JP3898633B2 - Method for producing cathode substrate for FED - Google Patents

Method for producing cathode substrate for FED Download PDF

Info

Publication number
JP3898633B2
JP3898633B2 JP2002352324A JP2002352324A JP3898633B2 JP 3898633 B2 JP3898633 B2 JP 3898633B2 JP 2002352324 A JP2002352324 A JP 2002352324A JP 2002352324 A JP2002352324 A JP 2002352324A JP 3898633 B2 JP3898633 B2 JP 3898633B2
Authority
JP
Japan
Prior art keywords
layer
carbon
electrode layer
fed
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002352324A
Other languages
Japanese (ja)
Other versions
JP2004186015A (en
Inventor
正明 平川
村上  裕彦
治 三浦
一修 小野
謙介 岡坂
健司 藤井
佐々木  貴英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Coating Corp
Ulvac Inc
Original Assignee
Ulvac Coating Corp
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Coating Corp, Ulvac Inc filed Critical Ulvac Coating Corp
Priority to JP2002352324A priority Critical patent/JP3898633B2/en
Publication of JP2004186015A publication Critical patent/JP2004186015A/en
Application granted granted Critical
Publication of JP3898633B2 publication Critical patent/JP3898633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、カーボン系材料を電子放出源として利用した表示装置用カソード基板の作製方法に関するものである。特に、グラファイト・ナノファイバやカーボン・ナノチューブなどのカーボン系材料を利用した、カソード電極、ゲート電極およびアノード電極を有する3極構造型の電界電子放出型表示装置(FED:Field Emission Display)用カソード基板の作製方法に関するものである。
【0002】
【従来の技術】
最近、グラファイト・ナノファイバやカーボン・ナノチューブなどのカーボン系材料を電子放出源に利用したFEDのような表示装置の作製法について、いくつかの報告がなされている。
【0003】
電子放出源を利用した表示装置には、カソード電極およびアノード電極のみで構成される2極構造型の素子とカソード電極、ゲート電極およびアノード電極から構成される3極構造型の素子を用いる場合がある。3極構造型の素子としては、例えば、カソード電極層、絶縁層、ゲート電極層から構成され、ゲート電極層と絶縁層とに開口されたゲート孔内の底部にカーボン系エミッタ成長触媒層を有するものであって、この触媒層の上にカーボン系材料を有するものが提案されている(例えば、特許文献1参照)。この場合、ゲート電極層に形成した開口部の絶縁層に、ゲート電極層をマスクとしてエッチングによりマイクロキャビティを形成し、その後に犠牲層(分離層)を形成している。
【0004】
また、ゲート電極層を持つFED用カソード基板の作製方法は、例えば、図1(a)〜(f)に示すような複雑な半導体加工技術を用いて行われている。すなわち、カソード電極層(母線)2付基板1上に絶縁層3およびゲート電極層4を順次形成し(図1(a))、ゲート電極層4を加工(パターニング、エッチング)して10μm径のゲート孔開口部を形成し(図1(b))、パターニングされたゲート電極層4の上に犠牲層(フォトレジスト層)5を形成し(図1(c))、絶縁層3をエッチングしてゲート孔6を形成し(図1(d))、ゲート孔の底部と犠牲層5の上にカーボン系エミッタ成長触媒層7を成膜し(図1(e))、そして最後に犠牲層5および犠牲層上の触媒層7を除去して、ゲート孔6の底部に残った触媒層7上にカーボン系エミッタ材料を成長させ、FED用カソード基板を作製する。
【0005】
3極構造型の素子では、カソード−ゲート電極間距離を小さくすることにより、電子放出源に印加される実効的な電場を大きくすることが可能であり、2極構造型の素子よりも駆動電圧を低くできる。実際に、FEDを作製し、駆動させることを考慮すると、駆動電圧は低いほうが望ましく、現在、FEDの構造は3極構造型の素子を使用するのが主流である。
3極構造型を有する表示素子において、カーボン系電子放出素子を作製する方法には大別して2種類の方法がある。1つはスピン・コーティング法、スプレー法もしくは印刷法などによる塗布法であり、もう1つはCVD技術等を利用してカソードベース基板に直接形成する方法である。
【0006】
【特許文献1】
特開2001−236879号公報(特許請求の範囲、図9など)
【0007】
【発明が解決しようとする課題】
図1のような複雑な工程でカソード基板を作製することは、カソード基板作製コストの上昇につながる。また、犠牲層を通してのカーボン系エミッタ成長触媒層の成膜は、大型基板を処理する際に面内分布、壁面への成膜等の問題が生じる。
本発明の課題は、この様な従来技術の問題点を解決することにあり、FED用カソード基板を容易に作製する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明のFED用カソード基板の作製方法は、カソード電極層上に、膜厚が1nmから50nmまでのカーボン系エミッタ成長触媒層、絶縁層、およびゲート電極層をこの順序で形成し、絶縁層及びゲート電極層にゲート孔を形成して、前記カーボン系エミッタ成長触媒層にカーボン系エミッタ材料を成長せしめるためのFED用カソード基板の作製方法である。カーボン系エミッタ成長触媒層の形成を絶縁層形成前に行うことで、エミッタホールを通しての成膜を避けることができ、FED用カソード基板の作製が容易になる。膜厚が1nm未満であるとカーボン系エミッタ材料を成長させることができず、また、50nmを超えるとゲート孔の端の部分からカーボン系エミッタ材料が絶縁層の下の部分にもぐり込んで成長し、その成長過程でゲート孔の構造を破壊してしまう。
【0009】
発明においては、カーボン系エミッタ成長触媒層は、Fe、Co又はこれらの金属の少なくとも1種類を含む合金からなることを特徴とする。
また、本発明のFED用カソード基板の作製方法は、基板上に、カソード電極層を形成し、このカソード電極層上に、連続的に存在する膜厚1nmから50nmまでのカーボン系エミッタ成長触媒層を形成した後、絶縁層及びゲート電極層を順次形成し、次いで、ゲート電極層に開口部を設けた後に、ゲート電極層上に犠牲層を形成し、前記開口部を利用して、絶縁層をウェットエッチングしてゲート孔を形成することを特徴とする。
【0010】
【実施例】
以下、本発明に係わるFED用カソード基板作製方法の実施例および比較例を図面を参照して説明する。本発明はこれらの例によってなんら限定されるものではない。
【0011】
(実施例1)
図2(a)〜(e)は、本発明のカソード基板作製方法における各プロセスを説明するための基板の模式的断面図である。
まず、図2(a)に示すように、ガラス基板21上に、膜厚150nmのCrカソード電極層(母線)22を200℃の基板加熱を行いながらDCスパッタリングにより形成し、このカソード電極層22の上に、連続的に存在する膜厚25nmのカーボン系エミッタ成長触媒層(Fe、Co又はこれらの金属の少なくとも1種類を含む合金)23を形成した後、ライン状に加工した。次いで、膜厚3μmの絶縁層(SiO)24、膜厚300nmのCrゲート電極層25を順次形成した。この絶縁層24は、300℃の基板加熱を行いながらRFスパッタリングにより形成した。これは、成膜後の絶縁層の応力による破損を防ぐためである。この絶縁層形成の際、RFスパッタリング時に基板に付着するダストによるピンホールを防ぐため、SiO膜は1.5μmずつ2回にわけて形成し、SiO(1.5μm)を成膜した後、純水でこすり洗浄を行った。また、Crゲート電極層25は、カソード電極層22の場合と同様に、200℃の基板加熱をしながらDCスパッタリングにより形成した。
【0012】
図2(b)に示すように、上記のようにして得られたゲート電極層25をライン状に加工して、このラインに径10μmのホールを開け、ゲート孔の開口部とした。
図2(c)に示すように、フォトリソグラフィ法を使用して、ゲート孔以外の部分を保護するための犠牲層(フォトレジスト層)26をライン状のゲート電極層25の上に形成し、そして、図2(d)に示すように、ラインに開けたホールを利用して、エッチャントとしてフッ酸を使用して、絶縁層24をエッチングし、ゲート孔27を形成した。犠牲層26を形成した後にエッチングを行うので、ゲート電極層25が保護される。
次いで、図2(e)に示すように、犠牲層26を除去した。
【0013】
上記したように、カーボン系エミッタ成長触媒層23を絶縁層24の形成前に形成したので、エミッタホールを通しての成膜を避けることができ、FED用カソード基板の作製が容易であった。
かくして作製したカソード基板の断面に対する走査型電子顕微鏡写真を図3に示す。また、このカソード基板上にカーボン系エミッタ材料を成長させた場合の断面の走査電子顕微鏡写真を図4に示す。図3および4から明らかなように、カーボン系エミッタ材料は、ゲート孔の端の部分から絶縁層の下の部分にもぐり込むこともなく成長しており、ゲート孔の構造を破壊することはなかった。
【0014】
(比較例1)
実施例1のプロセス条件に準じて、図5に示すように、ガラス基板51上に形成されたカソード電極層52と絶縁層54との間に、膜厚が50nmよりも厚い(75nm)カーボン系エミッタ成長触媒層53が連続的に存在するカソード基板を作製し、この触媒層53の上にカーボン系エミッタ材料を成長させた。図5において、55はパターニングされたゲート電極層である。
【0015】
カーボン系エミッタ材料を成長させたカソード基板の断面を走査型電子顕微鏡により観察したところ、図5に模式的に示すように、カーボン系エミッタ材料56の成長過程で、ゲート孔の端の部分Aからカーボン系エミッタ材料56が絶縁層54の下にもぐり込んで成長しており、その成長過程でゲート孔の構造が破壊されていたことが分かった。
【0016】
【発明の効果】
本発明によれば、絶縁層およびゲート電極層の形成前にカーボン系エミッタ成長触媒層を形成することにより、エミッタホールを通しての成膜を避けることができるので、FED用カソード基板の加工プロセスを簡略化でき、その際、触媒層を特定の膜厚にすることで、FED用カソード基板の加工プロセスをトラブルなく行うことができ、その結果、FED用カソード基板の作製が容易になる。
【図面の簡単な説明】
【図1】 従来のFED用カソード基板の作製方法を説明するためのフロー図であり、(a)〜(f)は各プロセスでの基板の模式的断面図。
【図2】 本発明に係わるFED用カソード基板の作製方法を説明するためのフロー図であり、(a)〜(e)は各プロセスでの基板の模式的断面図。
【図3】 本発明に従って作製したFED用カソード基板の断面の走査型電子顕微鏡写真。
【図4】 本発明に従って作製したFED用カソード基板上にカーボン系エミッタ材料を成長させた場合の基板断面の走査型電子顕微鏡写真。
【図5】 従来の方法に従って作製したFED用カソード基板の模式的断面図。
【符号の説明】
2 カソード電極層 3 絶縁層層
4 ゲート電極層 7 カーボン系エミッタ成長触媒層 22 カソード電極層 23 カーボン系エミッタ成長触媒層
24 絶縁層 25 ゲート電極層
27 ゲート孔 52 カソード電極層
53 触媒層 54 絶縁層
55 ゲート電極層 56 カーボン系エミッタ材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a cathode substrate for a display device using a carbon-based material as an electron emission source. In particular, a cathode substrate for a field emission display (FED) having a cathode electrode, a gate electrode, and an anode electrode using a carbon-based material such as graphite nanofiber or carbon nanotube, etc. It is related with the preparation method of this.
[0002]
[Prior art]
Recently, several reports have been made on a method of manufacturing a display device such as an FED using a carbon-based material such as graphite nanofiber or carbon nanotube as an electron emission source.
[0003]
In a display device using an electron emission source, a bipolar structure type element composed only of a cathode electrode and an anode electrode and a tripolar structure type element composed of a cathode electrode, a gate electrode and an anode electrode may be used. is there. The tripolar structure type element is composed of, for example, a cathode electrode layer, an insulating layer, and a gate electrode layer, and has a carbon-based emitter growth catalyst layer at the bottom in the gate hole opened to the gate electrode layer and the insulating layer. A material having a carbon-based material on the catalyst layer has been proposed (for example, see Patent Document 1). In this case, a microcavity is formed in the insulating layer in the opening formed in the gate electrode layer by etching using the gate electrode layer as a mask, and then a sacrificial layer (separation layer) is formed.
[0004]
In addition, a method for manufacturing an FED cathode substrate having a gate electrode layer is performed by using a complicated semiconductor processing technique as shown in FIGS. That is, the insulating layer 3 and the gate electrode layer 4 are sequentially formed on the substrate 1 with the cathode electrode layer (busbar) 2 (FIG. 1A), and the gate electrode layer 4 is processed (patterning and etching) to have a diameter of 10 μm. A gate hole opening is formed (FIG. 1B), a sacrificial layer (photoresist layer) 5 is formed on the patterned gate electrode layer 4 (FIG. 1C), and the insulating layer 3 is etched. Then, a gate hole 6 is formed (FIG. 1D), a carbon-based emitter growth catalyst layer 7 is formed on the bottom of the gate hole and the sacrificial layer 5 (FIG. 1E), and finally a sacrificial layer is formed. 5 and the catalyst layer 7 on the sacrificial layer are removed, and a carbon-based emitter material is grown on the catalyst layer 7 remaining at the bottom of the gate hole 6 to produce a cathode substrate for FED.
[0005]
In the tripolar structure type element, it is possible to increase the effective electric field applied to the electron emission source by reducing the distance between the cathode and the gate electrode. Can be lowered. Actually, considering that the FED is manufactured and driven, it is desirable that the driving voltage is low. At present, the structure of the FED is mainly a tripolar structure type element.
In a display element having a tripolar structure type, there are roughly two types of methods for producing a carbon-based electron-emitting device. One is a coating method using a spin coating method, a spray method, a printing method, or the like, and the other is a method of directly forming on a cathode base substrate using a CVD technique or the like.
[0006]
[Patent Document 1]
JP 2001-236879 A (Claims, FIG. 9 etc.)
[0007]
[Problems to be solved by the invention]
Fabricating a cathode substrate through a complicated process as shown in FIG. 1 leads to an increase in cathode substrate fabrication cost. Also, the deposition of the carbon-based emitter growth catalyst layer through the sacrificial layer causes problems such as in-plane distribution and film formation on the wall surface when processing a large substrate.
An object of the present invention is to solve such problems of the prior art and to provide a method for easily manufacturing a cathode substrate for FED.
[0008]
[Means for Solving the Problems]
In the method for producing a cathode substrate for FED of the present invention, a carbon-based emitter growth catalyst layer having a film thickness of 1 nm to 50 nm, an insulating layer, and a gate electrode layer are formed in this order on the cathode electrode layer. In this method, a gate hole is formed in a gate electrode layer, and a carbon-based emitter material is grown on the carbon-based emitter growth catalyst layer . By forming the carbon-based emitter growth catalyst layer before forming the insulating layer, film formation through the emitter hole can be avoided, and the fabrication of the cathode substrate for FED becomes easy. If the film thickness is less than 1 nm, the carbon-based emitter material cannot be grown, and if it exceeds 50 nm, the carbon-based emitter material grows from the edge of the gate hole into the lower part of the insulating layer, The gate hole structure is destroyed during the growth process.
[0009]
In the present invention, the carbon-based emitter growth catalyst layer is made of Fe, Co, or an alloy containing at least one of these metals.
In addition, in the method for producing a cathode substrate for FED of the present invention , a cathode electrode layer is formed on the substrate, and a carbon-based emitter growth catalyst layer having a film thickness of 1 nm to 50 nm continuously exists on the cathode electrode layer. After forming the insulating layer and the gate electrode layer, an opening is formed in the gate electrode layer, a sacrificial layer is formed on the gate electrode layer, and the insulating layer is formed using the opening. A gate hole is formed by wet etching.
[0010]
【Example】
Hereinafter, examples and comparative examples of the FED cathode substrate manufacturing method according to the present invention will be described with reference to the drawings. The present invention is not limited in any way by these examples.
[0011]
Example 1
2A to 2E are schematic cross-sectional views of a substrate for explaining each process in the cathode substrate manufacturing method of the present invention.
First, as shown in FIG. 2A, a 150 nm-thickness Cr cathode electrode layer (bus) 22 is formed on a glass substrate 21 by DC sputtering while heating the substrate at 200 ° C. A continuous carbon-based emitter growth catalyst layer (Fe, Co or an alloy containing at least one of these metals) 23 having a film thickness of 25 nm was formed thereon, and then processed into a line shape. Next, an insulating layer (SiO 2 ) 24 having a thickness of 3 μm and a Cr gate electrode layer 25 having a thickness of 300 nm were sequentially formed. The insulating layer 24 was formed by RF sputtering while heating the substrate at 300 ° C. This is to prevent damage to the insulating layer after film formation due to stress. During the formation of this insulating layer, in order to prevent pinholes due to dust adhering to the substrate during RF sputtering, the SiO 2 film is formed in two steps of 1.5 μm and after SiO 2 (1.5 μm) is formed. Then, rubbing with pure water was performed. The Cr gate electrode layer 25 was formed by DC sputtering while heating the substrate at 200 ° C., as in the case of the cathode electrode layer 22.
[0012]
As shown in FIG. 2B, the gate electrode layer 25 obtained as described above was processed into a line shape, and a hole having a diameter of 10 μm was opened in this line to form an opening of the gate hole.
As shown in FIG. 2C, a sacrificial layer (photoresist layer) 26 for protecting a portion other than the gate hole is formed on the line-shaped gate electrode layer 25 by using a photolithography method. Then, as shown in FIG. 2D, the insulating layer 24 was etched using hydrofluoric acid as an etchant using the hole opened in the line, and the gate hole 27 was formed. Since the etching is performed after the sacrificial layer 26 is formed, the gate electrode layer 25 is protected.
Next, the sacrificial layer 26 was removed as shown in FIG.
[0013]
As described above, since the carbon-based emitter growth catalyst layer 23 is formed before the formation of the insulating layer 24, film formation through the emitter hole can be avoided, and fabrication of the FED cathode substrate is easy.
A scanning electron micrograph of the cross section of the cathode substrate thus produced is shown in FIG. FIG. 4 shows a scanning electron micrograph of a cross section when a carbon-based emitter material is grown on the cathode substrate. As is apparent from FIGS. 3 and 4, the carbon-based emitter material grew without penetrating from the end portion of the gate hole to the portion below the insulating layer, and did not destroy the structure of the gate hole. .
[0014]
(Comparative Example 1)
According to the process conditions of Example 1, as shown in FIG. 5, a carbon-based film having a thickness of more than 50 nm (75 nm) between the cathode electrode layer 52 and the insulating layer 54 formed on the glass substrate 51 is used. A cathode substrate on which the emitter growth catalyst layer 53 was continuously present was produced, and a carbon-based emitter material was grown on the catalyst layer 53. In FIG. 5, 55 is a patterned gate electrode layer.
[0015]
When the cross section of the cathode substrate on which the carbon-based emitter material was grown was observed with a scanning electron microscope, as shown schematically in FIG. 5, in the growth process of the carbon-based emitter material 56, from the end portion A of the gate hole. It was found that the carbon-based emitter material 56 was grown under the insulating layer 54, and the structure of the gate hole was destroyed during the growth process.
[0016]
【The invention's effect】
According to the present invention, since the carbon-based emitter growth catalyst layer is formed before the formation of the insulating layer and the gate electrode layer, film formation through the emitter hole can be avoided, so that the processing process of the cathode substrate for FED is simplified. In this case, by setting the catalyst layer to a specific film thickness, the processing process of the FED cathode substrate can be performed without any trouble, and as a result, the FED cathode substrate can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a flow diagram for explaining a conventional method for producing a cathode substrate for FED, wherein (a) to (f) are schematic cross-sectional views of the substrate in each process.
FIGS. 2A and 2B are flowcharts for explaining a method of manufacturing a cathode substrate for FED according to the present invention, and FIGS. 2A to 2E are schematic cross-sectional views of the substrate in each process. FIGS.
FIG. 3 is a scanning electron micrograph of a cross section of a cathode substrate for FED prepared according to the present invention.
FIG. 4 is a scanning electron micrograph of a cross section of a substrate when a carbon-based emitter material is grown on an FED cathode substrate manufactured according to the present invention.
FIG. 5 is a schematic cross-sectional view of a cathode substrate for FED manufactured according to a conventional method.
[Explanation of symbols]
2 cathode electrode layer 3 insulating layer 4 gate electrode layer 7 carbon-based emitter growth catalyst layer 22 cathode electrode layer 23 carbon-based emitter growth catalyst layer 24 insulating layer 25 gate electrode layer 27 gate hole 52 cathode electrode layer 53 catalyst layer 54 insulating layer 55 Gate electrode layer 56 Carbon-based emitter material

Claims (3)

カソード電極層上に、膜厚が1nmから50nmまでのカーボン系エミッタ成長触媒層、絶縁層、およびゲート電極層をこの順序で形成し、絶縁層及びゲート電極層にゲート孔を形成して、前記カーボン系エミッタ成長触媒層にカーボン系エミッタ材料を成長せしめるためのFED用カソード基板の作製方法。On the cathode electrode layer , a carbon-based emitter growth catalyst layer having a thickness of 1 nm to 50 nm, an insulating layer, and a gate electrode layer are formed in this order, and a gate hole is formed in the insulating layer and the gate electrode layer. A method for producing a cathode substrate for FED for growing a carbon-based emitter material on a carbon-based emitter growth catalyst layer . 基板上に、カソード電極層を形成し、このカソード電極層上に、連続的に存在する膜厚1nmから50nmまでのカーボン系エミッタ成長触媒層を形成した後、絶縁層及びゲート電極層を順次形成し、次いで、ゲート電極層に開口部を設けた後に、ゲート電極層上に犠牲層を形成し、前記開口部を利用して、絶縁層をウェットエッチングしてゲート孔を形成することを特徴とするFED用カソード基板の作製方法。 A cathode electrode layer is formed on the substrate, and a carbon-based emitter growth catalyst layer having a thickness of 1 nm to 50 nm is continuously formed on the cathode electrode layer, and then an insulating layer and a gate electrode layer are sequentially formed. Then, after providing an opening in the gate electrode layer, a sacrificial layer is formed on the gate electrode layer, and the insulating layer is wet etched using the opening to form a gate hole. A method for manufacturing a cathode substrate for FED. 前記カーボン系エミッタ成長触媒層が、Fe、Co又はこれらの金属の少なくとも1種類を含む合金からなることを特徴とする請求項1又は2記載のFED用カソード基板の作製方法。 3. The method for producing a cathode substrate for FED according to claim 1, wherein the carbon-based emitter growth catalyst layer is made of Fe, Co, or an alloy containing at least one of these metals .
JP2002352324A 2002-12-04 2002-12-04 Method for producing cathode substrate for FED Expired - Lifetime JP3898633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352324A JP3898633B2 (en) 2002-12-04 2002-12-04 Method for producing cathode substrate for FED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352324A JP3898633B2 (en) 2002-12-04 2002-12-04 Method for producing cathode substrate for FED

Publications (2)

Publication Number Publication Date
JP2004186015A JP2004186015A (en) 2004-07-02
JP3898633B2 true JP3898633B2 (en) 2007-03-28

Family

ID=32753969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352324A Expired - Lifetime JP3898633B2 (en) 2002-12-04 2002-12-04 Method for producing cathode substrate for FED

Country Status (1)

Country Link
JP (1) JP3898633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607513B2 (en) * 2004-07-27 2011-01-05 株式会社アルバック A cathode substrate and a method for producing the cathode substrate.

Also Published As

Publication number Publication date
JP2004186015A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3497740B2 (en) Method for producing carbon nanotube and method for producing field emission cold cathode device
US7375366B2 (en) Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
US6440763B1 (en) Methods for manufacture of self-aligned integrally gated nanofilament field emitter cell and array
US5188977A (en) Method for manufacturing an electrically conductive tip composed of a doped semiconductor material
US6568979B2 (en) Method of manufacturing a low gate current field emitter cell and array with vertical thin-film-edge emitter
US6448701B1 (en) Self-aligned integrally gated nanofilament field emitter cell and array
JP2005183905A (en) Method of manufacturing nitride semiconductor and nitride semiconductor utilizing the same
US20090325452A1 (en) Cathode substrate having cathode electrode layer, insulator layer, and gate electrode layer formed thereon
US20040108804A1 (en) Method of making low gate current multilayer emitter with vertical thin-film-edge multilayer emitter
US6469425B1 (en) Electron emission film and field emission cold cathode device
JP4703270B2 (en) Electronic devices using nanostructures
JP2900837B2 (en) Field emission type cold cathode device and manufacturing method thereof
JP3898633B2 (en) Method for producing cathode substrate for FED
JP4362874B2 (en) Semiconductor device having quantum structure and manufacturing method thereof
KR101018448B1 (en) Catalyst structure particularly for the production of field emission flat screens
JP2009245672A (en) Field emission device and method of manufacturing the same
JP2005310724A (en) Field emission type electron source and manufacturing method for it
JP2004186014A (en) Manufacturing method for field electron emission type display
US20070200478A1 (en) Field Emission Device
JP2003031116A (en) Field emission cold cathode and its manufacturing method and plane image device having field emission cathode
JP4990555B2 (en) Cathode substrate and display element
JPH05242797A (en) Manufacture of electron emission element
US6664721B1 (en) Gated electron field emitter having an interlayer
JP2007179874A (en) Cathode substrate and method of manufacturing same, and display element and method of manufacturing same
JP4607513B2 (en) A cathode substrate and a method for producing the cathode substrate.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Ref document number: 3898633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term