand) having a particle size of about 10 to 200 μm is added to a raw water together with a flocculant, and SS in the raw water contains a comparatively large granular material. A coagulation-precipitation apparatus is disclosed in which flocs are aggregated as large flocs and flocs in the water to be treated introduced from the coagulation tank in the precipitation tank are separated from the treated water. The sediment floc extracted from the sedimentation tank is separated into sludge and particulates by a separator such as a cyclone, and the separated particulates are returned to the agglomeration tank for circulation.
[0006]
However, in reality, it is difficult to grow flocs to the optimum size and specific gravity in the next precipitation step by stirring in the coagulation tank, and it is possible to achieve a state that only allows rapid and separation efficient precipitation. It was difficult. Accordingly, in actual operation, the linear velocity of the water treatment in the precipitation tank can only be achieved at about 6 to 8 m / h, and the actual situation is that it is difficult to achieve a higher linear velocity.
[0007]
In response to such a situation, Japanese Patent No. 2634230 discloses a coagulation-precipitation apparatus that enables a treatment at a high linear velocity by providing an intermediate tank equipped with a stirrer between the coagulation tank and the precipitation tank. Is disclosed.
[0008]
In this coagulating sedimentation apparatus, for example, sand as particulates is added to raw water together with an inorganic coagulant and a polymer coagulant, and SS in the raw water is coagulated while stirring with a stirrer in the coagulation tank, and the treated water is intermediate. While being introduced into the tank and further stirred with a stirrer, the growth of floc is further promoted. Since the treated water containing the grown sand-containing floc is introduced into the settling tank, the floc settles more efficiently and quickly and can be separated from the treated water in a shorter time. The floc precipitated at the bottom of the settling tank is extracted as sludge, separated into sludge and sand by a separator made of a cyclone or the like, and the separated sand is returned to the coagulation tank for circulation. According to Japanese Patent No. 2634230, it is described that this coagulation-precipitation apparatus enables processing at a high flow rate of 30 to 60 m / h, further 90 m / h.
[0009]
However, in the apparatus proposed in the above-mentioned Japanese Patent No. 2634230, it is necessary to provide an intermediate tank with stirring between the agglomeration tank and the sedimentation tank, so that the equipment cost, power consumption, and installation area are increased accordingly. To be invited.
[0010]
Therefore, although the application is still unpublished, the applicant previously arranged a sedimentation tank adjacent to the coagulation tank without providing an intermediate tank as described above, and formed a floc in the coagulation tank. Has been proposed, a coagulating sedimentation apparatus has been proposed that can be processed at a high flow rate of 30 to 100 m / h, and that the apparatus as a whole can be made small and inexpensive (Japanese Patent Application No. 11- No. 130976, Japanese Patent Application No. 11-130977, Japanese Patent Application No. 11-130978).
[0011]
[Problems to be solved by the invention]
However, the following problems still remain in the coagulation precipitation apparatus previously proposed by the applicant.
[0012]
That is, by optimizing the aggregation of flocs containing particulate matter in the agglomeration tank, it is possible to form an agglomeration floc suitable for the next precipitation step. Therefore, compared to the conventional general aggregation precipitation apparatus as shown in FIG. Although much faster sedimentation processing has become possible, in response to this high-speed treatment, the inflow rate of raw water containing coagulated floc that flows into the sedimentation tank may be increased. For example, as shown in FIG. There is a possibility that the inflow speed may be 30 times or more faster than the conventional general coagulating precipitation apparatus. At such a high inflow rate, for example, as shown in FIG. 7, a short path to the treated water outflow side in the settling tank 111 is caused by the flow of the raw water 113 that flows into the settling tank 111 via the inlet channel 112. May occur. When a short pass occurs, it becomes difficult to use the inside of the sedimentation tank 111 effectively, and accordingly, the separation efficiency between the treated water and the aggregated flocs is lowered, the treatment speed can be kept low, and the quality of the treated water may be deteriorated. Occurs.
[0013]
Further, at a high inflow rate, the relationship between the flow of the raw water 113 that flows in through the inlet flow channel 112 and the flow in the sedimentation tank 111 along the wall surface that forms the inlet flow channel 112, The vortex 114 is likely to occur in a portion immediately after the opening. When the vortex is generated, the flocs caught in the vortex cannot escape from the vortex and are mixed into the treated water, which causes the quality of the treated water to deteriorate. As the inflow speed becomes higher, vortices are more likely to be generated. From this aspect as well, the improvement in separation efficiency is hindered and the processing speed is kept low.
[0014]
Therefore, the object of the present invention is to increase the separation efficiency between floc and treated water in the sedimentation tank and improve the processing efficiency, particularly in the aggregation precipitation apparatus that can efficiently form agglomeration floc using a granular material together with a flocculant in the aggregation tank. An object of the present invention is to provide a coagulating sedimentation apparatus capable of obtaining an excellent quality of treated water even at a high speed.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the coagulation sedimentation apparatus of the present invention comprises a coagulation tank for coagulating suspended substances in raw water as flocs by adding a flocculant and particulates, and precipitating flocs in the raw water from the coagulation tank. In a coagulating sedimentation apparatus having a sedimentation tank that separates treated water and floc, a sedimentation promoting means is provided in the sedimentation tank and extends vertically with respect to the opening of the inlet channel of the raw water to the sedimentation tank. The facilitating means is disposed in the vicinity of the wall forming the raw water inlet channel to the settling tank, and the raw water inlet channel to the settling tank is configured so that the raw water flowing into the settling tank becomes a substantially downward flow. The agglomeration flocs captured by the vortex generated on the downstream side of the precipitation promoting means are guided downward along the precipitation promoting means and guided to a still water area that does not ride on the water flow to the treated water side. So that the lower end of the precipitation promoting means is the precipitation tank Is positioned 0.4~1m lower than the opening of the inlet channel of the raw water, and the processing speed in the settling tank consists of one, which is a 30 to 100 m / h.
[0017]
Moreover, although the said precipitation acceleration | stimulation means is preferably formed in the cylinder shape or a cross-sectional U shape, it is also possible to comprise in a simple flat plate shape. Such precipitation promoting means has its upper end positioned higher than the opening of the inlet channel and its lower end positioned lower than the opening of the inlet channel. It is positioned 0.4 to 1 m below the opening of the inlet channel of the raw water . Further, only one precipitation promoting means may be provided, or a plurality of precipitation promoting means may be provided in parallel depending on the size of the precipitation promoting means and the opening of the inlet channel.
[0018]
As a granular material used for agglomeration in the agglomeration tank, sand can be typically used, and those having a uniform particle diameter are particularly preferable. As the flocculant, an inorganic flocculant and a polymer flocculant can be usually used. The inorganic flocculant can efficiently agglomerate suspended substances in the raw water, and the polymer flocculant further grows the fine flocculent flocs generated by the inorganic flocculant into larger flocs by entanglement with the polymer. In the grown floc, granular materials made of sand or the like having a large specific gravity are mixed, and flocs having a large specific gravity (density) and easy to precipitate are formed as a whole. The raw water containing flocs grown to such a shape that tends to precipitate is introduced into the precipitation tank, and the precipitation promoting means according to the present invention is used to satisfactorily separate into flocs to be precipitated and treated water.
[0019]
In the coagulating sedimentation apparatus according to the present invention as described above, the raw water that has flowed into the sedimentation tank via the inlet channel collides with the precipitation promoting means that extends vertically with respect to the opening of the inlet channel, and the sedimentation tank The flow velocity of the water flow inside is reduced. Further, a vortex in the horizontal direction is generated on the downstream side of the precipitation promoting means, which attenuates the kinetic energy of the water flow. As a result, the flow velocity of the flow to be short-passed upward is greatly reduced, and as a result, the short-pass flow is satisfactorily suppressed. Accordingly, the aggregated floc in the raw water is well separated from the treated water and settled downward, and the quality of the treated water separated from the aggregated floc is improved.
[0020]
Further, since the precipitation promoting means extends in the vertical direction, it functions also as a guiding means in the downward precipitation direction with respect to the flocs that settle. Agglomerated flocs caught in the vortex generated on the downstream side of the precipitation promoting means are guided downward along the precipitation promoting means and settle quickly. The lower end of the precipitation promoting means is positioned at an appropriate distance below the opening of the inlet channel, and the precipitation promoting means is formed long enough to face downward, so that it is guided along the precipitation promoting means. It is possible to guide the flock to the lower static water area. The floc led to the still water area no longer rides the water flow to the treated water side, so that it is more reliably settled to the bottom of the settling tank. Therefore, the separation efficiency between floc and treated water is further enhanced, and the quality of treated water is further improved.
[0021]
In this way, the short path flow is suppressed well, and the floc and the treated water are well separated, so that a good treated water quality can be obtained even at a high treatment speed, which is 30 to 100 m / h. High speed treatment and improved quality of treated water are achieved at the same time.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a coagulating sedimentation apparatus 1 according to an embodiment of the present invention. The coagulation precipitation apparatus 1 includes a coagulation tank 2 and a precipitation tank 3 disposed adjacent thereto. Raw water 5 is supplied to the coagulation tank 2 through the raw water supply line 4, and in this embodiment, the inorganic flocculant 6 and the polymer flocculant 7 are injected into the line. A mixer 8 made of a static mixer or the like is interposed downstream of the injection position of the inorganic flocculant 6 so that the injected flocculant is well mixed with the raw water. However, these aggregating agents can be directly fed into the agglomeration tank 2.
[0023]
As the inorganic flocculant 6, for example, polyaluminum chloride (PAC), ferric chloride, and ferric sulfate can be used. As the polymer flocculant 7, for example, nonionic, anionic or amphoteric polymer flocculants are used. Can be used. Examples of the anionic polymer flocculant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, and a copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonate. , A terpolymer of acrylic acid or a salt thereof, acrylamide and 2-acrylamido-2-methylpropanesulfonate, a partial hydrolyzate of polyacrylamide, and the like, but is not particularly limited thereto. A typical example of the nonionic polymer flocculant includes polyacrylamide, but is not particularly limited thereto. Examples of amphoteric polymer flocculants include at least one cationic monomer such as dimethylaminoethyl (meth) acrylate tertiary salt and quaternary salt (such as methyl chloride salt), acrylic acid and salts thereof. (Salts such as sodium and calcium), copolymers of at least one anionic monomer such as 2-acrylamido-2-methylpropanesulfonate (salts such as sodium and calcium), or at least one of the above Examples of the cationic monomer and terpolymer or quaternary copolymer of at least one anionic monomer and at least one nonionic monomer such as acrylamide, In particular, it is not limited to these. The molecular weight range of the polymer flocculant is not particularly limited, but a range of 5 million to 20 million is preferable. These polymer flocculants can be used alone or as a mixture. The addition amount of the polymer flocculant is generally about 0.3 to 2 mg / l from an economical viewpoint.
[0024]
In the agglomeration tank 2, sand 9 as a granular material is added. The agglomeration tank 2 is provided with a stirrer 11 driven by a motor 10, and suspended matter in the raw water is a floc containing inorganic flocculant 6, polymer flocculant 7, and sand 9 by stirring by the stirrer 11. Aggregated.
[0025]
In this agglomeration, the inorganic flocculant 6 aggregates suspended substances to produce fine flocs, and the polymer flocculant 7 is entangled with them to grow into larger flocs. The grown flocs have high specific gravity. As a whole, it grows into a floc that is relatively large and has a large specific gravity and is likely to settle.
[0026]
The raw water containing the flocculated floc 13 that has grown is introduced into the sedimentation tank 3 via the overflow basin 12. In the settling tank 3, flocs in the introduced water are precipitated downward, and the precipitated flocs are separated from the upper treated water 14. A plurality of inclined plates 15 are juxtaposed in the upper part of the settling tank 3 to prevent the floc from flowing out together with the treated water 14.
[0027]
A drawing line 16 for pulling out the precipitated floc is connected to the bottom of the settling tank 3, and the slurry containing the condensed floc precipitated is drawn out by the sludge drawing pump 17. The extracted slurry is sent to a cyclone 18 as a separator, and separated into sludge 19 and sand 9 by centrifugal separation in the cyclone 18. The separated sand 9 is returned to the agglomeration tank 2 and recycled.
[0028]
In the coagulating sedimentation apparatus 1 basically configured as described above, an inlet flow path 21 of raw water for guiding raw water from the coagulating tank 2 to the precipitating tank 3 is provided between the coagulating tank 2 and the precipitating tank 3. It has been. This inlet flow path 21 is formed in a flow path that opens substantially downward toward the inside of the sedimentation tank 3 so that the raw water flowing into the sedimentation tank 3 becomes a substantially downward flow. It is configured. However, this opening direction may be set so that the flow of raw water flowing into the sedimentation tank 3 has a horizontal flow component together with the downward flow. In this embodiment, the inlet channel 21 is formed in a shape that expands in a tapered shape toward the opening 22.
[0029]
In the settling tank 3, settling promoting means 23 is provided extending up and down with respect to the opening 22 of the inlet channel 21. In this embodiment, as shown in FIG. 2, the precipitation promoting means 23 is formed in a cylindrical means (settlement cylinder), and a plurality (two in this embodiment) are arranged in parallel. These precipitation accelerating means 23 are arranged in the vicinity of the wall 24 that forms the inlet channel 21 in the precipitation tank 3. The upper end position of the precipitation promoting means 23 is not particularly limited as long as it is located above the opening 22 of the inlet channel 21. The lower end position of the precipitation promoting means 23 is located 0.4 m or more, particularly 0.4 to 1 m below the opening 22 of the inlet channel 21 . By extending the precipitation promoting means 23 to such a lower end position, it is possible to guide the aggregated flocs along the precipitation promoting means 23 to the hydrostatic region generated below.
[0030]
As the shape of the precipitation promoting means, in addition to the cylindrical shape shown in FIG. 2, for example, it may be formed in the precipitation promoting means 31 having a U-shaped cross section as shown in FIG. You may comprise from a simple flat member.
[0031]
Further, the arrangement of the precipitation promoting means may be appropriately changed according to the shape of the inlet channel. For example, as shown in FIG. 4, when the inlet channel 42 is disposed in the center of the precipitation tank 41, the precipitation promoting means 44 is appropriately disposed around the cylindrical wall 43 forming the inlet channel 42. Several can be arranged.
[0032]
The operation of the coagulation / sedimentation apparatus 1 configured as described above will be described with respect to the apparatus shown in FIGS. 1 and 2. In the coagulation tank 2, the coagulation tank 2 includes an inorganic coagulant 6, a polymer coagulant 7, and sand 9. The agglomerated floc 13 is agglomerated and grown to a size suitable for the next sedimentation process, and the relatively large flocs containing sand 9 and having a large specific gravity are rapidly settled in the sedimentation tank 3 to form treated water 14. It is separated and processing at a high linear velocity is possible.
[0033]
The raw water containing the coagulation floc 13 from the coagulation tank 2 flows into the sedimentation tank 3 through the inlet channel 21, and the inflowing raw water moves upward in the precipitation tank 3 as shown in FIGS. 1 and 2. The water flow 25 to be separated as treated water and the precipitated floc stream 26 separated from the treated water and sinking downward are separated, and the separated flocs are separated in the sedimentation tank 3. Precipitate towards the bottom. At this time, the raw water that has flowed into the sedimentation tank 3 from the inlet channel 21 first collides with the sedimentation promoting means 23 and its flow velocity is reduced. Further, as shown in FIG. 5, a substantially horizontal vortex 27 is generated on the downstream side of the precipitation promoting means 23. This vortex 27 also attenuates the kinetic energy of the raw water that has flowed in. The flow rate is reduced. As a result, the occurrence of a short path flow to the treated water outflow side is suppressed, the amount of floc mixed in the treated water is reduced, and the separation efficiency is improved.
[0034]
Further, since the flow of the introduced raw water including flocs occurs through or along the cylindrical precipitation promoting means 23, or along with the precipitation promoting means 31 having a U-shaped cross section, the precipitation is caused. The frock that should be done will be guided along the flow. Since the precipitation promoting means 23 extends in the downward precipitation direction, the floc to be precipitated is appropriately guided in the precipitation direction, and this also improves the separation efficiency of the floc from the treated water. In particular, since the sedimentation promoting means 23 extends to the lower static water area , it is possible to guide the sedimentation floc to the still water area , and the floc guided to the still water area is almost free from rising water flow again. Therefore, the separation efficiency is further improved.
[0035]
As a result of improving the separation efficiency between floc and treated water in this way, the quality of treated water is greatly improved, and as a result of improving the treated water quality, the treatment speed in the sedimentation tank 3 is improved. That is, excellent treated water quality can be obtained while achieving a high treatment speed of 30 to 100 m / h.
[0036]
In order to confirm the effect of the coagulation precipitation apparatus according to the present invention, the following experiment was conducted.
[0037]
[Experiment]
PAC as an inorganic flocculant is injected into artificial turbid water with kaolin added to raw water as a suspended substance, line mixing is performed, polymer as a polymer flocculant is injected, and sand as particulates is added to the flocculant tank. The experiment was performed under the following conditions, and the turbidity of the treated water was measured. The experiment was performed according to the flow shown in FIG. 1, and the sedimentation cylinder shown in FIG. The settling cylinders are 400 mm long (Example 1) and 600 mm long (Example 2), and are installed so that the upper end of the settling cylinder comes 100 mm above the lower end of the raw water inlet channel wall. did.
[0038]
Figure 0003901391
[0039]
The results are shown in Table 1. From the comparison of the results between Comparative Example 1 and Examples 1 and 2, the water quality was improved when the settling cylinder was installed in the settling tank as compared with the case where it was not. Moreover, as a result of observation from the observation window provided in the lower part of the settling tank, the lower end of the settling cylinder used in Example 2 is in the hydrostatic region at the lower part of the settling tank, and the short settling cylinder used in Example 1 is up to the hydrostatic area. It is in the streamline that does not extend from the raw water inlet (inlet channel opening) and the settling cylinder extends to the still water area, which is more effective than the case where it does not extend to the treated water quality. It turned out that it can improve more.
[0040]
[Table 1]
Figure 0003901391
[0041]
【The invention's effect】
As described above, according to the coagulating sedimentation apparatus of the present invention, when the raw water containing the particulate-containing floc is introduced into the sedimentation tank, the precipitation promoting means extending across the top and bottom of the inlet channel opening in the sedimentation tank. By providing it in an appropriate form, it is possible to suppress the short path of the water flow in the sedimentation tank and to appropriately reduce the flow rate, thereby greatly increasing the separation efficiency between the flocs and the treated water, and high processing. Even in speed, excellent quality of treated water can be achieved.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a coagulation precipitation apparatus according to an embodiment of the present invention.
2 is a perspective view showing a flow state in a settling tank of the apparatus of FIG. 1; FIG.
FIG. 3 is a perspective view showing a flow state in a sedimentation tank of a coagulation sedimentation apparatus according to another embodiment of the present invention.
FIG. 4 is a perspective view showing a flow state in a sedimentation tank of a coagulation sedimentation apparatus according to still another embodiment of the present invention.
FIG. 5 is a schematic perspective view showing the flow around the precipitation promoting means of the apparatus shown in FIG. 1;
FIG. 6 is an overall configuration diagram of a conventional general coagulation precipitation apparatus.
FIG. 7 is a schematic longitudinal sectional view showing problems in the precipitation tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coagulation sedimentation apparatus 2 Coagulation tanks 3, 41 Precipitation tank 4 Raw water supply line 5 Raw water 6 Inorganic flocculant 7 Polymer flocculant 8 Mixer 9 Sand as granular material 10 Motor 11 Stirrer 12 Overflow piling 13 Grown floc 14 Treatment Water 15 Inclined plate 16 Drawing line 17 Sludge extraction pump 18 Cyclone 19 as a separator Sludge 21, 42 Inlet channel 22 Opening 23, 31, 44 Precipitation promoting means 24 Wall forming inlet channel 25 Water flow 26 Flock Flow 27 Vortex 43 Cylindrical wall forming inlet channel

Claims (8)

原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの原水中のフロックを沈澱させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置において、沈澱槽内に、沈澱槽への原水の入口流路の開口部に対し上下にわたって延びる沈澱促進手段設けられ、該沈澱促進手段が、沈澱槽への原水の入口流路を形成する壁の近傍に配置され、沈澱槽への原水の入口流路が、沈澱槽へ流入される原水が実質的に下降流となるように構成され、沈澱促進手段の後流側に生じた渦に捉えられた凝集フロックが沈澱促進手段に沿って下方に向けて案内され、処理水側への水流には乗らない静水域まで導かれるように、沈澱促進手段の下端が、沈澱槽への原水の入口流路の開口部よりも0.4〜1m下方に位置され、かつ、沈澱槽における処理速度が30〜100m/hであることを特徴とする凝集沈澱装置。Coagulation sedimentation equipped with a coagulation tank that aggregates suspended substances in raw water as flocs by adding a flocculant and particulates, and a precipitation tank that precipitates flocs from the coagulation tank and separates them into treated water and flocs In the apparatus, a precipitation promoting means is provided in the precipitation tank so as to extend up and down with respect to the opening of the inlet flow path of the raw water to the precipitation tank , and the precipitation promoting means forms an inlet flow path of the raw water to the precipitation tank. The inlet flow path of the raw water to the settling tank is arranged in the vicinity of the wall so that the raw water flowing into the settling tank becomes a substantially downward flow, and the vortex generated on the downstream side of the precipitation promoting means The lower end of the sedimentation promoting means is guided to a still water area that does not ride on the water flow to the treated water side, and the lower end of the sedimentation promoting means is connected to the raw water to the sedimentation tank. 0.4-1m below the opening of the inlet channel Is location, and, coagulating sedimentation apparatus processing speed in the settling tank is characterized in that it is a 30 to 100 m / h. 沈澱促進手段が筒状に形成されている、請求項1の凝集沈澱装置。The coagulation precipitation apparatus according to claim 1, wherein the precipitation promoting means is formed in a cylindrical shape . 沈澱促進手段が横断面コ字状に形成されている、請求項1の凝集沈澱装置。The coagulation precipitation apparatus according to claim 1 , wherein the precipitation promoting means is formed in a U-shaped cross section . 沈澱促進手段が平板からなる、請求項1の凝集沈澱装置。2. The coagulating precipitation apparatus according to claim 1, wherein the precipitation promoting means comprises a flat plate . 沈澱促進手段が複数並設されている、請求項1ないしのいずれかに記載の凝集沈澱装置。The coagulation precipitation apparatus according to any one of claims 1 to 4, wherein a plurality of precipitation promoting means are arranged in parallel . 粒状物が砂である、請求項1ないしのいずれかに記載の凝集沈澱装置。The coagulation precipitation apparatus according to any one of claims 1 to 5 , wherein the granular material is sand . 凝集剤が無機凝集剤と高分子凝集剤を含む、請求項1ないし6のいずれかに記載の凝集沈澱装置。The coagulation precipitation apparatus according to claim 1 , wherein the coagulant includes an inorganic coagulant and a polymer coagulant . 沈澱槽に、沈澱されたフロックを引き抜くラインが接続され、該引抜ラインに、引き抜かれたフロックを汚泥と凝集槽に循環される粒状物とに分離する手段が設けられている、請求項1ないし7のいずれかに記載の凝集沈澱装置。 A line for pulling out the precipitated floc is connected to the settling tank, and means for separating the drawn floc into sludge and particulate matter circulated in the coagulation tank is provided in the drawing line. 8. The coagulation precipitation apparatus according to any one of 7 above.
JP13249099A 1999-05-13 1999-05-13 Coagulation sedimentation equipment Expired - Fee Related JP3901391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13249099A JP3901391B2 (en) 1999-05-13 1999-05-13 Coagulation sedimentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13249099A JP3901391B2 (en) 1999-05-13 1999-05-13 Coagulation sedimentation equipment

Publications (2)

Publication Number Publication Date
JP2000317217A JP2000317217A (en) 2000-11-21
JP3901391B2 true JP3901391B2 (en) 2007-04-04

Family

ID=15082603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13249099A Expired - Fee Related JP3901391B2 (en) 1999-05-13 1999-05-13 Coagulation sedimentation equipment

Country Status (1)

Country Link
JP (1) JP3901391B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120909A (en) * 1999-10-21 2001-05-08 Japan Organo Co Ltd Flocculating and settling device
JP3313692B2 (en) * 2000-02-28 2002-08-12 株式会社アクティオ Turbid water treatment equipment
JP2002085907A (en) * 2000-09-14 2002-03-26 Japan Organo Co Ltd Flocculating and settling apparatus
JP4720242B2 (en) * 2005-03-25 2011-07-13 栗田工業株式会社 Sedimentation tank
KR101692162B1 (en) 2015-08-10 2017-01-02 두산중공업 주식회사 High-rate sedimentation tank and water treatment apparatus comprising the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711683B2 (en) * 1974-03-20 1982-03-05
JPS5316047Y2 (en) * 1974-04-25 1978-04-27
JPS52167450U (en) * 1976-06-10 1977-12-19
FR2627704B1 (en) * 1988-02-25 1991-12-13 Ile France Syndicat Eaux METHOD AND PLANT FOR TREATMENT OF WATER BY DECANTATION USING FINE SAND
FR2719234B1 (en) * 1994-05-02 1999-08-13 Omnium Traitement Valorisa Method and installation for treating a raw flow by simple decantation after ballasting with fine sand.
JPH08112505A (en) * 1994-10-14 1996-05-07 Japan Organo Co Ltd Inclined settling device
JP3814853B2 (en) * 1995-11-21 2006-08-30 栗田工業株式会社 Coagulation sedimentation equipment

Also Published As

Publication number Publication date
JP2000317217A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP3641008B2 (en) Method and apparatus for treating an untreated liquid stream
US6010631A (en) Method and installation for treating an untreated flow by simple sedimentation after ballasting with fine sand
JP4061196B2 (en) Method and plant for concentrating sludge obtained from water treatment by flocculation-decantation using stabilized floc
JP4223870B2 (en) Water purification method
US6197190B1 (en) Tapered flocculation water treatment
JP4073116B2 (en) Coagulation sedimentation equipment
JP4707752B2 (en) Water treatment method and water treatment system
JP3866439B2 (en) Coagulation sedimentation equipment
JP3814853B2 (en) Coagulation sedimentation equipment
JP3901391B2 (en) Coagulation sedimentation equipment
JP4416144B2 (en) Coagulation precipitation method and apparatus
JP3901390B2 (en) Coagulation sedimentation equipment
EP1197474A1 (en) Tapered flocculation water treatment
JP3744699B2 (en) Coagulation precipitation method and apparatus
JP3676657B2 (en) Swirl type agglomeration separator
JP6949770B2 (en) Coagulation sedimentation device and coagulation sedimentation method
JP4535419B2 (en) Coagulation sedimentation equipment
JP2019198806A (en) Water treatment method, and water treatment device
JP4446418B2 (en) Coagulation precipitation system
JP4353584B2 (en) Sand-added coagulating sedimentation equipment
JP3901392B2 (en) Coagulation sedimentation equipment
JP2000117005A5 (en)
JP3870354B2 (en) Coagulation sedimentation equipment
JP2002355507A (en) Flocculating and settling equipment and its controlling method
JP2001120909A (en) Flocculating and settling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Ref document number: 3901391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees