JP3900399B2 - Condensate demineralizer - Google Patents

Condensate demineralizer Download PDF

Info

Publication number
JP3900399B2
JP3900399B2 JP26672599A JP26672599A JP3900399B2 JP 3900399 B2 JP3900399 B2 JP 3900399B2 JP 26672599 A JP26672599 A JP 26672599A JP 26672599 A JP26672599 A JP 26672599A JP 3900399 B2 JP3900399 B2 JP 3900399B2
Authority
JP
Japan
Prior art keywords
resin
acidic cation
basic anion
strongly
weakly acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26672599A
Other languages
Japanese (ja)
Other versions
JP2001091685A (en
Inventor
丈志 出水
達也 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26672599A priority Critical patent/JP3900399B2/en
Publication of JP2001091685A publication Critical patent/JP2001091685A/en
Application granted granted Critical
Publication of JP3900399B2 publication Critical patent/JP3900399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、復水脱塩装置に係り、特に、高純度な処理水質を得ることができるBWR型原子力発電プラントの復水脱塩装置に関する。
【0002】
【従来の技術】
BWR原子力発電プラントでは、原子炉の内部を常に清浄に維持しなければならないので、その浄化設備としてイオン交換樹脂を使用している復水脱塩装置が設置されている。そのイオン交換樹脂としては、強酸性カチオン樹脂と強塩基性アニオン樹脂を混床で使用している。
最近のBWR原子力発電プラントは、プラント構成機器が改良され、復水脱塩装置へのイオン性不純物の負荷が低減していること、及び、放射性廃液低減の観点から、イオン交換樹脂は非通薬再生にて運用され、通薬再生を実施せずに数年間使用後、廃棄されている。従って、交換容量の大きいイオン交換樹脂の適用が望まれている。
また、最近のBWR原子力発電プラントでは、イオン交換樹脂、特に強酸性カチオン樹脂から溶出する有機性不純物により処理水質を低下させる要因となっていた。強酸性カチオン樹脂より溶出する有機性不純物には、官能基としてスルホン基が含まれており、これが原子炉内に流入すると、放射線及び熱分解により硫酸イオンとなるため、原子炉構成材料の健全性を阻害する要因となっている。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、イオン交換樹脂から原子炉内に溶出するスルホン基を抑制して、処理水質を高度化できるBWR型原子力発電プラントの復水脱塩装置を提供することを課題とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明では、イオン交換樹脂の充填床を備えたBWR型原子力発電プラントの復水脱塩装置において、該イオン交換樹脂の充填床は、上層部が強塩基性アニオン樹脂、下層部が弱酸性カチオン樹脂、又は、弱酸性カチオン樹脂と強塩基性アニオン樹脂の混合層又は弱酸性カチオン樹脂と強酸性カチオン樹脂の混合層の複層床からなることを特徴とする復水脱塩装置としたものである。
【0005】
また、本発明では、イオン交換樹脂の充填床を備えたBWR型原子力発電プラントの復水脱塩装置において、該イオン交換樹脂の充填床は、上層部が強塩基性アニオン樹脂、中間層部が弱酸性カチオン樹脂、下層部が強酸性カチオン樹脂と強塩基性アニオン樹脂の混合層の複層床からなることを特徴とする復水脱塩装置としたものである。
【0006】
【発明の実施の形態】
従来のBWR型原子力発電プラントの復水脱塩装置では、使用するイオン交換樹脂として、強酸性カチオン樹脂を使用しており、この強酸性カチオン樹脂には、官能基としてスルホン基が含まれているため、これが原子炉内に流入することにより分解し、無機イオンである硫酸イオンとなり、これが原子炉構成材料の健全性を阻害する要因となっていた。
そこで、本発明は、官能基にスルホン基を含まない弱酸性カチオン樹脂を使用することにより、有機性不純物がカチオン樹脂より溶出しても原子炉内で硫酸イオンを発生させることをなくすことができることを見出してなされた。
従来、弱酸性カチオン樹脂は、強酸性カチオン樹脂に比べ中性塩分解能力が低く、反応速度が若干劣り、且つ捕捉したイオンを加水分解によりリークしやすい特性があるため、これまで復水脱塩装置に使用されることはなかった。
【0007】
しかし、近年においては、発電プラント構成材料の高度化や運転管理の高度化により、復水脱塩装置へのイオン負荷は非常に少なくなっており、ある程度イオン交換能力が低下しても、十分使用に耐えうるといえる。更に、万一復水器で海水漏洩が発生しても、アニオン樹脂を復水脱塩装置の上層部に配し、pHをアルカリ側にして弱酸性カチオン樹脂で処理することにより、冷却水中に流入した海水成分を除去することができる。
更に、この欠点を補うために、均一粒径樹脂を使用する方法もある。即ち、粒径分布を均一にすることにより、樹脂の持つ表面積を増やすことが可能となり、反応速度を高めることが可能となる。
【0008】
【実施例】
以下、実施例により本発明を具体的に説明する。
実施例1
強酸性及び弱酸性カチオン樹脂より溶出した有機性不純物について、TOC濃度、及び、その溶液を紫外線にて分解し、その後硫酸イオン濃度を測定することにより、溶出速度を求めた。
その結果を表1に示す。弱酸性カチオン樹脂からは、硫酸イオンは検出されないことが確認された。
【0009】
【表1】

Figure 0003900399
【0010】
実施例2
復水器における海水漏洩を模擬し、弱酸性樹脂による主たる海水成分であるNaClの除去能力を以下の方法にて確認した。
内径25mmのカラムに樹脂を充填し、層高1mの樹脂層を形成する。
樹脂層としては、次の3つのケースについて行った。
(1)強酸性カチオン樹脂と強塩基性アニオン樹脂を混合した場合、(比較例)
(2)上層部に強塩基性アニオン樹脂を配し、下層部に弱酸性カチオン樹脂を配した場合、(実施例)
(3)上層部に強塩基性アニオン樹脂を配し、中間層部に弱酸性カチオン樹脂を配し下層部に強酸性カチオン樹脂と強塩基性アニオン樹脂を配した場合、(実施例)
実験は、カラム入口より約20ppmのNaClの水溶液を線流速120m/hで通水し、処理水の導電率の測定を行った。その結果、いずれのケースについても、処理水の導電率は0.055μS/cmとなり、処理性能上問題のないことが確認された。
【0011】
実施例3
復水器における海水漏洩を模擬し、弱酸性樹脂による主たる海水成分であるNaClの除去能力を以下の方法にて確認した。試験は通水LVを実装置と同様に120m/hにて運転し、そこに約20ppmのNaCl水溶液を通水し、処理水の導電率が0.1μS/cmを上回るまでの貫流交換容量を求めた。
内径25mmのカラムに樹脂を充填し、層高1mの樹脂層を形成する。樹脂層としては、次の4ケースについて行った。尚、いずれのケースについてもカチオン/アニオン樹脂比は1/1とした。
【0012】
ケース1:強酸性カチオン樹脂と強塩基性アニオン樹脂を混合した場合(比較例)、
ケース2:上層部に強塩基性アニオン樹脂を配し、下層部に弱酸性カチオン樹脂を配した場合(実施例)、
ケース3:上層部に強塩基性アニオン樹脂を配し、下層部に弱酸性カチオン樹脂と強塩基性アニオン樹脂の混合層を配した場合(実施例)、
ケース4:上層部に強塩基性アニオン樹脂を配し、下層部に弱酸性カチオン樹脂と強酸性力チオン樹脂の混合層を配した場合(実施例)、
ケース5:上層部に強塩基性アニオン樹脂を配し、中間層部が弱酸性カチオン樹脂、下層部が強酸性カチオン樹脂と強塩基性アニオン樹脂の混合層を配した場合(実施例)、
【0013】
これらのケースについて比較例を1とした場合の貫流交換容量の比較結果を表2に示す。表2から明らかなように、比較例と比べて貫流交換容量は小さくなるものの、装置設計上要求される値より十分高い値を有しており、いずれの実施例についても問題ないといえる。
【表2】
Figure 0003900399
【0014】
また、これらの実施例についてカラム処理水を採取し、紫外線照射実施後に硫酸イオン濃度を測定した。その結果を表3に示す。表3からわかるように、いずれの実施例についても比較例と比べ小さい値を示していることが確認された。
【表3】
Figure 0003900399
【0015】
実施例4
復水器における海水漏洩を模擬し、弱酸性樹脂による主たる海水成分であるNaClの除去能力を以下の方法にて確認した。試験は通水LVを実装置と同様120m/hにて運転し、そこに約20ppmのNaCl水溶液を通水し、処理水の導電率が0.1μS/cmを上回るまでの貫流交換容量を求めた。
内径25mmのカラムに樹脂を充填し、層高1mの樹脂層を形成する。樹脂層としては、次の2ケースについて行った。尚、いずれのケースについてもカチオン/アニオン樹脂比は1/1とした。
ケース2:上層部に強塩基性アニオン樹脂を配し、下層部に弱酸性カチオン樹脂を配した場合
ケース6:上層部に強塩基性アニオン樹脂を配し、下層部に均一粒径の弱酸性カチオン樹脂を配した場合
【0016】
これらのケースについて実施例3のケース1(比較例)を1とした場合の貫流交換容量の比較結果を表4に示す。表4から明らかなように、均一粒径樹脂の方が大きな値を有していることがわかる。
【表4】
Figure 0003900399
【0017】
【発明の効果】
本発明によればBWR型原子力発電プラントの復水脱塩装置に関し、処理水質を高度化することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condensate demineralizer, and more particularly to a condensate demineralizer for a BWR nuclear power plant capable of obtaining a high-purity treated water quality.
[0002]
[Prior art]
In the BWR nuclear power plant, since the inside of the nuclear reactor must be kept clean at all times, a condensate demineralizer using an ion exchange resin is installed as a purification facility. As the ion exchange resin, a strongly acidic cation resin and a strongly basic anion resin are used in a mixed bed.
In recent BWR nuclear power plants, plant components have been improved, the load of ionic impurities on the condensate demineralizer has been reduced, and ion exchange resins are non-drugs from the viewpoint of reducing radioactive liquid waste. It is operated by regeneration, and is discarded after being used for several years without implementing drug regeneration. Therefore, application of an ion exchange resin having a large exchange capacity is desired.
Further, in recent BWR nuclear power plants, the quality of treated water has been reduced by organic impurities eluted from ion exchange resins, particularly strongly acidic cation resins. Organic impurities eluted from strongly acidic cation resins contain sulfone groups as functional groups, and when they enter the reactor, they become sulfate ions due to radiation and thermal decomposition. It is a factor that inhibits.
[0003]
[Problems to be solved by the invention]
In view of the above prior art, the present invention aims to provide a condensate demineralization apparatus for a BWR nuclear power plant that can suppress the sulfone group eluted from the ion exchange resin into the nuclear reactor and improve the quality of the treated water. And
[0004]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, in a condensate demineralization apparatus for a BWR nuclear power plant equipped with a packed bed of ion exchange resin, the packed bed of ion exchange resin has a strongly basic anion in the upper layer portion. resin, the lower portion is weakly acidic cation resin, or characterized by Rukoto such a multilayer floor weakly acidic cation resin and strongly basic anion mixed layer of resin or weakly acidic cation exchange resin and a mixed layer of strongly acidic cation resin This is a condensate demineralizer.
[0005]
Further, in the present invention, the condensate demineralizer of BWR-type nuclear power plant with a packed bed of ion exchange resin, packed bed of the ion exchange resin, the upper part is strongly basic anion resin, an intermediate layer portion There Ru der those weakly acid cation resin, the lower layer was condensate demineralizer characterized by comprising a multi-layer bed of mixed layer of strongly acidic cation resin and strongly basic anion resins.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the condensate demineralizer of a conventional BWR nuclear power plant, a strongly acidic cation resin is used as the ion exchange resin to be used, and this strongly acidic cation resin contains a sulfone group as a functional group. For this reason, when it flows into the reactor, it decomposes and becomes sulfate ions, which are inorganic ions, and this is a factor that hinders the soundness of the materials constituting the reactor.
Therefore, the present invention can eliminate the generation of sulfate ions in the reactor even when organic impurities are eluted from the cationic resin by using a weakly acidic cationic resin that does not contain a sulfone group in the functional group. It was made by finding.
Conventionally, weakly acidic cation resins have a lower ability to decompose neutral salts than strongly acidic cation resins, have a slightly lower reaction rate, and are prone to leak trapped ions by hydrolysis. It was never used in the device.
[0007]
However, in recent years, the ion load on the condensate demineralizer has become very small due to the sophistication of power plant components and the sophistication of operation management. It can be said that it can endure. Furthermore, even if seawater leaks in the condenser, the anion resin is placed in the upper layer of the condensate demineralizer and treated with a weakly acidic cation resin with the pH set to the alkali side. The inflowing seawater component can be removed.
Furthermore, in order to compensate for this drawback, there is a method of using a uniform particle size resin. That is, by making the particle size distribution uniform, the surface area of the resin can be increased and the reaction rate can be increased.
[0008]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
For the organic impurities eluted from the strongly acidic and weakly acidic cation resins, the elution rate was determined by decomposing the TOC concentration and the solution with ultraviolet light and then measuring the sulfate ion concentration.
The results are shown in Table 1. It was confirmed that sulfate ions were not detected from the weakly acidic cation resin.
[0009]
[Table 1]
Figure 0003900399
[0010]
Example 2
Seawater leakage in a condenser was simulated, and the ability to remove NaCl, which is the main seawater component by weakly acidic resin, was confirmed by the following method.
Resin is packed in a column having an inner diameter of 25 mm to form a resin layer having a layer height of 1 m.
As the resin layer, the following three cases were performed.
(1) When a strongly acidic cation resin and a strongly basic anion resin are mixed (comparative example)
(2) When a strongly basic anion resin is arranged in the upper layer part and a weak acidic cation resin is arranged in the lower layer part (Example)
(3) When a strong basic anion resin is arranged in the upper layer part, a weak acidic cation resin is arranged in the intermediate layer part, and a strong acidic cation resin and a strong basic anion resin are arranged in the lower layer part (Example)
In the experiment, an aqueous solution of NaCl of about 20 ppm was passed through the column inlet at a linear flow rate of 120 m / h, and the conductivity of the treated water was measured. As a result, in all cases, the conductivity of the treated water was 0.055 μS / cm, and it was confirmed that there was no problem in treatment performance.
[0011]
Example 3
Seawater leakage in a condenser was simulated, and the ability to remove NaCl, which is the main seawater component by weakly acidic resin, was confirmed by the following method. In the test, the flow-through LV was operated at 120 m / h in the same manner as in the actual apparatus, and an about 20 ppm NaCl aqueous solution was passed therethrough, and the through-flow exchange capacity until the treated water conductivity exceeded 0.1 μS / cm. Asked.
Resin is packed in a column having an inner diameter of 25 mm to form a resin layer having a layer height of 1 m. As the resin layer, the following four cases were performed. In any case, the cation / anion resin ratio was 1/1.
[0012]
Case 1: When a strongly acidic cation resin and a strongly basic anion resin are mixed (comparative example),
Case 2: When a strongly basic anion resin is arranged in the upper layer portion and a weakly acidic cation resin is arranged in the lower layer portion (Example),
Case 3: When a strongly basic anion resin is arranged in the upper layer portion and a mixed layer of a weakly acidic cation resin and a strongly basic anion resin is arranged in the lower layer portion (Example),
Case 4: When a strongly basic anion resin is arranged in the upper layer portion and a mixed layer of a weakly acidic cation resin and a strong acid force thione resin is arranged in the lower layer portion (Example),
Case 5: When a strongly basic anion resin is arranged in the upper layer part, the intermediate layer part is a weakly acidic cation resin, and the lower layer part is a mixed layer of a strongly acidic cation resin and a strongly basic anion resin (Example),
[0013]
Table 2 shows the comparison results of the through-flow exchange capacities when the comparative example is 1 for these cases. As apparent from Table 2, although the through-flow exchange capacity is smaller than that of the comparative example, it has a value sufficiently higher than the value required in the device design, and it can be said that there is no problem in any of the examples.
[Table 2]
Figure 0003900399
[0014]
Further, column treated water was collected from these examples, and the sulfate ion concentration was measured after the ultraviolet irradiation. The results are shown in Table 3. As can be seen from Table 3, it was confirmed that each example showed a smaller value than the comparative example.
[Table 3]
Figure 0003900399
[0015]
Example 4
Seawater leakage in a condenser was simulated, and the ability to remove NaCl, which is the main seawater component by weakly acidic resin, was confirmed by the following method. In the test, the flow-through LV was operated at 120 m / h in the same manner as the actual apparatus, and about 20 ppm NaCl aqueous solution was passed therethrough, and the flow-through exchange capacity until the conductivity of the treated water exceeded 0.1 μS / cm was obtained. It was.
Resin is packed in a column having an inner diameter of 25 mm to form a resin layer having a layer height of 1 m. As the resin layer, the following two cases were performed. In any case, the cation / anion resin ratio was 1/1.
Case 2: When a strongly basic anion resin is disposed in the upper layer portion and a weakly acidic cation resin is disposed in the lower layer portion. Case 6: A strongly basic anion resin is disposed in the upper layer portion, and a weakly acidic acid having a uniform particle size is disposed in the lower layer portion. When a cationic resin is used [0016]
Table 4 shows the comparison results of the through-flow exchange capacity when Case 1 (Comparative Example) of Example 3 is set to 1 for these cases. As is clear from Table 4, it can be seen that the uniform particle size resin has a larger value.
[Table 4]
Figure 0003900399
[0017]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible regarding the condensate desalination apparatus of a BWR type | mold nuclear power plant, and to improve the quality of treated water.

Claims (2)

イオン交換樹脂の充填床を備えたBWR型原子力発電プラントの復水脱塩装置において、該イオン交換樹脂の充填床は、上層部が強塩基性アニオン樹脂、下層部が弱酸性カチオン樹脂、又は、弱酸性カチオン樹脂と強塩基性アニオン樹脂の混合層又は弱酸性カチオン樹脂と強酸性カチオン樹脂の混合層の複層床からなることを特徴とする復水脱塩装置。  In the condensate demineralizer for a BWR nuclear power plant equipped with a packed bed of ion exchange resin, the packed bed of ion exchange resin has an upper layer portion of a strongly basic anion resin, a lower layer portion of a weakly acidic cation resin, or A condensate demineralizer comprising a mixed layer of a weakly acidic cation resin and a strongly basic anion resin or a mixed bed of a weakly acidic cation resin and a strongly acidic cation resin. イオン交換樹脂の充填床を備えたBWR型原子力発電プラントの復水脱塩装置において、該イオン交換樹脂の充填床は、上層部が強塩基性アニオン樹脂、中間層部が弱酸性カチオン樹脂、下層部が強酸性カチオン樹脂と強塩基性アニオン樹脂の混合層の複層床からなることを特徴とする復水脱塩装置。  In a condensate demineralization apparatus for a BWR nuclear power plant equipped with a packed bed of ion exchange resin, the packed bed of ion exchange resin has a strongly basic anion resin in the upper layer part, a weakly acidic cation resin in the intermediate layer part, and a lower layer. A condensate demineralizer characterized in that the part is composed of a multi-layered bed of a mixed layer of a strongly acidic cation resin and a strongly basic anion resin.
JP26672599A 1999-09-21 1999-09-21 Condensate demineralizer Expired - Fee Related JP3900399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26672599A JP3900399B2 (en) 1999-09-21 1999-09-21 Condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26672599A JP3900399B2 (en) 1999-09-21 1999-09-21 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JP2001091685A JP2001091685A (en) 2001-04-06
JP3900399B2 true JP3900399B2 (en) 2007-04-04

Family

ID=17434826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26672599A Expired - Fee Related JP3900399B2 (en) 1999-09-21 1999-09-21 Condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3900399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001252A (en) * 2001-06-20 2003-01-07 Japan Organo Co Ltd Method for operating condensate desalting device

Also Published As

Publication number Publication date
JP2001091685A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US5980716A (en) Water treatment apparatus for a fuel cell system
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
KR100769919B1 (en) Condensate demineralization
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2008232773A (en) Treater for water containing radioactive material in nuclear power plant
JP3900399B2 (en) Condensate demineralizer
JP2015064221A (en) Radioactive nuclide removal system and radioactive nuclide removal method
JP4380875B2 (en) Liquid processing equipment
JP3778541B2 (en) Condensate demineralizer
JP4383091B2 (en) Condensate desalination method and apparatus
JP4943376B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2009279519A (en) Condensate demineralization method and condensate demineralizer
JP2001133594A (en) Method of removing radionuclide from reactor cooling water
JPH09276862A (en) Condensed water desalting apparatus
JP2000002787A (en) Hydrogen peroxide concentration reducing device for nuclear power plant
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2004279227A (en) Method and device for condensate demineralization
Swope Mixed bed ion exchange for the removal of radioactivity
JPH074592B2 (en) Ultrapure water production method
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JPH11264896A (en) Processing method for waste liquid and processing device of waste liquid
JP2005296748A (en) Condensate demineralizer and its regeneration method
Aghoyeh et al. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool
JPH0214114B2 (en)
JPS6383696A (en) Liquid radioactive waste processing facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees