JP3900961B2 - Copper foil for resin bonding and method for producing the same - Google Patents

Copper foil for resin bonding and method for producing the same Download PDF

Info

Publication number
JP3900961B2
JP3900961B2 JP2002040112A JP2002040112A JP3900961B2 JP 3900961 B2 JP3900961 B2 JP 3900961B2 JP 2002040112 A JP2002040112 A JP 2002040112A JP 2002040112 A JP2002040112 A JP 2002040112A JP 3900961 B2 JP3900961 B2 JP 3900961B2
Authority
JP
Japan
Prior art keywords
plating film
copper foil
film
copper
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002040112A
Other languages
Japanese (ja)
Other versions
JP2003239082A (en
Inventor
敏範 尾崎
保之 伊藤
元 佐々木
雅宏 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002040112A priority Critical patent/JP3900961B2/en
Publication of JP2003239082A publication Critical patent/JP2003239082A/en
Application granted granted Critical
Publication of JP3900961B2 publication Critical patent/JP3900961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/026Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one amorphous metallic material layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品用のフレキシブルプリント基板やTABテープ、あるいは一般産業用部品や航空宇宙機器部品等におけるマイクロヒーター、微少放熱部品、アース板、電磁遮断板等に用いられる樹脂接着用銅箔およびその製造方法に関し、特に、銅箔素材の表面に凹凸や付着物があっても均質な粗化銅めっき膜を形成することが可能な樹脂接着用銅箔およびその製造方法に関する。
【0002】
【従来の技術】
一般に、樹脂接着用銅箔は、樹脂材との密着性を向上させる目的で、銅めっき膜の最外層に対し、表面微細形態が凹凸に富む粗化銅めっき膜を付与したものであり、以下の性質が要求されている。
【0003】
a)樹脂接着作業において皺やボイドなどが生じ難いようにするため、マクロな表面形状が平坦であること。
b)アンカー効果による樹脂接着強度を増大させるため、粗化めっき膜最外層の平均粗さが大きいこと。
c)アンカー効果による樹脂接着強度を増大させると共に、樹脂接着強度の平面分布を均質にするため、粗化めっき膜最外層の平均粒子径とその粗さが均質であること。
d)めっき膜内での層間剥離が生じ難いようにするため、粗化めっき膜自身の剥離強度が大きいこと。
【0004】
上記の各種部品用の従来の樹脂接着用銅箔としては、例えば、文献(表面技術協会編;表面技術便覧、P461〜462、平成10年)に示されているように、電解銅箔と、粗化めっき銅箔(圧延銅箔を素材としその表面に粗化銅めっき膜を付与した銅箔)の2種類が知られている。
【0005】
【発明が解決しようとする課題】
しかし、従来の樹脂接着用銅箔によると、電解銅箔あるいは粗化めっき銅箔の製造は、いずれも膜組成が微量不純物を除けば、純銅を基本としためっき膜を成長させて製作されるため、めっき膜質が上記a)〜d)のいずれかに傾き、互いに矛盾する上記a)〜d)の各性質を満足することが極めて困難となる。すなわち、めっき膜の形成において、a)めっき膜の表面形態が平坦、c)平均粒子径が均質、かつ、d)めっき膜自身の剥離強度が大きいことを優先すると、b)めっき膜最外層の平均粗さを大きくすることが困難となり易い。反面、b)の性質を優先すると、a)、b)およびd)の性質が不足がちとなる。
【0006】
は、従来法による問題点を説明するための図である。従来法に示すように、単に銅箔1表面に粗化銅めっき膜2を付与すると、そのめっき膜2の形態は、下地金属あるいは粗化銅めっき膜成長の中間段階における金属表面状態(表面凹部1a、凸部1b、金属結晶方位1c、付着酸化物4,油,汚染物質などの付着など)の不均質条件に強く依存した粗雑で不均質な異常突起2aのあるめっき膜2が形成され、上述の目的にマッチしためっき膜が形成され難い。
【0007】
従って、本発明の目的は、銅箔素材の表面に凹凸や付着物があっても均質な粗化銅めっき膜を形成することが可能な樹脂接着用銅箔およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するため、銅箔素材の表面に粗化銅めっき膜を成長させた樹脂接着用銅箔において、前記銅箔素材の前記表面、あるいは前記粗化銅めっき膜中に介在された非晶質金属めっき膜からなる中間金属膜を備えたことを特徴とする樹脂接着用銅箔を提供する。
銅箔素材(電解銅箔あるいは圧延銅箔)の表面、あるいは粗化めっき膜中に非晶質金属めっき膜からなる中間金属膜を介在させることにより、粗化銅めっき膜の核生成とその後の膜成長に対し、銅箔素材の表面の凹凸や付着酸化物等の影響をほぼ完全に遮断して均質な粗化銅めっき膜が形成される。
【0009】
本発明は、上記目的を達成するため、銅箔素材の表面に粗化銅めっき膜を成長させる樹脂接着用銅箔の製造方法において、前記銅箔素材の前記表面上に、前記銅箔素材の段階あるいは前記粗化銅めっき膜の成長段階の途中非晶質金属めっき膜からなる中間金属膜を形成することを特徴とする樹脂接着用銅箔の製造方法を提供する。
【0010】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る樹脂接着用銅箔を示す。この樹脂接着用銅箔は、電解銅箔あるいは圧延銅箔の銅箔素材1の表面に、平均厚さ0.01〜1μmの非晶質金属めっき膜3Aを少なくとも1回以上付与した後、その上方に1〜20μm厚さの粗化銅めっき膜2を形成することにより製造される。
【0011】
このように銅箔素材1の表面に非晶質金属めっき膜3Aを中間金属膜として付与することにより、銅箔素材1の表面の凹部1a、凸部1b、金属結晶方位1cや付着物の影響をほぼ完全に遮断することができ、非晶質金属表面より発生する固有のめっき膜の核生成とその後の成長段階を安定化させ、凸部(粒)2bのサイズやその高さが揃った均質なめっき膜2が安定して得られる。
【0012】
【実施例】
以下、本発明の第1の実施の形態に対応する実施例1〜3について説明する。
【0013】
<実施例1>
【表1】

Figure 0003900961
表1の試料No.1-1〜1-6は、表1中に記載した圧延銅箔素材を用い、その表面に非晶質金属めっき膜3AとしてNi-P膜を付与したものである。Ni-P膜の平均厚さは0〜1.0μmとし、市販の電解めっき液あるいは無電解めっきを用いてNi-P膜を付与した。めっき条件は文献(増本健、渡辺徹:アモルファスめっき法とその応用、日刊工業新聞社p.255(1990))に沿った。その後、市販の硫酸銅めっき浴を用い、焼けめっき発生電流密度直下の50A/dm2で粗化銅めっき膜2を平均厚さ3μm付与した。
【0014】
これらの試料における粗化銅めっき膜2における最外層の平均粒子径および平均粗さ、およびポリイミドテープとの密着力は、表1に示す値が得られた。その結果、Niめっき膜の平均厚さが0μmの場合(試料No.1-0)は、粗化銅めっき膜2における最外層の平均粒子径および平均粗さが他の試料に比べ大きく、樹脂との密着強度も×レベルである。すなわち、圧延銅箔素材に実質的に直接粗化銅めっき膜2を施すと、そのめっき膜2の形態は、その素材1の表面における凹凸1a,1b、金属結晶方位1c、残留酸化物、付着油など様々な影響因子の影響を直接強く受け、粗化銅めっき膜2の平面形態・分布が不均質で、粒子径が過度に大きく、平均粗さも過度に粗いいわゆる焼けめっき膜が形成されてしまう。一方、Niめっき膜を膜厚0.01〜1μm付与した場合は、粗化銅めっき膜2における最外層が均質で平均粒子径および平均粗さが上述試料に比べ適度に小さく、樹脂との密着強度も△あるいは○レベルと改善されている。このように見ると、中間金属膜としての非晶質金属めっき膜3Aは、膜厚0.01μm以上が好適である。ただし、膜厚が1μm以上では、粗化銅めっき膜2の膜質の改善効果が飽和することから、実質的意味が小さい。
【0015】
次に、中間金属膜を付与した後における粗化銅めっき膜2の膜質の膜厚依存性は、本発明の基本思想から容易に推測されるように、重大な障害とはならない。しかし、粗化銅めっき膜2の膜厚が1μm以下の場合には、非晶質金属めっき膜3Aの性質を強く反映し、結晶方位性に乏しい銅めっき膜となり、粗化銅めっき膜2固有の凹凸を持たない膜質になりやすい。一方、20μm以上になると、粗化めっき膜2が成長するに伴い非晶質金属めっき膜3Aを付与したことで得られた固有の性質が希薄となる。よって、粗化銅めっき膜2の付与厚さは1〜20μmが好適である。なお、膜厚の増大によって、生じる上記弊害を防止する目的で、非晶質金属めっき膜3Aと粗化銅めっき膜2を複数回重ねてめっきすることも有効である。
【0016】
<実施例2>
表1の試料No.2-1〜2-5は、非晶質金属めっき膜3Aの種類の影響について検討したものであり、実施例1と同様に作業し、非晶質金属めっき膜3Aの種類を変化させ、膜厚は0.2μmで一定とした。それ以外の操作は実施例1とほぼ同様である。
【0017】
その結果、表1に示すように、非晶質金属めっき膜3Aとして、Fe-Mo、Ni-Mo、Co-W(金属−金属系非晶質めっき膜)、およびNi-S,Ni-B(メタロイド系非晶質めっき膜)共に、粗化銅めっき膜2の最外層における粒径が1〜1.5μm、最外層の平均粗さが0.3μmとなり、試料No.1-1に比べ適度に小さなめっき膜粒子および平均粗さとなっている。また、樹脂との密着性が○レベルを示している。この種の金属としては、実施例では省略したが、Al-Mn,Bi-S,Cd-Te,Cr-C,pd-Pが経験された。以上より、非晶質めっき膜の種類は、金属−金属系非晶質めっき膜あるいはメタロイド系非晶質めっき膜が好ましい。
【0018】
<実施例3>
次に、上記試料No.1-5および2-2、2-4を用いて、フレキシブルプリント基板を製作した。樹脂と銅箔の密着強度、パターン製作精度(耐エッチング性)、耐折り曲げ性などが従来の規格を満足した。一方、試料No.1-0を用いた場合には、樹脂と銅箔の密着強度、エッチングによりパターン製作精度、耐折り曲げ性などが、いずれも従来の規格を満足しなかった。
【0019】
次に、粗化銅めっき膜2の最外層における好適なめっき膜形態は、見掛けの平均粒子径Dpが0.2μm以下、平均粗さRaが0.1以下の場合には、樹脂材料が粗化銅めっき膜2の凹部底まで侵入し難いのみでなく、いわゆるアンカー効果に基づく樹脂密着性改善効果が発揮されにくい。―方、平均粒子径Dpが2μm以上で且つ、平均粗さRaが1μm以上では、粗化銅めっき膜2がいわゆる焼けめっきと呼ばれる著しい多孔質膜となることで僅かな衝撃により粒子が剥離しやすくなると共に、異常に高い蛸壷形の突起が部分的に発生しやすく、樹脂の均質な接着に重大な障壁になる、など本目的が達成されにくい。好ましくは、膜厚が1〜20μmの場合、平均粒子径Dpが0.5μm以下で且つ、平均粗さRaが0.5μm以下であることが好ましい。従って、見掛けの平均粒子径Dpが0.2〜2μm、平均粗さRaが0.1〜1μmであることが好ましい。
【0020】
なお、本発明は、上記実施の形態および実施例に限定されず、種々変形実施が可能である。例えば、銅素材表面に与える非晶質金属めっき膜からなる中間金属膜および粗化銅めっき膜の厚さを工業レベルで規定したが、その範囲を逸脱した使用を制限するものではなく、最終使用製品に合わせて適宜変更することは自由である。
また、非晶質金属めっき膜からなる中間金属膜として、上述の数例を実施例として記載したが、それら以外の材料を用いることは自由である。
同様に、非晶質金属めっき膜からなる中間金属膜の付与手段として、一部のめっき法を実施例として用いたが、それら以外を用いることは自由である。
同様に、非晶質金属めっき膜からなる中間金属膜および粗化銅めっき膜の最外層における見掛けの平均粒子径、平均粗さを規定したが、夫々それらのサイズ以外を用いることを制限するものではなく、最終使用製品に合わせて適宜変更することは自由である。
また、非晶質金属めっき膜からなる中間金属膜は、銅箔素材に粗化銅めっき膜を成長させる段階の途中で付与してもよい。
【0021】
【発明の効果】
以上説明した通り、本発明の樹脂接着用銅箔およびその製造方法によれば、銅箔素材の表面、あるいは粗化めっき膜中に非晶質金属めっき膜からなる中間金属膜を介在させているので、銅箔素材の表面の凹凸や付着物の影響をほぼ完全に遮断して均質な粗化銅めっき膜を形成することができる。従って、この樹脂接着用銅箔を用いた最終部品の信頼性向上、プロセス条件の簡略化、製品コストの低減などに貢献することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る樹脂接着用銅箔の要部断面図である。
【図2】 従来の樹脂接着用銅箔の問題点を説明するための要部断面図である。
【符号の説明】
1 銅箔素材
1a 凹部
1b 凸部
1c 金属結晶方位
2 粗化銅めっき膜
2a 異常突起
2b 凸部
3A 非晶質金属めっき膜
4 付着酸化物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-bonded copper foil used for a flexible printed circuit board for electronic parts, a TAB tape, a micro heater in a general industrial part, an aerospace equipment part, a minute heat dissipation part, a ground plate, an electromagnetic shielding plate, and the like. More particularly, the present invention relates to a resin-bonding copper foil capable of forming a uniform roughened copper plating film even if there are irregularities and deposits on the surface of the copper foil material, and a method for manufacturing the same.
[0002]
[Prior art]
In general, the copper foil for resin bonding is provided with a roughened copper plating film whose surface fine form is rich in irregularities on the outermost layer of the copper plating film for the purpose of improving the adhesion with the resin material, The nature of is required.
[0003]
a) The macro surface shape is flat so that wrinkles and voids are less likely to occur in the resin bonding operation.
b) The average roughness of the outermost layer of the roughened plating film is large in order to increase the resin adhesive strength due to the anchor effect.
c) In order to increase the resin adhesive strength due to the anchor effect and to make the planar distribution of the resin adhesive strength uniform, the average particle diameter and the roughness of the outermost layer of the roughened plating film should be uniform.
d) The peeling strength of the rough plating film itself is large so that delamination does not easily occur in the plating film.
[0004]
As the conventional copper foil for resin bonding for various parts, for example, as shown in the literature (Surface Technology Association edition; Surface Technology Handbook, P461-462, 1998), electrolytic copper foil, Two types of roughened plated copper foils (copper foils using a rolled copper foil as a raw material and a roughened copper plated film on the surface) are known.
[0005]
[Problems to be solved by the invention]
However, according to conventional copper foils for resin bonding, electrolytic copper foil or roughened plated copper foil is manufactured by growing a plated film based on pure copper, except that the film composition excludes trace impurities. For this reason, it is extremely difficult to satisfy the properties a) to d) of the above-described a) to d) in which the plating film quality is inclined to any one of the above a) to d). That is, in the formation of the plating film, if a) the surface morphology of the plating film is flat, c) the average particle diameter is uniform, and d) the peel strength of the plating film itself is prioritized, b) the outermost layer of the plating film It is difficult to increase the average roughness. On the other hand, if priority is given to the property of b), the properties of a), b) and d) tend to be insufficient.
[0006]
FIG. 2 is a diagram for explaining problems with the conventional method. As shown in the conventional method, when the roughened copper plating film 2 is simply applied to the surface of the copper foil 1, the form of the plating film 2 is a metal surface state (surface concave portion) in the intermediate stage of the growth of the base metal or the roughened copper plating film. 1a, convex portion 1b, metal crystal orientation 1c, adhesion oxide 4, oil, adhesion of contaminants, etc.) and a plating film 2 having a rough and heterogeneous abnormal protrusion 2a that strongly depends on the inhomogeneous conditions, It is difficult to form a plating film that matches the purpose described above.
[0007]
Accordingly, an object of the present invention is to provide a copper foil for resin bonding that can form a uniform roughened copper plating film even if there are irregularities and deposits on the surface of the copper foil material, and a method for producing the same. is there.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a copper foil for resin bonding in which a roughened copper plating film is grown on the surface of a copper foil material. In the copper foil material, the surface of the copper foil material or the roughened copper plating film. Provided is a copper foil for resin bonding comprising an intermediate metal film made of an intervening amorphous metal plating film .
Nucleation of the roughened copper plating film and subsequent processes by interposing an intermediate metal film made of an amorphous metal plating film on the surface of the copper foil material (electrolytic copper foil or rolled copper foil) or in the roughened plating film to film growth, uniform roughening copper plating film almost completely blocked the effect of such irregularities and adhering oxide surface of the copper foil material Ru is formed.
[0009]
In order to achieve the above object, the present invention provides a method for producing a copper foil for resin bonding in which a roughened copper plating film is grown on the surface of a copper foil material. Provided is a method for producing a copper foil for resin bonding, characterized in that an intermediate metal film made of an amorphous metal plating film is formed in the middle of the growth stage of the roughened copper plating film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a copper foil for resin bonding according to a first embodiment of the present invention. This resin-bonding copper foil is obtained by applying an amorphous metal plating film 3A having an average thickness of 0.01 to 1 μm to the surface of the copper foil material 1 of an electrolytic copper foil or a rolled copper foil at least once. It is manufactured by forming a roughened copper plating film 2 having a thickness of 1 to 20 μm on the upper side.
[0011]
Thus, by providing the surface of the copper foil material 1 with the amorphous metal plating film 3A as an intermediate metal film, the influence of the concave portion 1a, the convex portion 1b, the metal crystal orientation 1c and the deposits on the surface of the copper foil material 1 is achieved. The nucleation of the inherent plating film generated from the amorphous metal surface and the subsequent growth stage are stabilized, and the size and height of the projections (grains) 2b are aligned. A homogeneous plating film 2 can be obtained stably.
[0012]
【Example】
Examples 1 to 3 corresponding to the first embodiment of the present invention will be described below.
[0013]
<Example 1>
【table 1】
Figure 0003900961
Sample No. in Table 1 1-1 to 1-6 are obtained by using the rolled copper foil material described in Table 1 and providing a Ni-P film as an amorphous metal plating film 3A on the surface thereof. The average thickness of the Ni—P film was 0 to 1.0 μm, and the Ni—P film was applied using a commercially available electrolytic plating solution or electroless plating. The plating conditions were in accordance with the literature (Ken Masumoto, Toru Watanabe: Amorphous plating method and its application, Nikkan Kogyo Shimbun, p. 255 (1990)). Then, using a commercially available copper sulfate plating bath, an average thickness of 3 μm was applied to the roughened copper plating film 2 at 50 A / dm 2 immediately below the current density of the burn plating.
[0014]
The values shown in Table 1 were obtained for the average particle diameter and average roughness of the outermost layer in the roughened copper plating film 2 in these samples, and the adhesive strength with the polyimide tape. As a result, when the average thickness of the Ni plating film is 0 μm (sample No. 1-0), the average particle diameter and average roughness of the outermost layer in the roughened copper plating film 2 are larger than those of other samples, and the resin The adhesion strength with is also at the x level. That is, when the roughened copper plating film 2 is substantially directly applied to the rolled copper foil material, the form of the plating film 2 is as follows: unevenness 1a, 1b, metal crystal orientation 1c, residual oxide, adhesion on the surface of the material 1 A so-called burned plating film is formed that is directly affected by various influencing factors such as oil, and that the surface morphology / distribution of the roughened copper plating film 2 is inhomogeneous, the particle diameter is excessively large, and the average roughness is excessively rough. End up. On the other hand, when the Ni plating film is provided with a film thickness of 0.01 to 1 μm, the outermost layer in the roughened copper plating film 2 is homogeneous and the average particle diameter and average roughness are moderately smaller than those of the above samples, and the adhesion to the resin The strength is also improved to a △ or ○ level. In this way, it is preferable that the amorphous metal plating film 3A as the intermediate metal film has a film thickness of 0.01 μm or more. However, if the film thickness is 1 μm or more, the effect of improving the film quality of the roughened copper plating film 2 is saturated, so that the substantial meaning is small.
[0015]
Next, the film thickness dependency of the film quality of the roughened copper plating film 2 after the application of the intermediate metal film does not become a serious obstacle as easily estimated from the basic idea of the present invention. However, when the film thickness of the roughened copper plating film 2 is 1 μm or less, it strongly reflects the properties of the amorphous metal plating film 3A, resulting in a copper plating film with poor crystal orientation, which is inherent to the roughened copper plating film 2. It is easy to become a film quality without the unevenness. On the other hand, when the thickness is 20 μm or more, the intrinsic properties obtained by applying the amorphous metal plating film 3A as the rough copper plating film 2 grows become dilute. Therefore, the thickness of the roughened copper plating film 2 is preferably 1 to 20 μm. It is also effective to plate the amorphous metal plating film 3A and the roughened copper plating film 2 in a plurality of times for the purpose of preventing the above-described adverse effects caused by the increase in film thickness.
[0016]
<Example 2>
Sample No. in Table 1 Nos. 2-1 to 2-5 were examined for the effect of the type of the amorphous metal plating film 3A, and were operated in the same manner as in Example 1 to change the type of the amorphous metal plating film 3A. The thickness was constant at 0.2 μm. The other operations are almost the same as those in the first embodiment.
[0017]
As a result, as shown in Table 1, as the amorphous metal plating film 3A, Fe—Mo, Ni—Mo, Co—W (metal-metal amorphous plating film), and Ni—S, Ni—B were used. (Metaloid-based amorphous plating film) Both the particle diameter of the outermost layer of the roughened copper plating film 2 is 1 to 1.5 μm, and the average roughness of the outermost layer is 0.3 μm. Compared to 1-1, the plating film particles and the average roughness are moderately small. Moreover, the adhesiveness with the resin shows a ◯ level. As this type of metal, Al—Mn, Bi—S, Cd—Te, Cr—C, and pd—P were experienced, although omitted in the examples. From the above, the type of the amorphous plating film is preferably a metal-metal amorphous plating film or a metalloid amorphous plating film.
[0018]
<Example 3>
Next, the sample No. A flexible printed circuit board was manufactured using 1-5, 2-2, and 2-4. The adhesion strength of resin and copper foil, pattern manufacturing accuracy (etching resistance), bending resistance, etc. satisfied conventional standards. On the other hand, sample No. When 1-0 was used, none of the adhesion strength between the resin and the copper foil, the pattern production accuracy by etching, and the bending resistance satisfied the conventional standards.
[0019]
Next, the preferred plating film form in the outermost layer of the roughened copper plating film 2 is that when the apparent average particle diameter Dp is 0.2 μm or less and the average roughness Ra is 0.1 or less, the resin material is rough. Not only is it difficult to penetrate to the bottom of the concave portion of the copper-plated plating film 2, but the resin adhesion improvement effect based on the so-called anchor effect is hardly exhibited. On the other hand, if the average particle diameter Dp is 2 μm or more and the average roughness Ra is 1 μm or more, the roughened copper plating film 2 becomes a remarkably porous film called so-called burn plating, and the particles are peeled off by a slight impact. This objective is difficult to achieve, such as being easy to make, and abnormally high hook-shaped protrusions are likely to be partially generated, which becomes a significant barrier to the homogeneous adhesion of the resin. Preferably, when the film thickness is 1 to 20 μm, the average particle diameter Dp is preferably 0.5 μm or less and the average roughness Ra is 0.5 μm or less. Therefore, it is preferable that the apparent average particle diameter Dp is 0.2 to 2 μm and the average roughness Ra is 0.1 to 1 μm.
[0020]
In addition, this invention is not limited to the said embodiment and Example, A various deformation | transformation implementation is possible. For example, the thickness of the intermediate metal film consisting of an amorphous metal plating film and the roughened copper plating film to be applied to the copper material surface is specified at the industrial level, but it does not limit the use beyond the range, but the end use It is free to change appropriately according to the product.
Moreover, although the above-mentioned several examples were described as an Example as an intermediate metal film which consists of an amorphous metal plating film , it is free to use materials other than those.
Similarly, although some plating methods were used as examples for applying the intermediate metal film made of an amorphous metal plating film, it is possible to use other than these.
Similarly, the apparent average particle diameter and average roughness in the outermost layer of the intermediate metal film and the roughened copper plating film made of an amorphous metal plating film were specified, but those other than those sizes were restricted. Rather, it is free to change appropriately according to the end use product.
Moreover, you may provide the intermediate metal film which consists of an amorphous metal plating film in the middle of the step which grows a roughening copper plating film on a copper foil raw material.
[0021]
【The invention's effect】
As described above, according to the copper foil for resin bonding and the method for producing the same of the present invention, an intermediate metal film made of an amorphous metal plating film is interposed in the surface of the copper foil material or in the rough plating film. Therefore, it is possible to form a uniform roughened copper plating film by almost completely blocking the influence of unevenness and deposits on the surface of the copper foil material. Therefore, it is possible to contribute to the improvement of the reliability of the final part using the copper foil for resin bonding, the simplification of the process conditions, the reduction of the product cost, and the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a copper foil for resin bonding according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part for explaining problems of a conventional resin-bonding copper foil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Copper foil raw material 1a Concave part 1b Convex part 1c Metal crystal orientation 2 Roughened copper plating film 2a Abnormal protrusion 2b Convex part 3A Amorphous metal plating film 4 Adhesion oxide

Claims (7)

銅箔素材の表面に粗化銅めっき膜を成長させた樹脂接着用銅箔において、
前記銅箔素材の前記表面、あるいは前記粗化銅めっき膜中に介在された非晶質金属めっき膜からなる中間金属膜を備えたことを特徴とする樹脂接着用銅箔。
In the copper foil for resin bonding in which a roughened copper plating film is grown on the surface of the copper foil material,
A copper foil for resin bonding, comprising an intermediate metal film made of an amorphous metal plating film interposed in the surface of the copper foil material or the roughened copper plating film.
前記非晶質金属めっき膜は、平均厚さが0.01〜1μmであることを特徴とする請求項1記載の樹脂接着用銅箔。The copper foil for resin bonding according to claim 1, wherein the amorphous metal plating film has an average thickness of 0.01 to 1 μm. 前記非晶質金属めっき膜は、メタロイド系非晶質めっき膜、あるいは金属−金属系非晶質めっき膜を用いたことを特徴とする請求項1記載の樹脂接着用銅箔。The copper foil for resin bonding according to claim 1, wherein the amorphous metal plating film is a metalloid amorphous plating film or a metal-metal amorphous plating film. 前記粗化銅めっき膜は、前記中間金属膜上の厚さが1〜20μmであることを特徴とする請求項1記載の樹脂接着用銅箔。2. The copper foil for resin bonding according to claim 1, wherein the roughened copper plating film has a thickness of 1 to 20 μm on the intermediate metal film. 前記粗化銅めっき膜は、その最外層における見掛けの平均粒子径Dpが0.2〜2μm、平均粗さRaが0.1〜1μmであることを特徴とする請求項1記載の樹脂接着用銅箔。2. The resin-bonding material according to claim 1, wherein the roughened copper plating film has an apparent average particle diameter Dp of 0.2 to 2 [mu] m and an average roughness Ra of 0.1 to 1 [mu] m in the outermost layer. Copper foil. 銅箔素材の表面に粗化銅めっき膜を成長させる樹脂接着用銅箔の製造方法において、In the method for producing a copper foil for resin bonding, in which a roughened copper plating film is grown on the surface of the copper foil material,
前記銅箔素材の前記表面上に、前記銅箔素材の段階あるいは前記粗化銅めっき膜の成長段階の途中で非晶質金属めっき膜からなる中間金属膜を形成することを特徴とする樹脂接着用銅箔の製造方法。Resin bonding characterized in that an intermediate metal film made of an amorphous metal plating film is formed on the surface of the copper foil material in the middle of the copper foil material stage or the growth stage of the roughened copper plating film. Method for producing copper foil.
前記中間金属膜の形成は、めっき法を用いたことを特徴とする請求項6記載の樹脂接着用銅箔の製造方法。The method for producing a copper foil for resin bonding according to claim 6, wherein the intermediate metal film is formed by a plating method.
JP2002040112A 2002-02-18 2002-02-18 Copper foil for resin bonding and method for producing the same Expired - Fee Related JP3900961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040112A JP3900961B2 (en) 2002-02-18 2002-02-18 Copper foil for resin bonding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040112A JP3900961B2 (en) 2002-02-18 2002-02-18 Copper foil for resin bonding and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003239082A JP2003239082A (en) 2003-08-27
JP3900961B2 true JP3900961B2 (en) 2007-04-04

Family

ID=27780947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040112A Expired - Fee Related JP3900961B2 (en) 2002-02-18 2002-02-18 Copper foil for resin bonding and method for producing the same

Country Status (1)

Country Link
JP (1) JP3900961B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294363B2 (en) * 2003-04-18 2009-07-08 三井金属鉱業株式会社 Two-layer flexible copper-clad laminate and method for producing the two-layer flexible copper-clad laminate
JP4615226B2 (en) * 2004-02-06 2011-01-19 古河電気工業株式会社 Composite material for substrate and circuit board using the same
TW200535259A (en) 2004-02-06 2005-11-01 Furukawa Circuit Foil Treated copper foil and circuit board
JP4868123B2 (en) * 2005-02-04 2012-02-01 学校法人早稲田大学 Gold-nickel amorphous alloy plating film, electroplating solution and electroplating method
JP2006216474A (en) * 2005-02-07 2006-08-17 Sony Chem Corp Wiring body, electronic apparatus, manufacturing method of wiring body and manufacturing method of electronic apparatus
JP4868121B2 (en) * 2005-12-21 2012-02-01 学校法人早稲田大学 Electroplating solution and method for forming amorphous gold-nickel alloy plating film
JP5351461B2 (en) * 2008-08-01 2013-11-27 日立電線株式会社 Copper foil and copper foil manufacturing method
JP5651564B2 (en) * 2011-09-30 2015-01-14 富士フイルム株式会社 Copper foil for pasting
JP5624700B1 (en) 2012-12-21 2014-11-12 パナソニック株式会社 Electronic component package and manufacturing method thereof
CN104584210B (en) 2012-12-21 2017-09-26 松下知识产权经营株式会社 Electronic component package part and its manufacture method
WO2014097645A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Electronic component package and method for producing same
JP5624697B1 (en) 2012-12-21 2014-11-12 パナソニック株式会社 Electronic component package and manufacturing method thereof
CN107532321B (en) * 2015-06-01 2019-09-17 古河电气工业株式会社 Electric conductivity web and its manufacturing method

Also Published As

Publication number Publication date
JP2003239082A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP3900961B2 (en) Copper foil for resin bonding and method for producing the same
US7790269B2 (en) Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
TWI554392B (en) A liquid crystal polymer copper clad laminate and a copper foil for the laminated sheet
JP5932705B2 (en) Copper foil for printed circuit
US8674229B2 (en) Ultra-thin copper foil with carrier and copper-clad laminate board or printed circuit board substrate
JP4087369B2 (en) Ultra-thin copper foil with carrier and printed wiring board
WO2011138876A1 (en) Copper foil for printed circuit
JP5358740B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP2007186782A (en) Ultrathin copper foil with carrier and printed circuit board using the same
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP5352748B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
KR102118245B1 (en) Composite metal foil, copper-clad laminate using the composite metal foil, and manufacturing method of the copper-clad laminate
JP2016188436A (en) Copper foil for printed circuit
JP3374127B2 (en) Metal foil, laminated board for circuit boards using it
JP2002246712A (en) Electrolytic copper foil for fine patterning
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2006278882A (en) Copper foil and copper foil for inner layer substrate
JP5940010B2 (en) Surface roughening copper foil, method for producing the same, and circuit board
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
JP2005023384A (en) Base material for plating
JP2005203621A (en) Metal composite sheet for printed wiring board and printed wiring board using it
JP5380615B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP2002167690A (en) Metallic foil an laminated sheet for circuit board substrate using the foil
WO2011121803A1 (en) Copper foil for printed wiring board having excellent thermal discoloration resistance and etching properties, and laminate using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees