JP3900138B2 - Mode change control device for hybrid transmission - Google Patents

Mode change control device for hybrid transmission Download PDF

Info

Publication number
JP3900138B2
JP3900138B2 JP2003375620A JP2003375620A JP3900138B2 JP 3900138 B2 JP3900138 B2 JP 3900138B2 JP 2003375620 A JP2003375620 A JP 2003375620A JP 2003375620 A JP2003375620 A JP 2003375620A JP 3900138 B2 JP3900138 B2 JP 3900138B2
Authority
JP
Japan
Prior art keywords
motor
mode
generator
differential
mode switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003375620A
Other languages
Japanese (ja)
Other versions
JP2005140194A (en
Inventor
和男 谷田部
俊一 忍足
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003375620A priority Critical patent/JP3900138B2/en
Publication of JP2005140194A publication Critical patent/JP2005140194A/en
Application granted granted Critical
Publication of JP3900138B2 publication Critical patent/JP3900138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/266Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with two coaxial motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Description

本発明は、ハイブリッド変速機のモード切り替え制御装置、特に、2種類の無段変速比モード間でのローモードからハイモードへのモード切り替えを適切に行わせるためのモード切り替え制御装置に関するものである。   The present invention relates to a mode switching control device for a hybrid transmission, and more particularly to a mode switching control device for appropriately performing mode switching from a low mode to a high mode between two types of continuously variable transmission ratio modes. .

2種類の変速モードを有するハイブリッド変速機としては従来、例えば特許文献1に記載のごとく、エンジンと、2個のモータ/ジェネレータとを有し、締結要素の締結、解放切り替えにより2モード化を実現した、2モード複合スプリット式電気機械式トランスミッションが提案されている。
特開2000−062483号公報
Conventionally, a hybrid transmission having two types of shift modes has an engine and two motors / generators as described in, for example, Patent Document 1, and two modes are realized by switching between fastening and release of fastening elements. A two-mode composite split type electromechanical transmission has been proposed.
JP 2000-062483 A

かかる2モード複合スプリット式電気機械式トランスミッションにあっては、エンジン出力を大きくした状態において、2種類のモード間でのモード切り替えを無段変速下に行おうとする時、モータ/ジェネレータの要求トルクが大きくなる。
しかしてトランスミッションは、エンジン出力を大きくした状態で上記のモード切り替えを無段変速下に行う場合も想定して設計する必要があり、大トルク型のモータ/ジェネレータが必要であり、モータ/ジェネレータの大型化、ひいては2モード複合スプリット式電気機械式トランスミッションの大型化を伴う。
しかし特許文献1には、かかる大型化に対する対策技術が提案されておらず、2モード複合スプリット式電気機械式トランスミッションが大型になる懸念を払拭し切れない。
In such a two-mode composite split type electromechanical transmission, when the engine output is increased, when the mode switching between the two modes is performed under continuously variable speed, the required torque of the motor / generator is reduced. growing.
Therefore, the transmission must be designed assuming that the above-mentioned mode switching is performed under continuously variable speed with the engine output increased, and a large torque type motor / generator is required. This is accompanied by an increase in size and, in turn, an increase in the size of the two-mode composite split electromechanical transmission.
However, Patent Document 1 does not propose a countermeasure technique for such an increase in size, and cannot completely eliminate the concern that the two-mode composite split type electromechanical transmission will be large.

一方で本願出願人は、2種類の変速モードを有するハイブリッド変速機として、以下のようなものを開発、提案中である。
このハイブリッド変速機は、
2要素の回転状態を決定すると他の要素の回転状態が決まる第1、第2、および第3差動装置を具え、
第1および第2差動装置の1要素を相互に結合すると共に、これら要素を除く第1および第2差動装置の1要素間を相互に第3差動装置により連結し、
上記の要素を含む第1および第2差動装置の構成要素にエンジン、出力軸、2つのモータ/ジェネレータを結合して、これらエンジンと、出力軸と、2つのモータ/ジェネレータとの間を相関させ、
第3差動装置の1要素を固定するブレーキの締結により得られる、第3差動装置で相互に連結された第1および第2差動装置の上記要素の回転数が相互に接近または遠ざかる方向へ変化可能なローモードと、第3差動装置の2要素間を相互に結合するクラッチの締結により得られる、第3差動装置で相互に連結された第1および第2差動装置の上記要素が一体回転可能なハイモードとの2種類の無段変速比モードを有するものである。
On the other hand, the applicant of the present application is developing and proposing the following as a hybrid transmission having two types of shift modes.
This hybrid transmission
Comprising first, second, and third differentials that determine the rotational state of the two elements and determine the rotational state of the other elements;
One element of the first and second differential devices is coupled to each other, and one element of the first and second differential devices excluding these elements is connected to each other by a third differential device;
The engine, output shaft, and two motors / generators are coupled to the components of the first and second differential units including the above elements, and the correlation between these engines, the output shaft, and the two motors / generators is correlated. Let
The direction in which the rotational speeds of the elements of the first and second differential units connected to each other by the third differential unit approach or move away from each other, obtained by fastening a brake that fixes one element of the third differential unit Of the first and second differential devices connected to each other by the third differential device, which is obtained by engaging a low mode that can be changed to a low and a clutch that couples the two elements of the third differential device to each other. The element has two continuously variable transmission ratio modes including a high mode in which the elements can rotate integrally.

かかるハイブリッド変速機においても、上記ローモードからハイモードへの変速モード切り替えを、エンジン出力が大きくされた状態で無段変速下に行おうとすると、これら両モードでのモータ/ジェネレータ通過パワーが共に同じになる同期点でモード切り替えを行うのが一般的であることから、そして当該同期点で一方のモータ/ジェネレータのトルク分担が他方のモータ/ジェネレータのそれよりも大きくなり、当該一方のモータ/ジェネレータが大きな要求トルク故に大型化してハイブリッド変速機の大型化を招く。
従って、本願出願人の提案になる開発中の上記ハイブリッド変速機にも、大型になるのを防止する対策が要求されるが、従来は前記したように、その対策技術が全くなかったため、当該ハイブリッド変速機の大型化を防止する手だてがなかった。
Even in such a hybrid transmission, if the shift mode switching from the low mode to the high mode is performed under continuously variable transmission with the engine output increased, the motor / generator passing power in both modes is the same. Since the mode switching is generally performed at the synchronization point at which the torque of one motor / generator is larger than that of the other motor / generator at the synchronization point, the one motor / generator However, because of the large required torque, the size of the hybrid transmission increases.
Accordingly, the hybrid transmission under development proposed by the applicant of the present application is also required to have a countermeasure for preventing the increase in size. There was no way to prevent the transmission from becoming larger.

本発明は、本願出願人の提案になる開発中の上記ハイブリッド変速機においては、上記一方のモータ/ジェネレータのトルク分担が、同期点からハイ側方向にずれるにつれて低下するとの事実認識にもとづき、
ローモードからハイモードへの変速モード切り替えを、同期点よりもハイ側で開始させることにより、上記一方のモータ/ジェネレータのトルク分担が小さくなったところで上記のモード切り替えを開始させるようになし、これにより、問題となっていた当該モータ/ジェネレータの大型化を回避し得るようにしたハイブリッド変速機のモード切り替え制御装置を提案することを目的とする。
The present invention is based on the recognition that in the hybrid transmission under development proposed by the applicant of the present application, the torque sharing of the one motor / generator decreases as it shifts from the synchronization point to the high side.
By starting the shift mode switching from the low mode to the high mode on the high side from the synchronization point, the mode switching is started when the torque sharing of the one motor / generator becomes small. Accordingly, an object of the present invention is to propose a mode change control device for a hybrid transmission that can avoid the problem of an increase in size of the motor / generator.

この目的のため、本発明によるモード切り替え制御装置は、請求項1に記載のごとく、
本願出願人の提案になる開発中の上記ハイブリッド変速機を要旨構成を基礎前提とし、
上記ローモードからハイモードへのモード切り替えを、両変速モードのモータ/ジェネレータ通過パワーが同じになる同期点を越えてハイ側で開始させるよう構成したものである。
For this purpose, the mode switching control device according to the present invention is as described in claim 1,
Based on the gist configuration as a basic premise of the above hybrid transmission under development proposed by the applicant of the present application,
The mode switching from the low mode to the high mode is configured to start on the high side beyond the synchronization point where the motor / generator passing power in the two speed change modes becomes the same.

かかる本発明のモード切り替え制御装置によれば、上記ローモードからハイモードへのモード切り替えを同期点よりもハイ側で開始させるため、
同期点付近で一方のモータ/ジェネレータのトルク分担が大きくても、当該モータ/ジェネレータのトルク分担が低下する同期点よりもハイ側で上記のモード切り替えを開始させることとなる。
従って、エンジン出力を大きくした状態で上記のモード切り替えが行われる場合でも、モータ/ジェネレータの要求トルクが問題となるほど大きくなることがなく、モータ/ジェネレータの大型化、ひいてはハイブリッド変速機の大型化に関する前記の問題を解消することができる。
According to the mode switching control device of the present invention, in order to start mode switching from the low mode to the high mode on the high side from the synchronization point,
Even if the torque sharing of one motor / generator is large near the synchronization point, the mode switching is started on the higher side than the synchronization point where the torque sharing of the motor / generator is reduced.
Therefore, even when the above-described mode switching is performed with the engine output increased, the required torque of the motor / generator does not increase so much as to cause a problem, and the motor / generator is increased in size, and thus the hybrid transmission is increased in size. The above problem can be solved.

しかも当該問題解決を、モード切り替えタイミングの好適な選択により実現することから、設計上の困難を伴うことがなく安価に上記の作用効果を達成し得る。   In addition, since the problem solving is realized by suitable selection of the mode switching timing, the above-described effects can be achieved at low cost without any design difficulties.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は、本発明の一実施例になるモード切り替え制御装置を具えたハイブリッド変速機を示し、これを本実施例においては、後輪駆動車(FR車)用のトランスミッションとして用いるのに有用な以下の構成となす。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 shows a hybrid transmission having a mode switching control device according to an embodiment of the present invention, which is useful in this embodiment as a transmission for a rear wheel drive vehicle (FR vehicle). The configuration is as follows.

図において1は変速機ケースを示し、該変速機ケース1の軸線方向(図の左右方向)右側(エンジンENGから遠い後端)に3個の単純遊星歯車組、つまりフエンジンENGに近いフロント側遊星歯車組GF、中央の遊星歯車組GC、およびリヤ側遊星歯車組GRを同軸に配して内蔵し、また、図の左側(エンジンENGに近い前側)に例えば複合電流2層モータ2を可とするモータ/ジェネレータ組を上記の遊星歯車組に対し同軸に配して内蔵する。   In the figure, reference numeral 1 denotes a transmission case. Three simple planetary gear sets on the right side (the rear end far from the engine ENG) in the axial direction (left-right direction in the figure) of the transmission case 1, that is, the front side close to the engine ENG. A planetary gear set GF, a central planetary gear set GC, and a rear planetary gear set GR are arranged coaxially and built in, and a composite current two-layer motor 2 can be provided on the left side of the figure (front side close to the engine ENG), for example. The motor / generator set is arranged coaxially with respect to the planetary gear set.

フロント側遊星歯車組GFは本発明における第1差動装置G1を成し、中央の遊星歯車組GCは本発明における第3差動装置G3を成し、リヤ側遊星歯車組GRは本発明における第2差動装置G2を成す。
これらフロント側遊星歯車組GF、中央の遊星歯車組GC、およびリヤ側遊星歯車組GRはそれぞれ、サンギヤSf,Sc,Sr、リングギヤRf,Rc,Rr、およびキャリアCf,Cc,Crの3要素を具えた2自由度の差動装置を構成する。
乾式クラッチ(エンジンクラッチ)Cinを経てエンジンENGの回転を入力される入力軸3(後述の共線図では入力Inとして示す)にキャリアCfおよびリングギヤRrを結合し、入力軸3に同軸に配置した出力軸4(後述の共線図では出力Outとして示す)にキャリアCrを結合する。
The front planetary gear set GF constitutes the first differential gear G1 in the present invention, the central planetary gear set GC constitutes the third differential gear G3 in the present invention, and the rear planetary gear set GR in the present invention. This constitutes the second differential device G2.
Each of the front planetary gear set GF, the central planetary gear set GC, and the rear planetary gear set GR includes three elements: a sun gear Sf, Sc, Sr, a ring gear Rf, Rc, Rr, and a carrier Cf, Cc, Cr. A differential device having two degrees of freedom is provided.
The carrier Cf and the ring gear Rr are connected to the input shaft 3 coaxially arranged on the input shaft 3 (shown as input In in the collinear diagram described later) to which the rotation of the engine ENG is input via the dry clutch (engine clutch) Cin. The carrier Cr is coupled to the output shaft 4 (shown as output Out in the collinear diagram described later).

複合電流2層モータ2は、内側ロータ2riと、これを包囲する環状の外側ロータ2roとを、変速機ケース1内に同軸に回転自在に支持して具え、これら内側ロータ2riおよび外側ロータ2ro間における環状空間に同軸に配置した環状ステ-タ2sを変速機ケース1に固設して構成する。
環状ステータ2sと外側ロータ2roとで外側のモータ/ジェネレータである第1のモータ/ジェネレータMG1を構成し、環状ステータ2sと内側ロータ2riとで内側のモータ/ジェネレータである第2のモータ/ジェネレータMG2を構成する。
ここでモータ/ジェネレータMG1,MG2はそれぞれ、複合電流をモータ側が負荷として供給される時は供給電流に応じた個々の方向と速度(停止を含む)の回転を出力するモータとして機能し、複合電流を発電機側が負荷として印加された時は外力による回転に応じた電力を発生する発電機として機能する。
The composite current two-layer motor 2 includes an inner rotor 2ri and an annular outer rotor 2ro that surrounds the inner rotor 2ri so as to be coaxially and rotatably supported in the transmission case 1, and between the inner rotor 2ri and the outer rotor 2ro. An annular stator 2s disposed coaxially in the annular space is fixed to the transmission case 1.
The annular stator 2s and the outer rotor 2ro constitute a first motor / generator MG1 that is an outer motor / generator, and the annular stator 2s and the inner rotor 2ri constitute a second motor / generator MG2 that is an inner motor / generator. Configure.
Here, each of the motor / generators MG1 and MG2 functions as a motor that outputs the rotation of each direction and speed (including stop) according to the supplied current when the combined current is supplied as a load on the motor side. When the generator side is applied as a load, it functions as a generator that generates electric power according to rotation by an external force.

第1モータ/ジェネレータMG1(外側ロータ2ro)はリングギヤRfに結合し、第2モータ/ジェネレータMG2(内側ロータ2ri)は、相互に結合したサンギヤSf,Scに結合する。
リングギヤRcおよびサンギヤSrを相互に結合し、これらの結合体をハイクラッチChiによりキャリアCcに結合可能とし、このキャリアCcをローブレーキBLOにより固定可能とすると共に、ワンウェイクラッチOWCにより変速機入力回転と逆の方向へ常時回転不能にする。
リングギヤRfはロー&ハイモードブレーキBLHにより固定可能とする。
First motor / generator MG1 (outer rotor 2ro) is coupled to ring gear Rf, and second motor / generator MG2 (inner rotor 2ri) is coupled to mutually coupled sun gears Sf and Sc.
The ring gear Rc and the sun gear Sr are coupled to each other, and these coupled bodies can be coupled to the carrier Cc by the high clutch Chi. The carrier Cc can be fixed by the low brake B LO, and the transmission input rotation by the one-way clutch OWC. Make it always impossible to rotate in the opposite direction.
Ring gear Rf can be fixed by low and high mode brake B LH .

上記の構成になるハイブリッド変速機を共線図により表すと、ロー側変速比領域において用いるローモードでは図2のごとくになり、ハイ側変速比領域において用いるハイモードでは図3のごとくになる。
図2に明示するように、第1差動装置G1を成すフロント側遊星歯車組GFにおける要素の回転速度順は、リングギヤRf、キャリアCf、およびサンギヤSfであり、第2差動装置G2を成すリヤ側遊星歯車組GRにおける要素の回転速度順はリングギヤRr、キャリアCr、およびサンギヤSrである。
フロント側遊星歯車組GFにおける回転速度順が中間のキャリアCfと、リヤ側遊星歯車組GRにおける回転速度順が第1位のリングギヤRrとを相互に結合し、リヤ側遊星歯車組GRにおける回転速度順が第3位のサンギヤSrとフロント側遊星歯車組GFにおける回転速度順が第3位のサンギヤSfとにそれぞれ、第3差動装置G3を成す中央の遊星歯車組GCにおけるリングギヤRcおよびサンギヤScを結合する。
When the hybrid transmission configured as described above is represented by a nomograph, the low mode used in the low gear ratio region is as shown in FIG. 2, and the high mode used in the high gear ratio region is as shown in FIG.
As clearly shown in FIG. 2, the rotational order of the elements in the front planetary gear set GF constituting the first differential gear G1 is the ring gear Rf, the carrier Cf, and the sun gear Sf, and constitutes the second differential gear G2. The order of rotation speed of the elements in the rear planetary gear set GR is the ring gear Rr, the carrier Cr, and the sun gear Sr.
The carrier Cf with the middle rotational speed in the front planetary gear set GF and the ring gear Rr with the first rotational speed order in the rear planetary gear set GR are mutually coupled, and the rotational speed in the rear planetary gear set GR The ring gear Rc and the sun gear Sc in the central planetary gear set GC constituting the third differential device G3 are respectively the sun gear Sr with the third order and the sun gear Sf with the third order of the rotational speed in the front planetary gear set GF. Join.

また、遊星歯車組GCのキャリアCcを固定するローブレーキBLO、および、このキャリアCcを変速機入力回転と逆の方向へ常時回転不能にするワンウェイクラッチOWCを設けると共に、遊星歯車組GCのキャリアCcおよびリングギヤRcを相互に結合するハイクラッチChiを設ける。
そして、フロント側遊星歯車組GFのリングギヤRfにモータ/ジェネレータMG1を結合し、フロント側遊星歯車組GFのキャリアCfにエンジンENGからの入力Inを結合し、リヤ側遊星歯車組GRのキャリアCrに車輪駆動系への出力Outを結合し、フロント側遊星歯車組GFのサンギヤSfにモータ/ジェネレータMG2を結合する。
In addition, a low brake B LO for fixing the carrier Cc of the planetary gear set GC, a one-way clutch OWC that always prevents the carrier Cc from rotating in the direction opposite to the transmission input rotation, and a carrier for the planetary gear set GC are provided. A high clutch Chi that couples Cc and ring gear Rc to each other is provided.
The motor / generator MG1 is coupled to the ring gear Rf of the front planetary gear set GF, the input In from the engine ENG is coupled to the carrier Cf of the front planetary gear set GF, and the carrier Cr of the rear planetary gear set GR is coupled. The output Out to the wheel drive system is coupled, and the motor / generator MG2 is coupled to the sun gear Sf of the front planetary gear set GF.

なお、図2および図3の横軸は遊星歯車組GF,GRのギヤ比により決まる回転要素間の距離比、つまりリングギヤRrおよびキャリアCr間の距離を1とした時のキャリアCf(リングギヤRr)およびリングギヤRf間の距離の比をαで示し、キャリアCrおよびサンギヤSr(サンギヤSf)間の距離の比をβで示し、
また、サンギヤScおよびキャリアCc間の距離を1とした時のキャリアCcおよびリングギヤRc間の距離の比をδで示す。
2 and 3, the horizontal axis indicates the distance ratio between the rotating elements determined by the gear ratio of the planetary gear sets GF and GR, that is, the carrier Cf (ring gear Rr) when the distance between the ring gear Rr and the carrier Cr is 1. The ratio of the distance between the ring gear Rf and the ring gear Rf is indicated by α, the ratio of the distance between the carrier Cr and the sun gear Sr (sun gear Sf) is indicated by β,
Further, the ratio of the distance between the carrier Cc and the ring gear Rc when the distance between the sun gear Sc and the carrier Cc is 1 is denoted by δ.

図2の共線図により表されるローモードでの変速を以下に説明するに、このモードでは、ローブレーキBLOの作動によりキャリアCcを固定する。
かようにローブレーキBLOを作動させた状態でのローモードでは、遊星歯車組GCに係わる図2のレバー(同符号GCで示す)が図示例のごとくになり、サンギヤSf,Scに対してサンギヤSrの回転が、リングギヤRcおよびサンギヤSc間の歯数比で決まる逆回転となる。
従って、遊星歯車組GFに係わる図2のレバー(同符号GFで示す)、および遊星歯車組GRに係わる図2のレバー(同符号GRで示す)が図示例のごとくになり、キャリアCrに結合させた出力Outの回転数が図2から明かなように入力Inの回転数よりも低くなり、このため当該ローモードはロー側変速比の領域で使用する。
To be described below the shift in the low mode, represented by the diagram of FIG 2, in this mode, to secure the carrier Cc by the operation of low brake B LO.
In the low mode with the low brake B LO actuated in this way, the lever of FIG. 2 (indicated by the same symbol GC) relating to the planetary gear set GC is similar to the illustrated example, and the sun gears Sf, Sc The rotation of the sun gear Sr is the reverse rotation determined by the gear ratio between the ring gear Rc and the sun gear Sc.
Therefore, the lever of FIG. 2 related to the planetary gear set GF (indicated by the same symbol GF) and the lever of FIG. 2 related to the planetary gear set GR (indicated by the same symbol GR) are similar to the example shown in FIG. As is apparent from FIG. 2, the rotation speed of the output Out thus made is lower than the rotation speed of the input In. Therefore, the low mode is used in the region of the low gear ratio.

ここで入力Inの回転を一定とすると、モータ/ジェネレータMG2によりサンギヤSfの正回転を高くしてリングギヤRcの逆回転を上昇させることで、このリングギヤRcに結合されたサンギヤSrの逆回転が上昇して出力Outの回転が低下し、変速比をロー側へ移行させることができ、さらにはロー側無限大(停車)の変速比から後進変速比へと移行させることができる。
ところで図2の共線図で表されるローモードは自由度が2であり、従って無段変速比モードとなる。
Assuming that the rotation of the input In is constant, the reverse rotation of the sun gear Sr coupled to the ring gear Rc is increased by increasing the reverse rotation of the ring gear Rc by increasing the positive rotation of the sun gear Sf by the motor / generator MG2. As a result, the rotation of the output Out decreases, the gear ratio can be shifted to the low side, and further, the gear ratio can be shifted from the low side infinite (stopped) gear ratio to the reverse gear ratio.
By the way, the low mode represented by the collinear chart of FIG. 2 has a degree of freedom of 2, and is therefore a continuously variable transmission ratio mode.

次いで、図3の共線図により表されるハイモードでの変速を説明するに、このハイモードでは、ハイクラッチChiの締結により遊星歯車組GCのキャリアCcおよびリングギヤRc間を結合させる。
この場合、遊星歯車組GCの全ての回転要素が一体的に回転される状態になることから、図3の共線図により示すごとくサンギヤSrがサンギヤSf,Scに一致する。
この時、レバーGR(G2)がレバーGF(G1)上に乗り、遊星歯車組GF,GRにより構成されるギヤ列が図3のレバーGF(G1)により例示される4要素2自由度の一直線で表される変速状態を提供し、回転要素の回転速度順にモータ/ジェネレータMG1、エンジンENGからの入力In、車輪駆動系への出力Out、モータ/ジェネレータMG2の配列となる。
Next, shifting in the high mode represented by the collinear diagram of FIG. 3 will be described. In this high mode, the carrier Cc and the ring gear Rc of the planetary gear set GC are coupled by engaging the high clutch Chi.
In this case, since all the rotating elements of the planetary gear set GC are rotated integrally, the sun gear Sr coincides with the sun gears Sf and Sc as shown in the alignment chart of FIG.
At this time, the lever GR (G2) rides on the lever GF (G1), and the gear train composed of the planetary gear sets GF and GR is a straight line of four elements and two degrees of freedom exemplified by the lever GF (G1) in FIG. The motor / generator MG1, the input In from the engine ENG, the output Out to the wheel drive system, and the motor / generator MG2 are arranged in the order of the rotational speeds of the rotating elements.

従って、遊星歯車組GFに係わる図3のレバー(同符号GFで示す)、および遊星歯車組GRに係わる図3のレバー(同符号GRで示す)が図示例のごとくになり、キャリアCrに結合させた出力Outの回転数が図3から明かなように入力Inの回転数よりも低くなり、このため当該ハイモード(第2変速モード)はハイ側変速比の領域で使用する。
ところで図3の共線図で表されるハイモードも、図2のローモードと同じく自由度が2であり、従って無段変速比モードとなる。
Therefore, the lever of FIG. 3 related to the planetary gear set GF (indicated by the same symbol GF) and the lever of FIG. 3 related to the planetary gear set GR (indicated by the same symbol GR) are similar to the illustrated example, and are coupled to the carrier Cr. As is apparent from FIG. 3, the rotation speed of the output Out thus set is lower than the rotation speed of the input In. Therefore, the high mode (second transmission mode) is used in the high gear ratio region.
By the way, the high mode represented by the collinear chart of FIG. 3 has the same degree of freedom as the low mode of FIG.

かようにハイクラッチChiを締結させた状態でのハイモードでは、第2モータ/ジェネレータMG2が後進(逆)回転状態である時、このモータ/ジェネレータMG2で発電しながら第1モータ/ジェネレータMG1のモータ駆動により、また、逆に第2モータ/ジェネレータMG2が前進(正)回転状態である時、第1モータ/ジェネレータMG1で発電しながら第2モータ/ジェネレータMG2のモータ駆動により、電気の収支が釣り合った所謂ダイレクト配電状態で車両を運転することができる。
更にこのダイレクト配電状態から、モータ駆動される側のモータ/ジェネレータ出力を大きくし、発電する側のモータ/ジェネレータ発電力を小さくすることで、エンジンパワー以上の出力を取り出すことが可能となり、
逆にダイレクト配電状態から、モータ駆動される側のモータ/ジェネレータ出力を小さくし、発電する側のモータ/ジェネレータ発電力を大きくすることで、充電可能な状態にすることが可能となる。
Thus, in the high mode with the high clutch Chi engaged, when the second motor / generator MG2 is in the reverse (reverse) rotation state, the motor / generator MG2 generates power while the first motor / generator MG1 generates power. When the second motor / generator MG2 is in the forward (forward) rotation state by the motor driving, and the second motor / generator MG2 is generating power while the second motor / generator MG2 is generating electric power, The vehicle can be driven in a balanced so-called direct power distribution state.
Furthermore, from this direct power distribution state, by increasing the motor / generator output on the side driven by the motor and reducing the motor / generator generated power on the power generation side, it becomes possible to take out the output exceeding the engine power.
Conversely, from the direct power distribution state, the motor / generator output on the side driven by the motor is reduced, and the motor / generator generated power on the power generation side is increased, so that a chargeable state can be achieved.

上記したハイブリッド変速機の動作特性を図4に示し、この図4は、前記の比α,β,δをそれぞれα=1.9、β=1.8、δ=0.42とした場合において、
ハイクラッチChiを締結させたハイモードで電力収支を釣り合わせた場合におけるモータ/ジェネレータMG1,MG2の回転数Nmg1,Nmg2およびトルクTmg1,Tmg2、並びに通過電力Powerと、
ローブレーキBLOを締結させたローモードで電力収支を釣り合わせた場合におけるモータ/ジェネレータMG1,MG2の回転数Nmg1’,Nmg2’およびトルクTmg1’,Tmg2’、並びに通過電力Power’をそれぞれ、
入力部における回転数、トルク、および動力により正規化し、変速機の入力回転数に対する出力回転数の速度比(変速比の逆数)の関数として示す。
FIG. 4 shows the operating characteristics of the above-described hybrid transmission, and FIG. 4 shows the case where the ratios α, β, and δ are α = 1.9, β = 1.8, and δ = 0.42, respectively.
The motor / generator MG1, MG2 rotation speed Nmg1, Nmg2 and torque Tmg1, Tmg2, as well as the passing power Power when the power balance is balanced in the high mode with the high clutch Chi engaged.
The motor / generator MG1, MG2 rotation speed Nmg1 ', Nmg2', torque Tmg1 ', Tmg2', and passing power Power 'when the power balance is balanced in the low mode with the low brake B LO engaged,
It is normalized by the rotational speed, torque, and power in the input section, and is shown as a function of the speed ratio of the output rotational speed to the input rotational speed of the transmission (the reciprocal of the speed ratio).

本実施例においては、ハイモードでのモータ/ジェネレータMG1,MG2の通過電力Powerと、ローモードでのモータ/ジェネレータMG1,MG2の通過電力Power’とが共に0となる同期点に対応した速度比ではなく、これよりハイ側の速度比iを境に、この速度比iよりも後進変速比を含むロー側変速比領域でローモードを選択し、速度比iよりもハイ側変速比領域でハイモードを選択使用する。   In this embodiment, the speed ratio corresponding to the synchronization point where the passing power Power of the motor / generators MG1 and MG2 in the high mode and the passing power Power 'of the motor / generators MG1 and MG2 in the low mode are both 0. Instead, the low mode is selected in the low gear ratio region including the reverse gear ratio from the speed ratio i, and the high gear ratio region is higher than the speed ratio i, with the high speed ratio i as a boundary. Select and use the mode.

何れのモードでも、第1モータ/ジェネレータMG1または第2モータ/ジェネレータMG2の回転数が0となる速度比は2種類あり、このポイントでは電気的に動力を伝達することなく車両をエンジンENGのみで運転することができる。
また、これら2つのポイント間における変速比では、変速機として伝達する動力に対して、機械的な伝達よりも効率の低い電気的な動力伝達の伝達動力割合を小さくすることができるので、伝動効率を向上させることができる。
In any mode, there are two speed ratios at which the rotation speed of the first motor / generator MG1 or the second motor / generator MG2 is 0. At this point, the vehicle can be driven only by the engine ENG without electrically transmitting power. You can drive.
Also, with the gear ratio between these two points, the transmission power ratio of electrical power transmission, which is less efficient than mechanical transmission, can be reduced with respect to the power transmitted as a transmission. Can be improved.

更に、エンジン出力を0にして2個のモータ/ジェネレータMG1,MG2のモータ駆動により車両を電気的な動力のみにより電気(EV)走行させることができ、この間乾式クラッチCinを遮断してエンジンENGを変速機から切り離しておけば、エンジンの引きずりを生ずることがなくて効率の良いEV走行を実現することができる。   Furthermore, the engine output is set to 0 and the motors of the two motor / generators MG1 and MG2 can be driven to drive the vehicle by electric power only (EV). During this time, the dry clutch Cin is disconnected and the engine ENG is turned off. If it is separated from the transmission, it is possible to achieve efficient EV traveling without causing drag of the engine.

なお何れのモードでも、ロー&ハイモードブレーキBLHを作動させてリングギヤRfを固定すれば、図2および図3の共線図が自由度1にされることから、固定変速比を実現することができ、この時モータ/ジェネレータMG2による駆動力アシストおよびエネルギー回生が可能となって燃費の低減をも実現することができる。 In any mode, if the ring gear Rf is fixed by operating the low & high mode brake B LH , the alignment chart of FIG. 2 and FIG. At this time, driving force assist and energy regeneration can be performed by the motor / generator MG2, and fuel consumption can be reduced.

図4の動作特性から明らかなように、同期点付近ではモータ/ジェネレータMG2のトルク(Tmg2)分担がモータ/ジェネレータMG1のトルク分担(Tmg1)よりも、絶対値比較においてかなり大きい。   As apparent from the operating characteristics of FIG. 4, in the vicinity of the synchronization point, the torque (Tmg2) share of the motor / generator MG2 is considerably larger in the absolute value comparison than the torque share (Tmg1) of the motor / generator MG1.

最大駆動力を発生している状態でローモードからハイモードへの切り替えを行うに際し、このモード切り替えを同期点で行った場合、モータ/ジェネレータMG2が分担するトルクは、エンジントルクの約5割を分担しなければならず、エンジン最大トルクが102Nmであればモータ/ジェネレータMG2は50Nmを発生しなければならない。
同軸2層モータ2において内周に位置するモータ/ジェネレータMG2の最大トルクが上記のように50Nmであるとすると、外周に位置するモータ/ジェネレータMG1の最大トルクは、モータ/ジェネレータMG1よりも大きなトルク容量を持つことになる。
When switching from low mode to high mode while the maximum driving force is generated, if this mode switching is performed at the synchronization point, the torque shared by the motor / generator MG2 is approximately 50% of the engine torque. If the engine maximum torque is 102 Nm, the motor / generator MG2 must generate 50 Nm.
Assuming that the maximum torque of the motor / generator MG2 located on the inner circumference of the coaxial two-layer motor 2 is 50 Nm as described above, the maximum torque of the motor / generator MG1 located on the outer circumference is larger than that of the motor / generator MG1. Will have capacity.

しかし、同期点においてモータ/ジェネレータMG1が分担すべきトルクTmg1は、図4から明らかなように、モータ/ジェネレータMG2が分担すべきトルクTmg2よりも小さい。
それにもかかわらず上記の通り、モータ/ジェネレータMG1の最大トルクが、モータ/ジェネレータMG1よりも大きいということは、モータ/ジェネレータMG1が必要以上の過大なトルク容量を持つこととなり、結果として、同軸2層モータ2の大型化を免れず、ハイブリッド変速機の小型化を妨げる。
そこで本実施例においては前記したごとく、モータ/ジェネレータMG2のトルク分担が大きくなる同期点でローモードからハイモードへのモード切り替えを行わず、同期点よりもハイ側における、図4にiにより例示した速度比で、当該モード切り替えを行わせることとする。
However, as apparent from FIG. 4, the torque Tmg1 to be shared by the motor / generator MG1 at the synchronization point is smaller than the torque Tmg2 to be shared by the motor / generator MG2.
Nevertheless, as described above, the maximum torque of the motor / generator MG1 is larger than that of the motor / generator MG1, which means that the motor / generator MG1 has an excessive torque capacity more than necessary. The increase in the size of the layer motor 2 is unavoidable and hinders the downsizing of the hybrid transmission.
Therefore, in the present embodiment, as described above, the mode switching from the low mode to the high mode is not performed at the synchronization point where the torque sharing of the motor / generator MG2 becomes large, and is illustrated by i in FIG. The mode switching is performed at the speed ratio.

図4から明らかなように、モータ/ジェネレータMG2のトルク(Tmg2)分担は同期点よりもハイ側になるにつれて低下し、上記の通り同期点よりハイ側の速度比iでローモードからハイモードへのモード切り替えを行う場合、同期点でモード切り替えを行う場合に較べ、図4にΔTmg2で示す分だけモータ/ジェネレータMG2のトルク(Tmg2)分担が低下する。
これにより、モータ/ジェネレータMG2を小型化し得ることとなり、その分、モータ/ジェネレータMG1も小型化され、モータ/ジェネレータMG1の上記トルク容量過大を緩和、若しくは無くして、ハイブリッド変速機の小型化を実現することができる。
As is clear from FIG. 4, the torque (Tmg2) sharing of the motor / generator MG2 decreases as it becomes higher than the synchronization point, and from the low mode to the high mode at the speed ratio i higher than the synchronization point as described above. When the mode switching is performed, the torque (Tmg2) sharing of the motor / generator MG2 is reduced by the amount indicated by ΔTmg2 in FIG. 4 as compared to the mode switching at the synchronization point.
As a result, the motor / generator MG2 can be miniaturized, and the motor / generator MG1 can be miniaturized accordingly, and the excessive torque capacity of the motor / generator MG1 can be reduced or eliminated, and the hybrid transmission can be miniaturized. can do.

上記した考え方に基づきハイブリッド変速機を、ローモードからハイモードへ、アップシフトモード切り替えする制御を以下に説明する。
このモード切り替えは前記した通り、ローブレーキBLOを締結状態から解放すると共にハイクラッチChiを解放状態から締結させることにより行うが、当該モード切り替えを図4に示すように同期点よりもハイ側の速度比iで開始させる。
The control for switching the upshift mode of the hybrid transmission from the low mode to the high mode based on the above concept will be described below.
As described above, this mode switching is performed by releasing the low brake BLO from the engaged state and engaging the high clutch Chi from the released state. However, as shown in FIG. Start with speed ratio i.

具体的には図5に示すように、先ずステップS1で、システム制御プログラムの実行によりモード切り替えを行うべきか否かを決定する。
ステップS2では、ステップS1でローモードからハイモードへのアップシフトモード切り替えを行うべきとの決定がなされたか否かをチェックし、当該アップシフトモード切り替え指令がなければ制御をステップS1に戻してここでのシステム制御プログラムを継続させる。
Specifically, as shown in FIG. 5, first, in step S1, it is determined whether or not mode switching should be performed by executing a system control program.
In step S2, it is checked whether or not it is determined in step S1 that the upshift mode switching from the low mode to the high mode should be performed. If there is no upshift mode switching command, the control is returned to step S1. Continue the system control program at.

ステップS2でアップシフトモード切り替え指令が有ると判定するときは、ステップS3において、アップシフトモード切り替えに要するモード切り替え時間Δt、および、エンジントルクTeから、モータ/ジェネレータMG2の回転数N2に関する、モード切り替え終了判定回転数N2*と、ローブレーキ解放開始判定回転数N2brkと、ハイクラッチ締結開始判定回転数N2clを決定する。   When it is determined in step S2 that there is an upshift mode switching command, in step S3, mode switching related to the rotational speed N2 of the motor / generator MG2 is determined from the mode switching time Δt required for upshift mode switching and the engine torque Te. The end determination rotation speed N2 *, the low brake release start determination rotation speed N2brk, and the high clutch engagement start determination rotation speed N2cl are determined.

ここで、モード切り替え終了判定回転数N2*と、ローブレーキ解放開始判定回転数N2brkと、ハイクラッチ締結開始判定回転数N2clとの間には、図7(b)に示すようにN2* >N2brk> N2clの関係を持たせ、N2brkは図4の同期点よりもハイ側の前記した速度比iに対応させ、N2clはローブレーキBLOの解放完了(ハイクラッチChiの締結開始)に対応させ、N2*はモード切り替え終了に対応させる。
なお図7(b)では、図7(a)と共に、モータ/ジェネレータMG2の回転数N2がローブレーキ解放開始判定回転数N2brkに低下した時をt1で、また、ハイクラッチ締結開始判定回転数N2clに低下した時をt2で、更に、モード切り替え終了判定回転数N2*に低下した時をt3で示す。
Here, as shown in FIG. 7B, N2 *> N2brk between the mode switching end determination rotation speed N2 *, the low brake release start determination rotation speed N2brk, and the high clutch engagement start determination rotation speed N2cl. > N2cl relationship to have a, N2brk is made to correspond to the above-mentioned speed ratio i of the high-side of the synchronization point in FIG. 4, N2cl is made to correspond to release complete the low brake B LO (engagement start of high clutch Chi), N2 * corresponds to the end of mode switching.
7B, in addition to FIG. 7A, the time when the rotational speed N2 of the motor / generator MG2 is reduced to the low brake release start determination rotational speed N2brk is t1, and the high clutch engagement start determination rotational speed N2cl. Is indicated by t2, and when it is further reduced to the mode switching end determination rotational speed N2 *, it is indicated by t3.

図5の次のステップS4では、モータ/ジェネレータMG2の回転数N2がモード切り替え終了判定回転数N2*に上昇したか否か、つまり、図7の瞬時t3に至ったか否かを判定する。
未だであれば、つまり、モード切り替え中である場合は、制御をステップS5に進め、ここでモータ/ジェネレータMG2の回転数N2がローブレーキ解放開始判定回転数N2brkまで低下したか否かを、つまり、図7の瞬時t1に至ったか否かを判定する。
In the next step S4 in FIG. 5, it is determined whether or not the rotation speed N2 of the motor / generator MG2 has increased to the mode switching end determination rotation speed N2 *, that is, whether or not the moment t3 in FIG. 7 has been reached.
If not yet, that is, if the mode is being switched, the control proceeds to step S5, where it is determined whether or not the rotational speed N2 of the motor / generator MG2 has decreased to the low brake release start determination rotational speed N2brk. Then, it is determined whether or not the instant t1 in FIG. 7 has been reached.

ステップS5で瞬時t1に至ったと判定するまでの間は、制御をステップS4に戻してモード切り替え制御を開始させない。
瞬時t1に至ったと判定する場合、制御をステップS6に進め、ここで、エンジントルクTeと、モード切り替え時間Δtとから、ローブレーキ油圧Pbrkに関する目標油圧マップmapPbrkを基に、目標ローブレーキ油圧Pbrk*を図7(a)に示すように求める。
この目標油圧Pbrk*によりローブレーキBLOは、図4の同期点よりもハイ側の速度比iとなる図7の瞬時t1に解放を開始され、結果として、ローモードからハイモードへのアップシフトモード切り替えを、同期点通過後、これよりもハイ側の速度比iで開始させる。
Until it is determined in step S5 that the instant t1 has been reached, the control is returned to step S4 and the mode switching control is not started.
If it is determined that the moment t1 has been reached, the control proceeds to step S6, where the target low brake oil pressure Pbrk * is determined based on the target oil pressure map mapPbrk related to the low brake oil pressure Pbrk from the engine torque Te and the mode switching time Δt. Is obtained as shown in FIG.
Low brake B LO by the target hydraulic Pbrk * is started to release at time t1 of FIG. 7 as the speed ratio i of the high-side of the synchronization point in FIG. 4, as a result, upshift from the low mode to the high mode The mode switching is started at a speed ratio i higher than this after passing through the synchronization point.

かかるローブレーキBLOの解放は、図7の瞬時t2において終了するが、この終了をステップS7〜S9が、N2≦N2clを判定して検知し、このことを示すようにフラグFLAGを1にセットするまでの間、ステップS6を継続的に実行し、ローブレーキBLOの解放を進行させ、図7の瞬時t2においてローブレーキBLOの解放を終了させる。
なお、ローブレーキBLOの解放が終了すると、これにより固定されていたキャリアCcが自由に回転可能になって、図8に示すモード切り替え時の共線図を維持し得なくなるところながら、本実施例ではワンウェイクラッチOWCが反力受けの用をなし、ローブレーキBLOに代わってキャリアCcの回転(図8にa1で示す、入力回転と逆方向の回転)を阻止するため、図8に示すモード切り替え時の共線図を維持することができる。
Release of such low brake B LO is terminated at time t2 in FIG. 7, sets the end step S7~S9 are detected to determine the N2 ≦ N2cl, to 1 a flag FLAG to indicate this fact In the meantime, step S6 is continuously executed to release the low brake BLO , and the release of the low brake BLO is terminated at the instant t2 in FIG.
Note that when the release of the low brake BLO is completed, the carrier Cc that has been fixed can be freely rotated, and the alignment chart at the time of mode switching shown in FIG. 8 cannot be maintained. None use the one-way clutch OWC is receiving reaction force in the example, (shown in Figure 8 a1, input rotation of the rotation and reverse) rotation of the carrier Cc in place of low brake B LO to prevent, shown in FIG. 8 A collinear diagram at the time of mode switching can be maintained.

上記のようにローブレーキBLOの解放が終了すると、ステップS9で1にセットされたフラグFLAGをステップS7がチェックして、制御を順次ステップS10およびステップS11に進め、以下のようにハイクラッチChiの締結を行わせる。
ステップS10では、モータ/ジェネレータMG2の回転数N2と、モード切り替え終了判定回転数N2*との間における偏差ΔN2(=N2*−N2)を演算する。
次のステップS11においては、このモータ/ジェネレータ回転偏差ΔN2と、エンジントルクTeと、モード切り替え時間Δtとから、ハイクラッチ油圧Pclに関する目標油圧マップmapPclを基に、目標ハイクラッチ油圧Pcl*を図7(a)に示すように求め、これを瞬時t2から立ち上げてハイクラッチChiの締結を開始させる。
When the release of the low brake BLO is completed as described above, the flag FLAG set to 1 in step S9 is checked in step S7, and the control is sequentially advanced to steps S10 and S11. Let the conclusion of.
In step S10, a deviation ΔN2 (= N2 * −N2) between the rotational speed N2 of the motor / generator MG2 and the mode switching end determination rotational speed N2 * is calculated.
In the next step S11, the target high clutch hydraulic pressure Pcl * is determined from the motor / generator rotation deviation ΔN2, the engine torque Te, and the mode switching time Δt based on the target hydraulic pressure map mapPcl related to the high clutch hydraulic pressure Pcl. (A) is calculated | required, this is raised from instant t2, and fastening of the high clutch Chi is started.

かかるハイクラッチChiの締結開始により、図8のローモード状態からサンギヤSf(Sc)およびサンギヤSrの回転数が矢a2およびa3で示すように相互に接近し、結果として、サンヤSf(Sc)に結合されたモータ/ジェネレータMG2の回転数がa4で示すように上昇する。
この時、イナーシャの大きいモータ/ジェネレータMG1の回転数を矢a5で示すように低下させて、出力軸Outに駆動力が増大する方向のイナーシャを作用させ、モード切り替えショックが発生する。
With the start of the engagement of the high clutch Chi, the rotational speeds of the sun gear Sf (Sc) and the sun gear Sr approach each other as indicated by arrows a2 and a3 from the low mode state of FIG. 8, and as a result, the sun gear Sf (Sc) The rotational speed of the combined motor / generator MG2 increases as indicated by a4.
At this time, the rotational speed of the motor / generator MG1 having a large inertia is decreased as indicated by an arrow a5, and an inertia in the direction in which the driving force increases is applied to the output shaft Out, and a mode switching shock is generated.

そこで本実施例においては、図7の瞬時t2に上記のごとくハイクラッチの締結が開始されると、モード切り替え終了瞬時t3までの間に、図6に示す以下の処理によりモード切り替えショック対策を行う。
図6のステップS21においては、モータ/ジェネレータMG2の回転数N2と、モード切り替え終了判定回転数N2*との間における偏差ΔN2(=N2*−N2)を演算する。
次のステップS22においては、図5のステップS11で求めた目標ハイクラッチ油圧Pcl*から、モータ/ジェネレータMG1,MG2のモード切り替えショック防止用アシストトルクに関するマップmapF1cl,mapF2clを基に、目標ハイクラッチ油圧Pcl*に応じたモータ/ジェネレータMG1,MG2のモード切り替えショック防止用アシストトルクT1assist,T2assistをそれぞれ決定する。
Therefore, in this embodiment, when the engagement of the high clutch is started as described above at the instant t2 in FIG. 7, the mode switching shock countermeasure is taken by the following processing shown in FIG. 6 until the mode switching end instant t3. .
In step S21 of FIG. 6, a deviation ΔN2 (= N2 * −N2) between the rotational speed N2 of the motor / generator MG2 and the mode switching end determination rotational speed N2 * is calculated.
In the next step S22, the target high clutch hydraulic pressure Pcl * obtained in step S11 of FIG. 5 is used on the basis of maps mapF1cl and mapF2cl regarding the assist torque for preventing the mode switching shock of the motor / generators MG1 and MG2. Assist torques T1assist and T2assist for mode switching shock prevention of motor / generators MG1 and MG2 corresponding to Pcl * are determined.

次いでステップS23において、上記の目標ハイクラッチ油圧Pcl*に応じたモード切り替えショック防止用モータ/ジェネレータアシストトルクT1assist,T2assistと、エンジントルクTeに応じた係数k1(Te),k2(Te)との乗算により、モータ/ジェネレータMG1,MG2のモード切り替えショック防止用目標アシストトルクT1assist*=k1(Te)×T1assist,T2assist*=k2(Te)×T2assistを求め、これらの分だけモータ/ジェネレータMG1,MG2のトルクを増減させる。   Next, in step S23, the mode switching shock prevention motor / generator assist torques T1assist, T2assist according to the target high clutch hydraulic pressure Pcl * are multiplied by the coefficients k1 (Te), k2 (Te) according to the engine torque Te. The target assist torque T1assist * = k1 (Te) × T1assist, T2assist * = k2 (Te) × T2assist for motor / generator MG1 and MG2 mode prevention shocks is obtained. Increase or decrease the torque.

モータ/ジェネレータMG1のモード切り替えショック防止用目標アシストトルクT1assist*は、モータ/ジェネレータMG1のイナーシャによる駆動力の増大を減じてショック軽減を行うもので、モータ/ジェネレータMG2のモード切り替えショック防止用目標アシストトルクT2assist*は、ハイクラッチの締結力とで共線図上のレバーをバランスさせるためのものである。
ここで図4から明らかなように、モータ/ジェネレータMG1のトルク分担はモータ/ジェネレータMG2のそれに較べて小さく、モード切り替えショック防止用目標アシストトルクT1assist*の発生が可能である。
また、トルク分担の大きなモータ/ジェネレータMG2のモード切り替えショック防止用目標アシストトルクT2assist*も、モータ/ジェネレータMG2のトルクを低下させてモード切り替えを助長する方向に作用することから、容易に発生可能である。
Motor / generator MG1 mode switching shock prevention target assist torque T1assist * reduces the increase in driving force due to motor / generator MG1 inertia to reduce shock. Motor / generator MG2 mode switching shock prevention target assist Torque T2assist * is for balancing the levers on the collinear chart with the high clutch engagement force.
As apparent from FIG. 4, the torque sharing of the motor / generator MG1 is smaller than that of the motor / generator MG2, and the target assist torque T1assist * for preventing the mode switching shock can be generated.
Moreover, the target assist torque T2assist * for motor / generator MG2 with large torque sharing can be easily generated because it acts in the direction of mode switching by reducing the torque of the motor / generator MG2. is there.

図5に示すステップS11での前記したハイクラッチの締結を終えると、ステップS4がN2≧N2*の判定により図7の瞬時t3に至ったことを認識するため、制御はステップS12に進められ、ここでモード切り替えを終了し、
更にステップS13において、前記のフラグFLAGを0にリセットし、次回に備える。
When the engagement of the high clutch in step S11 shown in FIG. 5 is finished, the control proceeds to step S12 in order to recognize that step S4 has reached the instant t3 in FIG. 7 by the determination of N2 ≧ N2 *. End the mode switch here,
In step S13, the flag FLAG is reset to 0 to prepare for the next time.

上記のアップシフトモード切り替え制御を図7により付言するに、アップシフトモード切り替え指令が発せられると、モータ/ジェネレータMG2の回転数N2がローブレーキ解放開始判定回転数N2brkに低下した瞬時t1に、つまり、図4の同期点を経てこれよりもハイ側の速度比iになった時に、目標ローブレーキ油圧Pbrk*が低下され、ローブレーキBLOの解放が始まる。
かようにローブレーキBLOが解放されても、図8に示すモード切り替え時の共線図はワンウェイクラッチOWCの係合により維持することができる。
When the upshift mode switching command is issued, the above-mentioned upshift mode switching control is supplemented by FIG. 7. At the instant t1 when the rotation speed N2 of the motor / generator MG2 is reduced to the low brake release start determination rotation speed N2brk, that is, , when it is the speed ratio i of this than the high even side through synchronization point 4, is lowered target low brake hydraulic Pbrk *, release of low brake B LO begins.
Thus, even when the low brake BLO is released, the alignment chart at the time of mode switching shown in FIG. 8 can be maintained by the engagement of the one-way clutch OWC.

ローブレーキBLOが解放されて、モータ/ジェネレータMG2の回転数N2がハイクラッチ締結開始判定回転数N2clまで低下した瞬時t2に、つまり、図4の同期点を経てこれよりもハイ側の速度比iになった時に、ハイクラッチChiの締結が開始される。
かかるハイクラッチChiの締結は、図8のモード切り替え状態から、サンギヤSf(Sc)およびサンギヤSrの回転数を矢a2およびa3で示すように相互に接近させ、結果として、サンギヤSf(Sc)に結合されたモータ/ジェネレータMG2の回転数がa4で示すように上昇する。
この時、イナーシャの大きいモータ/ジェネレータMG1の回転数を矢a5で示すように低下させて、出力軸Outに駆動力が増大する方向のイナーシャを作用させ、モード切り替えショックが発生する。
Low brake B LO is released, the time t2 when the rotational speed N2 is lowered to the high clutch engagement start judgment rotation speed N2cl of the motor / generator MG2, that is, the speed ratio of which from the high even side through synchronization point in FIG. 4 When i is reached, the engagement of the high clutch Chi is started.
The engagement of the high clutch Chi causes the rotational speeds of the sun gear Sf (Sc) and the sun gear Sr to approach each other as indicated by arrows a2 and a3 from the mode switching state of FIG. 8, and as a result, the sun gear Sf (Sc) The rotational speed of the combined motor / generator MG2 increases as indicated by a4.
At this time, the rotational speed of the motor / generator MG1 having a large inertia is decreased as indicated by an arrow a5, and an inertia in the direction in which the driving force increases is applied to the output shaft Out, and a mode switching shock is generated.

ここで本実施例においては、瞬時t2にハイクラッチの締結が開始されると、モード切り替え終了瞬時t3までの間、図6の処理により、目標ハイクラッチ油圧Pcl*およびエンジントルクTeに応じたアシストトルクT1assist*,T2assist*をモータ/ジェネレータMG1,MG2に指令して、上記のモード切り替えショックを軽減する。   Here, in this embodiment, when the engagement of the high clutch is started at the instant t2, the assist according to the target high clutch hydraulic pressure Pcl * and the engine torque Te is performed by the processing of FIG. 6 until the mode switching end instant t3. Command torque T1assist * and T2assist * to motor / generator MG1 and MG2 to reduce the above-mentioned mode switching shock.

上記ハイクラッチの締結進行につれ、モータ/ジェネレータMG2の回転数N2が、図7(b)に示すように上昇し、回転数N2がモード切り替え終了判定回転数N2*になったところで、瞬時t3にモード切り替えが終了する。   As the high clutch is engaged, the rotational speed N2 of the motor / generator MG2 increases as shown in FIG. 7 (b), and when the rotational speed N2 reaches the mode switching end rotational speed N2 *, instant t3 is reached. Mode switching ends.

ところで上記した実施例のモード切り替え制御によれば、ローモードからハイモードへのモード切り替えを、同期点ではなく、これを通過した後のハイ側速度比i(図4参照)で(図7の瞬時t1に)開始させるため、
同期点付近で図4のごとくモータ/ジェネレータMG2のトルク分担が大きくても、当該モータ/ジェネレータMG2のトルク分担が図4にΔTmg2だけ低下した、同期点よりもハイ側の速度比iで上記のモード切り替えを開始させることとなる。
従って、エンジン出力を大きくした状態で上記のモード切り替えが行われる場合でも、モータ/ジェネレータMG2の要求トルクが問題となるほど大きくなることがなく、モータ/ジェネレータMG2の大型化、ひいてはハイブリッド変速機の大型化に関する問題を解消することができる。
By the way, according to the mode switching control of the above-described embodiment, the mode switching from the low mode to the high mode is performed not by the synchronization point but by the high speed ratio i (see FIG. 4) after passing through this (see FIG. 7). To start at instant t1)
Even if the torque sharing of the motor / generator MG2 is large as shown in FIG. 4 near the synchronization point, the torque sharing of the motor / generator MG2 is reduced by ΔTmg2 in FIG. Mode switching will be started.
Therefore, even when the above-described mode switching is performed with the engine output being increased, the required torque of the motor / generator MG2 does not become so large as to be a problem, and the motor / generator MG2 is increased in size, and thus the hybrid transmission is increased in size. Can solve the problem related to the conversion.

特に、図1のようにモータ/ジェネレータMG1,MG2を同心構造とし、モータ/ジェネレータMG2をモータ/ジェネレータMG1の内周に配置する場合、外周にあるモータ/ジェネレータMG1のトルク容量がモータ/ジェネレータMG2のそれよりも大きくなってモータ/ジェネレータMG1のトルク容量が過大になる傾向にあるが、
上記のように、同期点よりもハイ側の速度比iでモード切り替えを開始してモータ/ジェネレータMG2の要求トルクが小さくなったところでモード切り替えを行うようになすことでモータ/ジェネレータMG2のトルク容量を小さくする場合、モータ/ジェネレータMG1の上記トルク容量過大を抑制することができ、モータ/ジェネレータMG1,MG2を含むハイブリッド変速機の大型化を回避し得るという上記の作用効果を更に顕著なものにすることができる。
In particular, when the motor / generators MG1 and MG2 are concentric as shown in FIG. 1 and the motor / generator MG2 is arranged on the inner periphery of the motor / generator MG1, the torque capacity of the motor / generator MG1 on the outer periphery is the motor / generator MG2. However, the torque capacity of the motor / generator MG1 tends to be excessive.
As described above, torque switching of the motor / generator MG2 is performed by starting mode switching at a speed ratio i higher than the synchronization point and switching the mode when the required torque of the motor / generator MG2 becomes small. When the torque is reduced, the above torque capacity of the motor / generator MG1 can be suppressed, and the above-described effect of being able to avoid an increase in the size of the hybrid transmission including the motor / generators MG1, MG2 is made more prominent. can do.

しかも上記の小型化を、モード切り替えタイミングの好適な選択により実現し得ることから、設計上の困難を伴うことがなく安価に上記の作用効果を達成し得る。   In addition, since the above-described downsizing can be realized by suitable selection of the mode switching timing, the above-described effects can be achieved at low cost without design difficulties.

更に、ローブレーキBLOの締結により固定されるキャリアCcを、変速機入力回転と逆の方向へ回転不能にするワンウェイクラッチOWCを設けたから、
前記のモード切り替えに際し、ハイクラッチChiの締結に先立って行うローブレーキBLOの解放の解放時も、図8に示すモード切り替え状態(ローモード状態)を維持することができる。
このためモード切り替えに際しては、先ずローブレーキBLOの解放を行い、次いでハイクラッチChiを締結するだけでモード切り替えを遂行させることができ、
ショック対策用に面倒なローブレーキBLOの解放と、ハイクラッチChiの締結との協調制御が必要でなく、制御ロジックを簡単なものにすることができる。
Furthermore, the carrier Cc to be fixed by engaging the low brake B LO, since providing the one-way clutch OWC that unrotatable to the transmission input rotation and reverse directions,
Upon mode switching of the, during the release of low brake B LO performed prior to the engagement of high clutch Chi freed, it is possible to maintain the mode switching state shown in FIG. 8 (a low mode state).
For this reason, when switching the mode, first the low brake BLO is released, and then the mode can be switched simply by engaging the high clutch Chi.
And release of cumbersome low brake B LO for shock protection, not require cooperative control with the engagement of high clutch Chi, the control logic can be simplified.

なお、ハイクラッチChiの締結により発生する駆動力変化は、モータ/ジェネレータMG1,MG2による前記したトルクアシストで確実になくすことができる。   It should be noted that a change in driving force generated by engagement of the high clutch Chi can be reliably eliminated by the torque assist by the motor / generators MG1 and MG2.

本発明によるモード切り替え制御装置は、図1に示すようなハイブリッド変速機に用途を限られるものではなく、2種類の無段変速比モードを有して両モード間でモード切り替えを行う型式のものであれば、ローモードからハイモードへの切り替え時において全てのハイブリッド変速機に適用することができる。   The mode switching control device according to the present invention is not limited to a hybrid transmission as shown in FIG. 1, but is of a type that has two types of continuously variable transmission ratio modes and performs mode switching between both modes. If so, the present invention can be applied to all hybrid transmissions when switching from the low mode to the high mode.

本発明の一実施例になるモード切り替え制御装置を具えたハイブリッド変速機の縦断側面図である。It is a vertical side view of the hybrid transmission provided with the mode switching control apparatus which becomes one Example of this invention. 図2に示すハイブリッド変速機のローモードでの共線図である。FIG. 3 is an alignment chart in a low mode of the hybrid transmission shown in FIG. 2. 同ハイブリッド変速機のハイモードでの共線図である。It is a collinear diagram in the high mode of the hybrid transmission. 同ハイブリッド変速機の速度比と、両モータ/ジェネレータの回転数およびトルク並びに通過パワーとの関係を、選択されたモード別に示す動作特性図である。FIG. 5 is an operation characteristic diagram showing the relationship between the speed ratio of the hybrid transmission, the rotational speed and torque of both motors / generators, and the passing power for each selected mode. 同ハイブリッド変速機をローモードからハイモードへモード切り替えする時の制御プログラムを示すフローチャートである。It is a flowchart which shows the control program at the time of mode switching from the low mode to the high mode of the hybrid transmission. 同アップシフトモード切り替え時のハイクラッチの締結により発生するショックを軽減するためのアシストトルクを求めるためのプログラムを示すフローチャートである。It is a flowchart which shows the program for calculating | requiring the assist torque for reducing the shock which generate | occur | produces by fastening of the high clutch at the time of the upshift mode switching. 同アップシフトモード切り替え制御の動作タイムチャートで、 (a)は、目標油圧の時系列変化を示すタイムチャート、 (b)は、モータ/ジェネレータ回転数の時系列変化を示すタイムチャートである。FIG. 5 is an operation time chart of the upshift mode switching control, where (a) is a time chart showing a time-series change in target hydraulic pressure, and (b) is a time chart showing a time-series change in motor / generator rotation speed. 同アップシフトモード切り替え制御中における図2のハイブリッド変速機に係わる共線図である。FIG. 3 is a collinear diagram related to the hybrid transmission of FIG. 2 during the upshift mode switching control.

符号の説明Explanation of symbols

1 変速機ケース
ENG エンジン(原動機)
2 複合電流2層モータ
MG1 第1モータ/ジェネレータ
MG2 第2モータ/ジェネレータ
3 入力軸
4 出力軸
G1 第1差動装置
G2 第2差動装置
G3 第3差動装置
GF フロント側遊星歯車組
GC 中間の遊星歯車組
GR リヤ側遊星歯車組
Sf,Sc,Sr サンギヤ
Rf,Rc,Rr リングギヤ
Cf,Cc,Cr キャリア
Cin 乾式クラッチ
Chi ハイクラッチ
BLO ローブレーキ
BLH ロー&ハイモードブレーキ
OWC ワンウェイクラッチ
1 Transmission case
ENG engine (motor)
2 Composite current 2-layer motor
MG1 1st motor / generator
MG2 2nd motor / generator 3 Input shaft 4 Output shaft
G1 first differential
G2 Second differential
G3 Third differential
GF Front planetary gear set
GC middle planetary gear set
GR Rear planetary gear set
Sf, Sc, Sr Sun gear
Rf, Rc, Rr Ring gear
Cf, Cc, Cr carrier
Cin dry clutch
Chi high clutch
B LO low brake
B LH Low & High mode brake
OWC one-way clutch

Claims (2)

2要素の回転状態を決定すると他の要素の回転状態が決まる第1、第2、および第3差動装置を具え、
第1および第2差動装置の1要素を相互に結合すると共に、これら要素を除く第1および第2差動装置の1要素間を相互に第3差動装置により連結し、
前記要素を含む第1および第2差動装置の構成要素にエンジン、出力軸、2つのモータ/ジェネレータを結合して、これらエンジンと、出力軸と、2つのモータ/ジェネレータとの間を相関させ、
第3差動装置の1要素を固定するブレーキの締結により得られる、第3差動装置で相互に連結された第1および第2差動装置の前記要素の回転数が相互に接近または遠ざかる方向へ変化可能なローモードと、第3差動装置の2要素間を相互に結合するクラッチの締結により得られる、第3差動装置で相互に連結された第1および第2差動装置の前記要素が一体回転可能なハイモードとの2種類の無段変速比モードを有したハイブリッド変速機において、
前記ローモードからハイモードへのモード切り替えを、両変速モードのモータ/ジェネレータ通過パワーが同じになる同期点を越えてハイ側で開始させるよう構成したことを特徴とするハイブリッド変速機のモード切り替え制御装置。
Comprising first, second, and third differentials that determine the rotational state of the two elements and determine the rotational state of the other elements;
One element of the first and second differential devices is coupled to each other, and one element of the first and second differential devices excluding these elements is connected to each other by a third differential device;
The engine, the output shaft, and the two motor / generators are coupled to the components of the first and second differential units including the above elements, and the engine, the output shaft, and the two motor / generators are correlated. ,
Direction in which the rotational speeds of the elements of the first and second differential units connected to each other by the third differential unit approach or move away from each other, obtained by fastening a brake that fixes one element of the third differential unit Of the first and second differential devices connected to each other by a third differential device, which is obtained by engaging a low mode that can be changed to a low and a clutch that couples the two elements of the third differential device to each other. In a hybrid transmission having two types of continuously variable transmission ratio modes with a high mode in which elements can rotate integrally,
Mode switching control of a hybrid transmission characterized in that the mode switching from the low mode to the high mode is started on the high side beyond the synchronization point where the motor / generator passing power in the two speed-changing modes is the same. apparatus.
請求項1に記載のモード切り替え制御装置において、
前記ブレーキの締結により固定される第3差動装置の1要素を、変速機入力回転と逆の方向へ回転不能にするワンウェイクラッチを設けたことを特徴とするハイブリッド変速機のモード切り替え制御装置。
In the mode switching control device according to claim 1,
A mode change control device for a hybrid transmission, characterized in that a one-way clutch is provided which makes one element of the third differential gear fixed by fastening of the brake impossible to rotate in the direction opposite to the transmission input rotation.
JP2003375620A 2003-11-05 2003-11-05 Mode change control device for hybrid transmission Expired - Fee Related JP3900138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375620A JP3900138B2 (en) 2003-11-05 2003-11-05 Mode change control device for hybrid transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375620A JP3900138B2 (en) 2003-11-05 2003-11-05 Mode change control device for hybrid transmission

Publications (2)

Publication Number Publication Date
JP2005140194A JP2005140194A (en) 2005-06-02
JP3900138B2 true JP3900138B2 (en) 2007-04-04

Family

ID=34686937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375620A Expired - Fee Related JP3900138B2 (en) 2003-11-05 2003-11-05 Mode change control device for hybrid transmission

Country Status (1)

Country Link
JP (1) JP3900138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183410B2 (en) * 2015-05-26 2017-08-23 トヨタ自動車株式会社 Hybrid vehicle
CN109649152B (en) * 2019-01-15 2023-09-08 无锡商业职业技术学院 Double-planet oil discharging electric hybrid power vehicle transmission system
CN114909467B (en) * 2021-02-07 2024-04-12 广汽埃安新能源汽车有限公司 Vehicle upshift control method, device and storage medium

Also Published As

Publication number Publication date
JP2005140194A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3991970B2 (en) Hybrid vehicle drive system
JP3857669B2 (en) Hybrid transmission
JP3858890B2 (en) Mode change control device for hybrid transmission
JP4293268B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP3858898B2 (en) Mode change control device for hybrid transmission
JP3641244B2 (en) Shift control device for hybrid transmission
JP4228954B2 (en) Hybrid vehicle drive system
JP6460044B2 (en) Drive device
KR101284330B1 (en) Shifting control method of hybrid vehicle
JP2004019801A (en) Hybrid transmission
JP2005186931A (en) Double clutch transmission for hybrid electric vehicle, and its operating method
JP2005147319A (en) Hybrid transmission
JP2007290677A (en) Hybrid drive device
JP2003247613A (en) Hybrid transmission
JP6658282B2 (en) Drive
JP2005337409A (en) Hybrid transmission
US9254837B2 (en) Driving device for vehicle
JP5867589B2 (en) Vehicle drive device
JP4200461B2 (en) Hybrid drive device
JP4325608B2 (en) Control device for driving device
JP3900138B2 (en) Mode change control device for hybrid transmission
JP2004330924A (en) Driving mode transition control device of hybrid car
JP3900134B2 (en) Mode change control device for hybrid transmission
JPWO2018079842A1 (en) Vehicle drive system
JP5786692B2 (en) Drive device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees