JP3898344B2 - Woven knitted fabric with excellent stretch properties - Google Patents

Woven knitted fabric with excellent stretch properties Download PDF

Info

Publication number
JP3898344B2
JP3898344B2 JP15520398A JP15520398A JP3898344B2 JP 3898344 B2 JP3898344 B2 JP 3898344B2 JP 15520398 A JP15520398 A JP 15520398A JP 15520398 A JP15520398 A JP 15520398A JP 3898344 B2 JP3898344 B2 JP 3898344B2
Authority
JP
Japan
Prior art keywords
yarn
woven
knitted fabric
processed
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15520398A
Other languages
Japanese (ja)
Other versions
JPH11323696A (en
Inventor
治 武村
孝明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15520398A priority Critical patent/JP3898344B2/en
Publication of JPH11323696A publication Critical patent/JPH11323696A/en
Application granted granted Critical
Publication of JP3898344B2 publication Critical patent/JP3898344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伸縮性仮撚構造加工糸を用いた織編物に関し、さらに詳しくは、ソフトで嵩高なウール織物様の風合いに加え、同時に優れた伸縮性を付与することによって新しい質感とソフトストレッチ機能を備えた織編物に関する。
【0002】
【従来の技術】
新合繊の例を挙げるまでもなく、熱可塑性のポリエステルフィラメントからなる織物は生産技術・加工技術の進化と共に、その表現力を次第に拡大している。なかでも2種以上の伸度の異なる原糸を同時に仮撚して得られる複合加工糸は仮撚構造加工糸と呼ばれ、スパンライク糸として生産が開始されたが、その後も進化を続け、梳毛調織物の表現が可能なまでに至っている。
【0003】
通常、仮撚構造加工糸は嵩高性には優れるが、無撚で織物とした場合ピリングやスナッキングが発生しやすく、またドレープ性に欠けるため追撚して使用される。追撚された仮撚構造加工糸はその構造上、芯糸は比較的直線的で突っ張った状態であり、かつ撚りによって捲縮の発現が疎外されるため伸縮性に劣る傾向がある。これを改善するために、特開平5−311533号公報では、構造加工糸の芯糸にサイドバイサイド型複合繊維を用い、適度な伸縮性を与え、縫製性を良好にする技術が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記技術によって得られる織物では高々25%の伸長性しか得られず、さらなる伸長性を望む分野においては不十分なものであった。本発明の目的は、上記の課題を解決し、梳毛調織編物に優れた伸縮性を付与することによって、新しい質感と高いストレッチ機能を合わせ持つ織編物を得ることを課題とする。
【0005】
【課題を解決するための手段】
すなわち、本発明は、実撚を施した仮撚構造加工糸を含む織編物であって、該加工糸の非交絡部の断面空隙率が70〜80%であり、該断面の中心部に空隙率20〜30%の空洞を有し、該加工糸を構成する芯糸の撚角度が側糸の撚角度よりも小さい撚構造を呈しており、かつ該加工糸を構成する芯糸が、低収縮成分と高収縮成分とを貼り合わせたサイドバイサイド型複合繊維であって、該高収縮成分がトリシクロデカンジメタノールを5モル%以上共重合した共重合ポリエステルからなり、該織編物から解舒した加工糸の伸長率が25%以上、かつ25%伸長時の回復率が80%以上であることを特徴とする織編物である。
【0006】
【発明の実施の形態】
以下本発明をさらに詳しく説明する。
本発明の織編物の最大の特徴は、織編物を構成する伸縮性仮撚構造加工糸にある。まずその形態について述べる。本発明の織編物を構成する伸縮性仮撚構造加工糸は、一般の仮撚構造加工糸同様、ピリングやスナッキングの発生を防止するためおよびドレープ性を得るために実撚を有している。撚係数をT√D(T:撚数(回/m)、D:構造加工糸の繊度(デニール))で定義すると、7,000〜35,000の撚が施されている。7,000未満ではスナッギングが発生する懸念があったり、ドレープ性に欠ける場合がある。また35,000を越えると風合が粗硬になったり、最大の特徴とも言える高い空隙率や空洞が確保できなくなり満足な伸縮性が得られなくなる。風合上好ましい撚係数の範囲は、織物では15,000〜35,000、編物では7,000〜20,000である。
【0007】
本発明の織編物を構成する伸縮性仮撚構造加工糸は、7,000〜35,000の撚係数での実撚が施されているにも拘わらず、図1(写真1)に見られる様に、非交絡部の糸断面において70〜80%、という高い空隙率を有している。同程度の糸長差を有する通常の仮撚構造加工糸の空隙率は高々30%程度であって(図2(写真2)参照)、これらを対比すると、本発明の織編物を構成する伸縮性仮撚構造加工糸の空隙率は非常に高いと言える。
【0008】
さらに本発明の織編物を構成する伸縮性仮撚構造加工糸は、糸中心部に空洞が存在しており、この空洞部の空隙率が20〜30%もある(写真1参照)。かかる高い空隙率および中心部の空洞は、構造加工糸ひいては織編物の伸縮性を得るために非常に重要である。空隙が少なく単糸間の抵抗が大きいと高い伸長性が得られず、また回復性も悪くなる。特に本発明では、中心部が空洞となっているため、比較的低張力でも伸びやすくかつ戻りやすい構造と言える。
【0009】
構造加工糸の内層部を構成する芯糸は、熱収縮率を異にするポリマーを貼り合せてなるサイドバイサイド型複合繊維からなるマルチフィラメントであるが、少なくとも高収縮ポリマー成分は共重合ポリエステルで、さらには共重合率が5モル%以上の共重合ポリエステルであることが必要である。高収縮成分に5モル%以上の共重合ポリエステルを使用しない場合、サイドバイサイド型複合繊維が仮撚時に熱セットされ、本発明に必要な伸縮性が得られない。またサイドバイサイド型複合繊維の熱応力は0.2g/d以上であることが望ましい。熱応力が低い場合には特に中心部の空洞が小さくなる場合がある。
【0010】
かかる共重合成分としては、トリシクロデカンジメタノールが用いられる。
【0011】
一方、構造加工糸の外層部を構成する側糸はポリエステルマルチフィラメントであって、ポリエチレンテレフタレートからなる通常のポリエステル糸、5-金属スルホネート基を有するイソフタル酸等で変性されたカチオン染料に可染のポリエステル糸、あるいはそれらのシックアンドシン糸を単独または混用して使用することができる。
【0012】
構造加工糸において、芯糸を構成するサイドバイサイド型複合繊維からなるマルチフィラメント糸と側糸を構成するポリエステルマルチフィラメント糸の糸長差は20〜35%であることが好ましい。糸長差が20%未満では側糸の拘束力のため、芯糸の捲縮発現が疎外され本発明に必要な空隙率が確保できない場合がある。また図3(写真3)の様に側糸の撚角度が大きく、芯糸の撚角度が小さくなりにくい。一方、糸長差が35%を越えると撚糸、製織等の工程通過性が悪くなり断糸や毛羽が発生するため好ましくない。図3(写真3)の側糸の構造はあたかもコイル状であり、撚角度が大きければ大きいほどコイル密度が増すため伸縮性に有効であると考えられる。
すなわち、従来の仮撚構造加工糸にとっての撚りは捲縮発現を拘束し、伸縮性を疎外するものであるが、本発明では伸縮性を増加させる要素とするものである。
【0013】
芯糸はテンションメンバーあるいは張り・腰に有効であり撚角度は少ない方が好ましい。かかる観点から、側糸の撚角度としては45°以上が好ましく、60°以上がさらに好ましい。芯糸の撚角度としては30°以下が好ましい。またこれらの角度差は15°以上が好ましい。
【0014】
また、構造加工糸における芯糸と側糸との交絡数は50〜150個/mであることが好ましい。50個/m未満では糸長差が20〜35%と大きいため、芯糸と側糸が分離し、撚糸、製織等の工程通過性が悪くなり断糸や毛羽が発生する場合がある。150個/mを越えると空隙率が低下し、構造加工糸の伸縮性が満足されない場合がある。
【0015】
以上、本発明の織編物を構成する仮撚構造加工糸の形態的特徴を述べてきたが、伸縮性能としては、織編物から解舒した加工糸での伸長率が25%以上であることが好ましく、30%以上であればさらに好ましい。また25%伸長時の回復率が80%以上であることが好ましく、90%以上であればさらに好ましい。この優れた伸縮特性は上述した、構造加工糸における65〜85%という非交絡部の高い断面空隙率、空隙率15〜35%の糸断面の中心部に存在する空洞、側糸の撚角度が芯糸の撚角度よりも大きい撚構造、とりわけ撚角度の大きい側糸による相乗的な効果であり、さらには芯糸として共重合ポリエステルを高収縮成分とするサイドバイサイド型複合繊維を用いることにより一層明瞭化するものである。
【0016】
また、本発明の織編物から解舒した構造加工糸の伸長率は25%以上でなければならない。伸長率が25%未満では、目的とする伸長率が20%以上好ましくは25%以上となる織編物が得られない。また該構造加工糸は25%伸長時の回復率が80%以上でなければならない。80%未満では、伸縮性が優れている織編物と言えず、縫製時や着用時にパッカリング欠点が発生する恐れがある。
【0017】
伸縮性について言えば、特に織物ではその構造上、伸縮性を得るのが困難であり、前述の空隙率が高々30%程度の従来公知の構造加工糸からなる織物から解除した糸(撚り係数:26,000)の伸長率は12%である(織物の伸長率は10%)が、例えば、空隙率が73%、中心部の空洞の空隙率が22%、側糸の撚角度が70°、芯糸の撚角度が25°、芯糸の高収縮成分が6モル%共重合のポリエステルであるサイドバイサイド型複合繊維である本発明の織物から解舒した糸(撚り係数:26,000)の伸長率は38%であり(織物の伸長率は32%)、この糸の25%伸長時の回復率は92%であり、35%伸長時の回復率は90%である。このことから、本発明の織物が従来公知の構造加工糸織物に比して極めて伸縮特性に優れていることが分かる。
【0018】
なお本発明の織編物を得るためには製編織において密度に注意することが必要で、染色加工において20%以上収縮することを前提に設計することが好ましい。また染色加工においては20%以上収縮させることが好ましく、収縮を阻害する張力をかけないことが好ましい。
【0019】
次に本発明を構成する伸縮性仮撚構造加工糸の製造法について述べる。図4には、加工糸を製造するための仮撚加工機のモデル図を示すが、本発明を達成するものであればこの図の方法に限定されるものではない。
【0020】
本発明では伸度の異なる2種類の原糸を同時に仮撚する方法を採用する。これは20〜35%という高い糸長差を安定的に確保し、しかも安価に製造するためである。この目的を達するならば他の方法を採用しても良い。複合化に際しては、コストやコントロール性から、インターレースによるエアー交絡が好ましい。交絡複合後に仮撚加工を行うが、仮撚機はピン仮撚機であってもフリクション仮撚機であってもベルトフリクション仮撚機であってもかまわない。
【0021】
この時供給する芯糸用マルチフィラメントの伸度と側糸用マルチフィラメントとの伸度差は100%以上あることが好ましい。この伸度差を確保するために高伸度原糸の伸度を例えば250%以上とすると、仮撚時に膠着や未解撚が発生するので好ましくない。本発明では芯糸用マルチフィラメントの伸度は20〜50%が好ましく、側糸用マルチフィラメントの伸度は120〜200%が好ましい。仮撚後の構造加工糸は、芯糸に明確な捲縮発現は見られず、芯糸が比較的直線的で突っ張った従来の構造加工糸と同様な形態である。
【0022】
構造加工糸に高い空隙や空洞を形成させる手法としては、例えば通常の構造加工糸に水溶性繊維や易溶解性繊維を混入し、該構造加工糸を製編織後に水溶性繊維や易溶解性繊維を溶解除去する方法があるが、かかる方法では本発明で使用する構造加工糸と同一の形態を得ることはできず、またかかる手法は、製造コストが高くなる欠点を有する。
【0023】
供給原糸について重要であるのは、芯糸に使用する原糸であり、熱収縮を異にするポリマーによるサイドバイサイド型複合繊維からなるマルチフィラメントを使用するのが好ましい。特にサイドバイサイド型複合繊維からなるマルチフィラメントを構成するポリマーの内、少なくとも高収縮成分は、先に記載したように共重合ポリエステル、特に5モル%以上共重合されたポリエステルであることが好ましい。
この理由は、例えば、低収縮成分が共重合しない低粘度ポリエステル、高収縮成分が共重合しない高粘度ポリエステルであるサイドバイサイド型複合繊維からなるマルチフィラメントを使用する場合は、本発明を構成する伸縮性構造加工糸を製造する際の仮撚工程の仮撚ヒータにおいて、緊張張力下で熱固定(セット)されるため、仮撚以降の例えば染色工程では、もはやサイドバイサイド型複合繊維特有の捲縮発現をしなくなる場合があるからである。
すなわち、潜在捲縮糸であるはずのサイドバイサイド型複合繊維が、仮撚によって、その機能をなくす場合があるためである。このような現象は、高収縮成分の共重合率が5モル%未満の場合においても同様に起こる場合がある。
【0024】
芯糸となるサイドバイサイド型複合繊維からなるマルチフィラメントおよび側糸となるポリエステルマルチフィラメントのヤーンデニールやフィラメントデニールは、仮撚後の加工糸を想定しかつ目的によって決定すれば良いが、仮撚後のヤーンデニールとしては、衣料用としては70〜400デニールが好ましい。芯糸と側糸の比率は,芯糸:側糸=30〜70:70〜30が好ましい。芯糸の比率が30%未満では本発明に規定の構造や伸縮性が得られない場合がある。また側糸が30%未満では、本発明の目的とするソフトで嵩高な梳毛調織編物が得られない場合がある。
また芯糸となるサイドバイサイド型複合繊維からなるマルチフィラメント糸のフィラメントデニールは2〜6デニールが好ましい。2デニール未満では仕上がり生地が張り腰のない風合となる場合があり好ましくない。また6デニールを越えると交絡が不良となる場合があり好ましくない。
側糸となるポリエステルマルチフィラメントのフィラメントデニールは風合を重視して決定すれば良いが、0.1〜5デニールが好ましい、さらに好ましくは1〜4デニールである。1デニール未満では発色性が不良であったり、嵩高性が得られない場合が有る。また梳毛調織編であるよりは、スエード調織編物となる。5デニールを越えると風合が粗硬になる場合が有る。
【0025】
構造加工糸の段階では、特開平5-311533号公報の図1に記載の複合加工糸の形態、すなわち芯糸と側糸が明解ではなく混在している形態よりは芯糸と側糸が明確に区別されかつ芯糸が中心部に略直線状にあってそのまわりを側糸が包んでいる形態が、梳毛調風合を得るには好ましい。構造加工糸の熱水収縮率(Wsr)の好ましい範囲は4〜12%であり、さらに好ましくは5〜8%である。また構造加工糸の捲縮発現率(K1値)の好ましい範囲は4〜15%である。ポリエステルで伸縮性に優れた織編物を得るには、熱水収縮率はできるだけ低くし、捲縮発現率はできるだけ高くするのが一般的であるが、本発明で使用する構造加工糸は、熱水収縮率が4%未満では収縮が不足し、織編物の欠点が発生しやすくなるので好ましくない。また、12%を超えると優れた伸縮性が得られなくなる場合がある。捲縮発現率が4%未満では伸長性が満足されない場合があるし、15%を超えると芯糸と側糸が明解ではなく、2種の仮撚加工糸が混在している形態となったり、本発明に使用の伸縮性構造加工糸の形態が得られない。
【0026】
本発明においては、仮撚後の構造加工糸に撚を付与するが、この時の撚糸数は撚係数=T√Dにより決定される。撚係数は目的に応じて採用すればよいが、本発明に使用の撚糸後の構造加工糸は、染色加工において、解撚、捲縮発現(仮撚捲縮および潜在捲縮)等により20%以上収縮させるのが好ましいため、5,800〜29,000の範囲で選択するのが好ましい。本発明に使用する撚糸後の構造加工糸は、通常の構造加工糸の撚糸後とほとんど同様であり、未だ特有の構造を呈さない。撚糸に際しては、合撚機、イタリー撚糸機、ダブルツイスター等通常の撚糸機を使用することができる。
【0027】
撚糸後の構造加工糸は製編織されるが、製編織する編機や織機は限定されるものではなく、シングル丸編機、ダブル丸編機、パイル編機、トリコット編機、ラッセル編機等通常使用される編機、ウオータジェットルーム織機、エアージェットルーム織機、レピア織機等通常使用される織機を使用することができる。ただし前述の如く、染色において収縮を20%以上させることを見越して、生地の設計を行うのが好ましい。
【0028】
ついで染色加工について述べる。染色加工に際しては、ポリエステル染色に使用する通常の精練機、解撚機、減量機、セッター、染色機等を使用することができる。ただしこの工程で加工糸を20%以上収縮させることが好ましい。20%以上収縮させることによって、本発明の織編物を構成する伸縮性構造加工糸となる。20%未満の収縮では、本発明の織編物を得られない場合がある。
20%以上収縮させるためには、張力と染色温度に留意する必要がある。染色温度は染色しようとする主体ポリエステルに応じて決めれば良く、高圧下での高温で100〜135℃が好ましい。100℃未満の場合は収縮不足で本発明の織編物を得られない場合が有る。染色張力については低い方が好ましく、生地全体で10kg以下の張力が好ましい。この点エアーフロータイプの染色機は浴比が低く、染色張力が低いので好ましい。染色後で初めて、本発明の織編物が得られる。
【0029】
製編織までは通常の構造加工糸と同様であった本発明に使用の構造加工糸が、いかにして本発明に記載の伸縮性構造加工糸となるかは、明確では無いが、次のごとく考えられる。糸長差を20〜35%と大きくとっているので、交絡部以外では芯糸と側糸の干渉は少なく、撚の拘束が解けると、収縮、捲縮発現等の内部応力によって、芯糸と側糸が比較的独自に動きやすい状態にある。
解撚が始まると側糸はより外側に膨らみ側糸フィラメント間の空隙が拡大する、また仮撚による側糸の捲縮発現が始まり側糸フィラメント間の空隙がさらに拡大する。側糸のこの動きによって芯糸と側糸間の空隙層も拡大する。この時、撚による側糸の芯糸に対する拘束力が解けて、収縮力および潜在収縮力等を有する芯糸が収縮を開始する。
側糸と芯糸は交絡部によって接結しているため、芯糸が収縮すると側糸も収縮し、撚角度が増大する。サイドバイサイド型複合繊維からなるマルチフィラメントは、収束してコイルクリンプを発現するが、仮撚が施されているために仮撚捲縮も発現しマルチフィラメントが個々にコイルクリンプを発現する。以上の説明で高い空隙率を有することと側糸の撚角度が高いことが言える。
中心部の空洞の形成については、推測の域をでないが、芯糸の解撚力(撚りを戻す力・外に広がろうとする力)が非常に強く、また仮撚をされているためにバラけて動くため、前述の側糸の解撚によって芯糸と側糸の間に発生する空間を埋め尽くすことが考えられる。芯糸の撚角度が小さいのも、この芯糸の強い解撚によってある程度説明される。以上のことはほとんど同時に起こっていると思われる。
【0030】
【実施例】
さらに詳細な説明を実施例によって説明する。なお本発明で使用した測定方法は次の通りである。
織物の伸長率:
JIS L−1096のA法に従い、荷重1.8kgで測定した伸長率。
織物から解除した糸の伸長率:
織物よりほとんど張力をかけない様に糸を解舒し、無荷重で試料の300mmに印を入れる。0.015g/dの荷重をかけ、そのまま標準状態の条件下で5分間放置する。ついで荷重をかけたまま糸長を測定し(印の中央間)、この長さをL1(mm)とする。
糸の伸長率(%)=[(L1−300)/300]×100
n=5の平均の値を採用する。
織物から解除した糸の回復率:
上記L1を測定した後、荷重を除去し標準状態の 条件下で5分間放置する。ついで無荷重のままこの糸長を測定し(印の中央間)この長さをL2(mm)とする。
糸の回復率(%)=[(L1−L2)/(L1−300)]×100
n=5の平均の値を採用する。
糸断面の空隙率:
糸断面の電子顕微鏡写真を撮影し(500倍)、ついでカラーコピーする。コピー紙上で最も離れた関係にある単繊維断面間の各々中央を結びこの線をA1とし、この長さをL1(mm)とする。ついでA1の中点OでA1に直行する直線を描く。この直線に最も近くにあり、かつ線A1から最も離れた単繊維断面の各々中央を結びこの線をA2とし、この長さをL2(mm)とする。コピー紙上に、A1とA2の交わる点を中心Cとし、(L1+L2)/2を直径とする円を描く。この円の重量を測定し、この重さをS1mg)とする(糸断面の総面積とみなす)。ついでこの円内に存在する全ての単繊維断面の重量を測定し、この総和をS2(mg)とする(図5参照)。
空隙率(%)=(S2−S1)/S1×100
n=5の平均の値を採用する。
糸断面の中心部の空洞の空隙率:
糸断面の最内に位置する隣り合う二つの単繊維断面の中央を順次直線で結んでできる多角形の重量を測定し、この重さをS3(mg)とする(図5参照)。
空洞の空隙率(%)=(S3/S1)×100
n=5の平均の値を採用する。
糸長差:
織編物からの糸は解撚し、仮撚後の糸はそのまま、無撚状態でサンプルを採取する。芯糸と側糸を分離し、各々0.02g/dの荷重下で糸長を測定する。側糸の長さをL1(mm),芯糸の長さをL2(mm)とするとき、
糸長差(%)=[(L1−L2)/L2]×100
n=5の平均の値を採用する。
但し、芯糸と側糸が分離しにくい場合があるので、試料長は問わない。
交絡数(個/m):
織編物から糸を解舒し、ついで検撚機で無撚となるまで解撚する(糸長50cm)。解撚した糸に、改めて50cmの印をする。ついで、試料を軽く手で数回こすって節の数を目視する。
交絡数(個/m)=目視で確認した数×2
n=5の平均の値を採用する。
捲縮発現率(K1):
カセ巻取り機にて5000デニールのカセとなるまで試料を巻き取った後、カセの下端中央に10gの荷重を吊るして上部中央でこのカセを固定し、0.001g/デニールの荷重が掛かった状態で90℃にて30分間熱処理を行う。次いで無荷重状態で室温に放置乾燥した後、再び10gの荷重を掛け5分間放置した後の糸長を測定しこれをL1(mm)とする。次に1Kgの荷重を掛け30秒間放置後の糸長を測定しL2(mm)とする。K1値は次式により求められる。
K1=〔(L2-L1)/L2〕×100
極限粘度:温度25℃においてオルソクロロフェノール10mlに対し、ポリエステル試料を0.8g溶解し、オストワルド粘度計を用いて次式で相対粘度ηγにより算出した。
ηγ=(η/η0 )−(t・d/t0 ・d0
極限粘度=0.0243ηγ+0.2634
η:ポリエステルの溶液粘度
η0 :溶媒の粘度
t:溶液の落下時間(秒)
d:溶液の密度(g/cm3
0 :オルソクロロフェノールの落下時間(秒)
0 :オルソクロロフェノールの密度(g/cm3
【0031】
実施例1
極限粘度が0.51のポリエチレンテレフタレート100%からなる低粘度成分と、極限粘度が0.74のトリシクロデカンジメタノールを6モル%共重合した変性ポリエチレンテレフタレート100%からなる高粘度成分とを重量複合比50:50でサイドバイサイド型に貼り合わせた半延伸複合フィラメント糸を紡糸速度2850m/分で紡糸した後、延伸して50d−24fの複合フィラメント糸を製造した。原糸物性は強度2.80g/d、伸度32.9%、熱水収縮率13.8%であった。
【0032】
他方、ポリエチレンテレフタレート100%を紡糸速度2,720m/分で紡糸し、130d−36fの単成分からなる伸度170%のマルチフィラメント半延伸糸を製造した。
【0033】
上記複合フィラメント糸とマルチフィラメント半延伸糸とを使用し、伸度差複合仮撚方法により複合捲縮糸を製造した。この伸度差複合仮撚方法においては上記複合フィラメント糸とマルチフィラメント半延伸糸とを引きそろえた後に交絡ノズルを用いて、次の条件で交絡処理を施し、引き続き図4の方式でフリクション仮撚を行った。
仮撚条件は次の通りである。
交絡条件:
オーバーフィード:4%
インターレース:空気圧4kg/cm2
糸速度:280m/分
仮撚温度:175℃
延伸倍率:1.01倍
仮撚数:2100回/m
【0034】
得られた加工糸は、交絡数が95個/mで、複合フィラメント糸が芯糸を形成し、ポリエステルマルチフィラメントが側糸を形成する構造加工糸であった。この構造加工糸の糸物性は、184デニール、強度1.54g/d,伸度30%、熱水収縮率が6%、であった。糸長差は28%であり、K1は12%であった。
【0035】
ついでこの構造加工糸にダブルツイスターで1、600回/mの撚をかけた(撚係数:21,703)。その後通常の撚糸セットを90℃で40分間実施した。この時点では通常の構造加工糸と同様の形態をしており、断面観察においても中心部の空洞等の特徴は出ていなかった。
【0036】
ついでこの糸を経および緯糸としてレピア織機で製織した。製織条件は次の通りである。
組織:経二重
生機密度:経90本/インチ、緯65本/インチ
得られた生機を次の条件で染色加工した。
精練・糊抜き:95℃
解撚:130℃×20分
減量率:15%
染色:135℃×60分
Sumikaron Red S-BL(住友化学社製) 3%owf
ファイナルセット:170℃
【0037】
仕上げた生地の密度は、経132本/インチ、緯65本/インチであり、染色加工における収縮率は経46%、緯32%であった。この生地から緯糸を解舒し、電子顕微鏡写真で観察した。非交絡部の断面は図1(写真1)に示すような極めて特徴的様態が観察された。1つにはその高い空隙率であり、また1つは、その中心部の空洞であった。糸断面全体での空隙率は73%で、中心部の空洞の空隙率は22%であった。また非交絡部の側面も図3(写真3)に示す様な特徴的様態が観察された。側糸は芯糸より大きく離れており、その撚角度は芯糸の撚角度よりも明確に大きく、芯糸の撚角度は70°、芯糸の撚角度は25°であった。この糸の伸長率は38%であった、またこの糸の25%伸長時の回復率は92%であり、35%伸長時の回復率は90%であった。また、この緯糸の撚係数は28,200であった。ついで経糸についても同様な観察を行ったが緯糸と同様の結果であった。なお交絡部では明確は空洞や顕著な撚角度差は見られなかった。
得られた織物の伸長率は横方向で32%、縦方向で33%であった。
【0038】
【発明の効果】
本発明は、梳毛調風合と高い伸縮性を合わせ持つ、新しい質感と高いストレッチ機能の織編物を提供することができる。
【図面の簡単な説明】
【図1】 本発明の織編物を構成する伸縮性構造加工糸の非交絡部の1例を示す断面写真。
【図2】 従来の構造加工糸の非交絡部の1例を示す断面写真。
【図3】 本発明の織編物を構成する伸縮性構造加工糸の非交絡部の1例を示す側面写真。
【図4】 本発明の織編物を構成する伸縮性構造加工糸の製造に使用する仮撚機のモデル図
【図5】 伸縮性構造加工糸の断面空隙率及び空洞部の空隙率の求め方を説明するための加工糸断面図。
【符号の説明】
A:ポリエステルマルチフィラメント糸
B:サイドバイサイド型複合繊維からなるマルチフィラメント
1:インターレースノズル
2:仮撚ヒーター
3:フリクションディスク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a woven or knitted fabric using a stretch false false twist structure processed yarn, and more specifically, in addition to a soft and bulky wool fabric-like texture, at the same time providing a new stretch and soft stretch function. Relates to a woven or knitted fabric provided with
[0002]
[Prior art]
Needless to mention examples of new synthetic fibres, fabrics made of thermoplastic polyester filaments are gradually expanding their expressive power as production and processing technologies evolve. Among them, the composite processed yarn obtained by false twisting two or more types of raw yarns with different elongations at the same time is called false twisted structure processed yarn, and production was started as a spun-like yarn. It has reached the point where it is possible to express the worsted fabric.
[0003]
Usually, the false twisted structure processed yarn is excellent in bulkiness, but when it is made into a non-twisted woven fabric, pilling and snacking are likely to occur, and since it is drapable, it is used after additional twisting. The twisted false twisted structure-processed yarn has a structure in which the core yarn is relatively straight and stretched, and the expression of crimp is alienated by twisting, so that the stretchability tends to be inferior. In order to improve this, Japanese Patent Application Laid-Open No. 5-31533 proposes a technique that uses a side-by-side type composite fiber as the core yarn of the structurally processed yarn, imparts appropriate stretchability, and improves sewing properties.
[0004]
[Problems to be solved by the invention]
However, the woven fabric obtained by the above-mentioned technique can obtain only 25% extensibility at the most, and is insufficient in a field where further extensibility is desired. An object of the present invention is to solve the above-described problems and to provide a woven or knitted fabric having both a new texture and a high stretch function by imparting excellent stretchability to the worsted woven fabric.
[0005]
[Means for Solving the Problems]
  That is, the present invention is a woven or knitted fabric including false twisted processed yarn subjected to actual twisting, wherein the cross void ratio of the unentangled portion of the processed yarn is 70 to 80%, and a void is formed at the center of the cross section. The core yarn constituting the processed yarn has a twist structure in which the twist angle of the core yarn constituting the processed yarn is smaller than the twist angle of the side yarn, and the core yarn constituting the processed yarn is low A side-by-side type composite fiber in which a shrinkage component and a high shrinkage component are bonded to each other, wherein the high shrinkage component is a copolymerized polyester obtained by copolymerizing at least 5 mol% of tricyclodecane dimethanol, and is unwound from the woven or knitted fabric. The woven or knitted fabric is characterized in that the stretch rate of the processed yarn is 25% or more and the recovery rate at 25% stretch is 80% or more.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail below.
The greatest feature of the woven or knitted fabric of the present invention resides in the stretch false twisted structure processed yarn constituting the woven or knitted fabric. First, the form will be described. The stretchable false twist structure processed yarn constituting the woven or knitted fabric of the present invention has a real twist in order to prevent the occurrence of pilling and snacking and to obtain drape, like a general false twist structure processed yarn. When the twist coefficient is defined by T√D (T: number of twists (times / m), D: fineness (denier) of the structurally processed yarn), 7,000 to 35,000 are twisted. If it is less than 7,000, there is a concern that snagging may occur or drapeability may be lacking. On the other hand, if it exceeds 35,000, the texture becomes coarse or hard, and high porosity and cavities that can be said to be the greatest features cannot be secured, and satisfactory stretchability cannot be obtained. The range of a preferable twisting factor in terms of the feel is 15,000 to 35,000 for a woven fabric and 7,000 to 20,000 for a knitted fabric.
[0007]
  The stretch false false twist structure processed yarn constituting the knitted or knitted fabric of the present invention can be seen in FIG. 1 (Photo 1) despite being subjected to a real twist at a twist coefficient of 7,000 to 35,000. Similarly, it has a high porosity of 70 to 80% in the yarn cross section of the unentangled portion. The porosity of ordinary false twist structure processed yarns having the same difference in yarn length is about 30% at most (see Fig. 2 (Photo 2)). By comparing these, the expansion and contraction constituting the woven or knitted fabric of the present invention It can be said that the void rate of the processed false twisted structure processed yarn is very high.
[0008]
  Furthermore, the stretch false false twist structure processed yarn constituting the woven or knitted fabric of the present invention has a cavity at the center of the yarn, and the porosity of the cavity is 20-30% (see Photo 1). Such a high porosity and central cavity are very important for obtaining the stretchability of the structured yarn and thus the woven or knitted fabric. If the gap is small and the resistance between the single yarns is large, high extensibility cannot be obtained, and the recoverability also deteriorates. In particular, in the present invention, since the central portion is hollow, it can be said that the structure is easy to stretch and return easily even at a relatively low tension.
[0009]
  The core yarn constituting the inner layer portion of the structurally processed yarn is a multifilament composed of side-by-side type composite fibers formed by laminating polymers having different heat shrinkage rates, but at least the high shrinkage polymer component is a copolyester, and Needs to be a copolyester having a copolymerization ratio of 5 mol% or more. When 5 mol% or more of the copolyester is not used for the high shrinkage component, the side-by-side type composite fiber is heat-set during false twisting, and the stretchability required for the present invention cannot be obtained. The thermal stress of the side-by-side type composite fiber is desirably 0.2 g / d or more. When the thermal stress is low, the central cavity may be particularly small.
[0010]
  As the copolymer component, tricyclodecane dimethanol is used.
[0011]
On the other hand, the side yarn constituting the outer layer portion of the structurally processed yarn is a polyester multifilament, which is dyeable to a normal polyester yarn made of polyethylene terephthalate, a cationic dye modified with isophthalic acid having a 5-metal sulfonate group or the like. Polyester yarns or their thick and thin yarns can be used alone or in combination.
[0012]
In the structured processed yarn, the yarn length difference between the multifilament yarn comprising the side-by-side type composite fiber constituting the core yarn and the polyester multifilament yarn constituting the side yarn is preferably 20 to 35%. If the yarn length difference is less than 20%, the crimping of the core yarn may be marginalized due to the binding force of the side yarn, and the porosity required for the present invention may not be ensured. Further, as shown in FIG. 3 (Photo 3), the twisting angle of the side yarn is large and the twisting angle of the core yarn is difficult to decrease. On the other hand, if the difference in yarn length exceeds 35%, it is not preferable because processability such as twisting and weaving deteriorates, and yarn breakage and fluff are generated. The structure of the side yarn in FIG. 3 (Photo 3) is as if it were coiled, and the greater the twist angle, the greater the coil density, which is considered to be effective for stretchability.
That is, the twist for the conventional false twisted structure processed yarn restrains the expression of crimp and excludes stretchability, but in the present invention, it is used as an element for increasing stretchability.
[0013]
It is preferable that the core yarn is effective for the tension member or tension / waist and has a small twist angle. From this viewpoint, the twist angle of the side yarn is preferably 45 ° or more, and more preferably 60 ° or more. The twist angle of the core yarn is preferably 30 ° or less. Further, the difference between these angles is preferably 15 ° or more.
[0014]
Further, the number of entanglement between the core yarn and the side yarn in the structured yarn is preferably 50 to 150 / m. If it is less than 50 pieces / m, the yarn length difference is as large as 20 to 35%. Therefore, the core yarn and the side yarn are separated, and the processability such as twisting and weaving may be deteriorated, and the yarn may be broken or fluffed. If it exceeds 150 pieces / m, the porosity is lowered, and the stretchability of the structured yarn may not be satisfied.
[0015]
As described above, the morphological characteristics of the false twisted structure processed yarn constituting the woven or knitted fabric of the present invention have been described. As the stretch performance, the stretch rate of the processed yarn unwound from the woven or knitted fabric is 25% or more. Preferably, it is more preferably 30% or more. Further, the recovery rate at 25% elongation is preferably 80% or more, and more preferably 90% or more. This excellent stretch characteristic is the above-described high cross-sectional void ratio of the non-entangled portion of 65 to 85% in the structural processed yarn, the cavity existing in the center of the yarn cross section with a void ratio of 15 to 35%, and the twist angle of the side yarn. This is a synergistic effect due to the twist structure larger than the twist angle of the core yarn, especially the side yarn having a large twist angle. Furthermore, the use of side-by-side type composite fibers containing a copolyester as a highly shrinkable component as the core yarn is even clearer. It is to become.
[0016]
Further, the stretch rate of the structured yarn unwound from the woven or knitted fabric of the present invention must be 25% or more. When the elongation rate is less than 25%, a woven or knitted fabric with an intended elongation rate of 20% or more, preferably 25% or more cannot be obtained. Further, the structurally processed yarn must have a recovery rate of 80% or more at 25% elongation. If it is less than 80%, it cannot be said that it is a woven or knitted fabric having excellent stretchability, and there is a possibility that a puckering defect occurs during sewing or wearing.
[0017]
Speaking of stretchability, it is difficult to obtain stretchability especially in the case of woven fabrics, and yarns released from fabrics made of conventionally known structurally processed yarns having a porosity of about 30% at most (twisting coefficient: 26,000) is 12% (the elongation rate of the woven fabric is 10%). For example, the porosity is 73%, the void ratio of the central cavity is 22%, and the twist angle of the side yarn is 70 °. Of the yarn (twisting coefficient: 26,000) unraveled from the woven fabric of the present invention which is a side-by-side type composite fiber in which the twist angle of the core yarn is 25 ° and the high shrinkage component of the core yarn is 6 mol% copolymerized polyester. The stretch rate is 38% (the stretch rate of the woven fabric is 32%), the recovery rate at 25% stretch of this yarn is 92%, and the recovery rate at 35% stretch is 90%. From this, it can be seen that the fabric of the present invention is extremely excellent in stretch properties as compared with conventionally known structurally processed yarn fabrics.
[0018]
In order to obtain the woven or knitted fabric of the present invention, it is necessary to pay attention to the density in the knitting and weaving, and it is preferable to design on the assumption that the shrinkage is 20% or more in the dyeing process. In the dyeing process, the shrinkage is preferably 20% or more, and it is preferable not to apply a tension that inhibits the shrinkage.
[0019]
Next, the manufacturing method of the stretch false false twist structure processed yarn which comprises this invention is described. FIG. 4 shows a model diagram of a false twisting machine for producing a processed yarn. However, the present invention is not limited to the method shown in FIG.
[0020]
In the present invention, a method of simultaneously false twisting two types of raw yarns having different elongations is adopted. This is because a high yarn length difference of 20 to 35% can be stably secured and manufactured at low cost. Other methods may be adopted as long as this purpose is achieved. In combination, air entanglement by interlace is preferable from the viewpoint of cost and controllability. Although false twisting is performed after entanglement composite, the false twisting machine may be a pin false twisting machine, a friction false twisting machine, or a belt friction false twisting machine.
[0021]
The difference in elongation between the multifilament for core yarn supplied at this time and the multifilament for side yarn is preferably 100% or more. If the elongation of the high elongation raw yarn is set to 250% or more in order to ensure this difference in elongation, for example, agglutination or untwisting occurs during false twisting, which is not preferable. In the present invention, the elongation of the multifilament for core yarn is preferably 20 to 50%, and the elongation of the multifilament for side yarn is preferably 120 to 200%. The structurally-processed yarn after false twisting has a form similar to that of a conventional structurally-processed yarn in which the core yarn is relatively straight and stretched without any clear expression of crimp in the core yarn.
[0022]
As a technique for forming high voids and cavities in the structurally processed yarn, for example, water-soluble fibers and easily soluble fibers are mixed into ordinary structurally processed yarns, and the structured processed yarns are knitted and woven and then water-soluble fibers and easily soluble fibers are used. However, such a method cannot obtain the same form as that of the structurally processed yarn used in the present invention, and such a method has a drawback that the production cost is increased.
[0023]
What is important about the supplied raw yarn is the raw yarn used for the core yarn, and it is preferable to use a multifilament composed of side-by-side type composite fibers made of a polymer having different heat shrinkage. In particular, it is preferable that at least the high shrinkage component of the polymer constituting the multifilament composed of side-by-side type composite fibers is a copolymerized polyester, particularly a polyester copolymerized by 5 mol% or more as described above.
This is because, for example, when using a multifilament made of a side-by-side type composite fiber that is a low-viscosity polyester in which a low-shrinkage component is not copolymerized and a high-viscosity polyester in which a high-shrinkage component is not copolymerized, the stretchability constituting the present invention is used. In the false twisting heater of the false twisting process when manufacturing the structurally processed yarn, it is heat-set (set) under tension tension, so in the dyeing process after false twisting, for example, the crimp expression peculiar to the side-by-side type composite fiber is no longer present. This is because there is a case where it does not happen.
That is, the side-by-side type composite fiber that should be a latent crimped yarn may lose its function by false twisting. Such a phenomenon may occur in the same manner even when the copolymerization ratio of the high shrinkage component is less than 5 mol%.
[0024]
The yarn denier and filament denier of the multifilament composed of side-by-side type composite fiber as the core yarn and the polyester multifilament as the side yarn may be determined according to the purpose assuming the processed yarn after false twisting. The yarn denier is preferably 70 to 400 denier for clothing. The ratio of the core yarn to the side yarn is preferably core yarn: side yarn = 30 to 70:70 to 30. If the ratio of the core yarn is less than 30%, the structure and stretchability defined in the present invention may not be obtained. On the other hand, if the side yarn is less than 30%, the soft and bulky eyelash-like knitted fabric targeted by the present invention may not be obtained.
Further, the filament denier of the multifilament yarn composed of side-by-side type composite fiber as the core yarn is preferably 2 to 6 denier. If it is less than 2 deniers, the finished fabric may have a tight texture. On the other hand, if it exceeds 6 deniers, the entanglement may be unsatisfactory.
The filament denier of the polyester multifilament serving as the side yarn may be determined with emphasis on the texture, but is preferably 0.1 to 5 denier, more preferably 1 to 4 denier. If it is less than 1 denier, color developability may be poor or bulkiness may not be obtained. Moreover, it becomes a suede-weaving knitted fabric rather than a lash-like weaving knitting. If it exceeds 5 denier, the texture may become coarse.
[0025]
At the structurally processed yarn stage, the core yarn and the side yarn are clearer than the configuration of the composite processed yarn described in FIG. 1 of JP-A-5-311533, that is, the core yarn and the side yarn are mixed together rather than clearly. A form in which the core yarn is substantially linear at the center and the side yarns are wrapped around the core yarn is preferable to obtain the eyelash-like texture. The preferable range of the hot water shrinkage (Wsr) of the structured yarn is 4 to 12%, more preferably 5 to 8%. Moreover, the preferable range of the crimp expression rate (K1 value) of the structure processed yarn is 4 to 15%. In order to obtain a woven or knitted fabric excellent in stretchability with polyester, it is common to make the hot water shrinkage rate as low as possible and the crimp expression rate as high as possible. If the water shrinkage rate is less than 4%, the shrinkage is insufficient, and defects of the woven or knitted fabric are liable to occur. On the other hand, if it exceeds 12%, excellent stretchability may not be obtained. If the expression rate of crimp is less than 4%, the stretchability may not be satisfied, and if it exceeds 15%, the core yarn and the side yarn are not clear, and two types of false twisted yarn are mixed. The form of the elastically structured thread used in the present invention cannot be obtained.
[0026]
In the present invention, twist is imparted to the structurally processed yarn after false twisting, and the number of twisted yarns at this time is determined by the twisting coefficient = T√D. The twist coefficient may be adopted according to the purpose, but the structurally processed yarn used in the present invention is 20% due to untwisting, crimp expression (false twist crimp and latent crimp), etc. in the dyeing process. Since it is preferable to make it shrink, it is preferable to select in the range of 5,800 to 29,000. The structure-processed yarn after twisting used in the present invention is almost the same as that after twisting of a normal structure-processed yarn, and does not yet exhibit a specific structure. In twisting, a normal twisting machine such as a double twisting machine, an Italian twisting machine, or a double twister can be used.
[0027]
Although the processed yarn after twisting is knitted and knitted, the knitting machine and loom for knitting and weaving are not limited. Single circular knitting machine, double circular knitting machine, pile knitting machine, tricot knitting machine, Russell knitting machine, etc. Commonly used looms such as commonly used knitting machines, water jet loom looms, air jet loom looms, and rapier looms can be used. However, as described above, it is preferable to design the fabric in anticipation of shrinkage of 20% or more in dyeing.
[0028]
Next, the dyeing process will be described. In the dyeing process, a normal scouring machine, untwisting machine, weight loss machine, setter, dyeing machine and the like used for polyester dyeing can be used. However, it is preferable to shrink the processed yarn by 20% or more in this step. By shrinking by 20% or more, the stretch-structured yarn constituting the woven or knitted fabric of the present invention is obtained. If the shrinkage is less than 20%, the woven or knitted fabric of the present invention may not be obtained.
In order to shrink by 20% or more, it is necessary to pay attention to the tension and the dyeing temperature. The dyeing temperature may be determined according to the main polyester to be dyed, and is preferably 100 to 135 ° C. at high temperature under high pressure. When the temperature is lower than 100 ° C., the woven or knitted fabric of the present invention may not be obtained due to insufficient shrinkage. A lower dyeing tension is preferable, and a tension of 10 kg or less is preferable for the entire fabric. This point is preferred because an air flow type dyeing machine has a low bath ratio and a low dyeing tension. Only after dyeing can the woven or knitted fabric of the invention be obtained.
[0029]
Although it is not clear how the structurally processed yarn used in the present invention, which was the same as the ordinary structurally processed yarn until weaving and weaving, becomes the stretchable structurally processed yarn described in the present invention, it is as follows. Conceivable. Since the yarn length difference is as large as 20 to 35%, there is little interference between the core yarn and the side yarn except at the entangled portion, and when the twist constraint is released, due to internal stress such as contraction and crimping, The side thread is relatively easy to move.
When untwisting begins, the side yarns swell outward and the gap between the side yarn filaments expands. Further, crimping of the side yarn by false twisting starts and the gap between the side yarn filaments further expands. This movement of the side yarn also enlarges the gap layer between the core yarn and the side yarn. At this time, the binding force of the side yarn to the core yarn due to twisting is released, and the core yarn having the contraction force and the latent contraction force starts to contract.
Since the side yarn and the core yarn are connected by the entangled portion, when the core yarn contracts, the side yarn also contracts and the twist angle increases. Multifilaments composed of side-by-side type composite fibers converge to express coil crimps, but false twists are also generated because false twists are applied, and the multifilaments individually express coil crimps. In the above description, it can be said that it has a high porosity and the twist angle of the side yarn is high.
The formation of the cavity in the center is not speculative, but the untwisting power of the core yarn (the power to untwist and force to spread outside) is very strong, and it is broken because it is false twisted. Therefore, it is conceivable to fill up the space generated between the core yarn and the side yarn by untwisting the side yarn described above. The small twist angle of the core yarn is explained to some extent by the strong untwisting of the core yarn. The above seems to be happening almost simultaneously.
[0030]
【Example】
A more detailed description is given by way of example. The measurement method used in the present invention is as follows.
Elongation rate of fabric:
Elongation rate measured with a load of 1.8 kg in accordance with JIS L-1096 method A.
Elongation rate of yarn released from fabric:
The yarn is unwound so that little tension is applied to the fabric, and a mark is made on the 300 mm of the sample with no load. A load of 0.015 g / d is applied, and the mixture is left as it is for 5 minutes under standard conditions. Next, the yarn length is measured with the load applied (between the centers of the marks), and this length is defined as L1 (mm).
Yarn elongation rate (%) = [(L1-300) / 300] × 100
An average value of n = 5 is adopted.
Recovery rate of yarn released from fabric:
After measuring L1, remove the load and leave it under standard conditions for 5 minutes. Next, this yarn length is measured with no load (between the centers of the marks), and this length is set to L2 (mm).
Yarn recovery rate (%) = [(L1-L2) / (L1-300)] × 100
An average value of n = 5 is adopted.
Porosity of thread cross section:
Take an electron micrograph of the yarn cross-section (500x), then color copy. The centers of the single fiber cross-sections that are most distant from each other on the copy paper are connected to each other, and this line is defined as A1, and the length is defined as L1 (mm). Next, a straight line perpendicular to A1 is drawn at the middle point O of A1. The centers of the single fiber cross-sections closest to the straight line and farthest from the line A1 are connected to each other, and this line is defined as A2, and this length is defined as L2 (mm). On the copy paper, a circle having a center C at a point where A1 and A2 intersect and a diameter of (L1 + L2) / 2 is drawn. The weight of this circle is measured, and this weight is defined as S1 mg) (considered as the total area of the yarn cross section). Next, the weights of all the single fiber cross-sections present in this circle are measured, and the total is S2 (mg) (see FIG. 5).
Porosity (%) = (S2−S1) / S1 × 100
An average value of n = 5 is adopted.
Porosity of the cavity at the center of the yarn cross section:
The weight of a polygon formed by sequentially connecting the centers of two adjacent single fiber cross sections located in the innermost part of the yarn cross section with a straight line is measured, and this weight is defined as S3 (mg) (see FIG. 5).
Void porosity (%) = (S3 / S1) × 100
An average value of n = 5 is adopted.
Yarn length difference:
The yarn from the woven or knitted fabric is untwisted, and the sample after the false twist is taken as it is without being twisted. The core yarn and the side yarn are separated, and the yarn length is measured under a load of 0.02 g / d. When the side thread length is L1 (mm) and the core thread length is L2 (mm),
Yarn length difference (%) = [(L1-L2) / L2] × 100
An average value of n = 5 is adopted.
However, since the core yarn and the side yarn may be difficult to separate, the sample length is not limited.
Number of entanglements (pieces / m):
The yarn is unwound from the woven or knitted fabric, and then untwisted until untwisted with a tester (yarn length 50 cm). Make a new 50cm mark on the untwisted yarn. Next, lightly rub the sample several times by hand and visually check the number of nodes.
Number of entanglements (pieces / m) = Number visually confirmed × 2
An average value of n = 5 is adopted.
Crimp expression rate (K1):
The sample is wound up to a 5,000 denier case with a casserole winder, then a 10 g load is hung at the center of the lower end of the case and this case is fixed at the upper center, and a load of 0.001 g / denier is applied. Heat treatment at 90 ° C for 30 minutes. Next, after drying at room temperature in a no-load state, a load of 10 g was applied again and the yarn length after standing for 5 minutes was measured, and this is defined as L1 (mm). Next, a load of 1 kg is applied and the yarn length after being left for 30 seconds is measured to obtain L2 (mm). The K1 value is obtained by the following equation.
K1 = [(L2-L1) / L2] × 100
Intrinsic viscosity: 0.8 g of a polyester sample was dissolved in 10 ml of orthochlorophenol at a temperature of 25 ° C., and the relative viscosity ηγ was calculated by the following equation using an Ostwald viscometer.
ηγ = (η / η0 )-(T · d / t0 ・ D0 )
Intrinsic viscosity = 0.0243 ηγ + 0.2634
η: Solution viscosity of polyester
η0 : Viscosity of solvent
t: Dropping time of solution (second)
d: density of the solution (g / cmThree)
t0 : Fall time of orthochlorophenol (seconds)
d0 : Orthochlorophenol density (g / cmThree)
[0031]
Example 1
A low-viscosity component consisting of 100% polyethylene terephthalate having an intrinsic viscosity of 0.51 and a high-viscosity component consisting of 100% modified polyethylene terephthalate obtained by copolymerizing 6% by mole of tricyclodecane dimethanol having an intrinsic viscosity of 0.74. A half-stretched composite filament yarn bonded to a side-by-side mold at a composite ratio of 50:50 was spun at a spinning speed of 2850 m / min, and then stretched to produce a 50d-24f composite filament yarn. The raw yarn properties were a strength of 2.80 g / d, an elongation of 32.9%, and a hot water shrinkage of 13.8%.
[0032]
On the other hand, 100% polyethylene terephthalate was spun at a spinning speed of 2,720 m / min to produce a multifilament semi-drawn yarn of 170% elongation consisting of a single component of 130d-36f.
[0033]
Using the composite filament yarn and the multifilament semi-drawn yarn, a composite crimped yarn was produced by an elongation difference composite false twisting method. In this elongation difference composite false twisting method, the composite filament yarn and the multifilament semi-drawn yarn are aligned, and then the entanglement nozzle is used to perform the entanglement treatment under the following conditions, followed by the friction false twist by the method shown in FIG. Went.
The false twisting conditions are as follows.
Confounding conditions:
Overfeed: 4%
Interlace: Air pressure 4kg / cm2
Yarn speed: 280m / min
False twisting temperature: 175 ° C
Stretch ratio: 1.01 times
Number of false twists: 2100 times / m
[0034]
The obtained processed yarn was a structurally processed yarn having an entanglement number of 95 / m, a composite filament yarn forming a core yarn, and a polyester multifilament forming a side yarn. The physical properties of this structurally processed yarn were 184 denier, strength 1.54 g / d, elongation 30%, and hot water shrinkage 6%. The yarn length difference was 28% and K1 was 12%.
[0035]
Subsequently, this structured yarn was twisted 1,600 times / m with a double twister (twisting coefficient: 21,703). Thereafter, a normal twist set was carried out at 90 ° C. for 40 minutes. At this time, it was in the same form as an ordinary structurally processed yarn, and no features such as a cavity in the central portion were found in cross-sectional observation.
[0036]
The yarn was then woven with a rapier loom as warp and weft. The weaving conditions are as follows.
Organization: Meridian
Raw machine density: Warp 90 / inch, latitude 65 / inch
The obtained raw machine was dyed under the following conditions.
Scouring and desizing: 95 ° C
Untwisting: 130 ° C x 20 minutes
Weight loss rate: 15%
Dyeing: 135 ° C x 60 minutes
Sumikaron Red S-BL (Sumitomo Chemical Co., Ltd.) 3% owf
Final set: 170 ° C
[0037]
The density of the finished fabric was 132 warps / inch and 65 wefts / inch, and the shrinkage rate in the dyeing process was 46% warp and 32% weft. The weft was unwound from this fabric and observed with an electron micrograph. As shown in FIG. 1 (Photo 1), the cross section of the unentangled portion was observed to have a very characteristic aspect. One was its high porosity, and one was its central cavity. The porosity of the entire yarn cross section was 73%, and the porosity of the cavity at the center was 22%. Moreover, the characteristic aspect as shown in FIG. 3 (Photo 3) was also observed on the side of the unentangled part. The side yarns were far apart from the core yarn, and the twist angle was clearly larger than the twist angle of the core yarn. The twist angle of the core yarn was 70 ° and the twist angle of the core yarn was 25 °. The elongation rate of this yarn was 38%, the recovery rate at 25% elongation of this yarn was 92%, and the recovery rate at 35% elongation was 90%. Moreover, the twist coefficient of this weft was 28,200. Next, the same observation was made for the warp, but the results were the same as for the weft. In addition, in the entangled part, there was no clear cavity and no significant difference in twist angle.
The elongation percentage of the obtained woven fabric was 32% in the transverse direction and 33% in the longitudinal direction.
[0038]
【The invention's effect】
INDUSTRIAL APPLICABILITY The present invention can provide a woven or knitted fabric having a new texture and a high stretch function, which has both a lash-like texture and high stretchability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional photograph showing an example of an unentangled portion of a stretch structured yarn constituting a woven or knitted fabric of the present invention.
FIG. 2 is a cross-sectional photograph showing an example of a non-entangled portion of a conventional structured yarn.
FIG. 3 is a side photograph showing an example of an unentangled portion of a stretch structured yarn constituting the woven or knitted fabric of the present invention.
FIG. 4 is a model diagram of a false twisting machine used for manufacturing stretch structured yarns constituting the woven or knitted fabric of the present invention.
FIG. 5 is a cross-sectional view of a processed yarn for explaining how to obtain the cross-sectional porosity and the void ratio of the stretchable structural processed yarn.
[Explanation of symbols]
A: Polyester multifilament yarn
B: Multifilament made of side-by-side type composite fiber
1: Interlace nozzle
2: False twisting heater
3: Friction disc

Claims (1)

実撚を施した仮撚構造加工糸を含む織編物であって、該加工糸の非交絡部の断面空隙率が70〜80%であり、該断面の中心部に空隙率20〜30%の空洞を有し、該加工糸を構成する芯糸の撚角度が側糸の撚角度よりも小さい撚構造を呈しており、かつ該加工糸を構成する芯糸が、低収縮成分と高収縮成分とを貼り合わせたサイドバイサイド型複合繊維であって、該高収縮成分がトリシクロデカンジメタノールを5モル%以上共重合した共重合ポリエステルからなり、該織編物から解舒した加工糸の伸長率が25%以上、かつ25%伸長時の回復率が80%以上であることを特徴とする織編物。A woven or knitted fabric including false twisted structure processed yarn subjected to real twisting, wherein the cross void ratio of the unentangled portion of the processed yarn is 70 to 80% , and the porosity is 20 to 30% at the center of the cross section. The core yarn constituting the processed yarn has a twisted structure in which the twist angle of the core yarn constituting the processed yarn is smaller than the twist angle of the side yarn, and the core yarn constituting the processed yarn has a low shrinkage component and a high shrinkage component The high shrinkage component is made of a copolyester obtained by copolymerizing at least 5 mol% of tricyclodecane dimethanol, and the elongation percentage of the processed yarn unraveled from the woven or knitted fabric is A woven or knitted fabric characterized by having a recovery rate of 25% or more and 25% elongation at 80% or more.
JP15520398A 1998-05-19 1998-05-19 Woven knitted fabric with excellent stretch properties Expired - Fee Related JP3898344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15520398A JP3898344B2 (en) 1998-05-19 1998-05-19 Woven knitted fabric with excellent stretch properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15520398A JP3898344B2 (en) 1998-05-19 1998-05-19 Woven knitted fabric with excellent stretch properties

Publications (2)

Publication Number Publication Date
JPH11323696A JPH11323696A (en) 1999-11-26
JP3898344B2 true JP3898344B2 (en) 2007-03-28

Family

ID=15600764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15520398A Expired - Fee Related JP3898344B2 (en) 1998-05-19 1998-05-19 Woven knitted fabric with excellent stretch properties

Country Status (1)

Country Link
JP (1) JP3898344B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285018B2 (en) * 1998-10-19 2002-05-27 東レ株式会社 Polyester interwoven fabric
BR0108059A (en) * 2000-02-04 2003-01-21 Asahi Chemical Ind Stretch textured fabric and process to produce the same
JP3545749B2 (en) * 2002-05-02 2004-07-21 帝人ファイバー株式会社 Worsted-like fabric and method for producing the same

Also Published As

Publication number Publication date
JPH11323696A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
US6276121B1 (en) Crimped yarn, textile fabric, and process for preparing the same
EP0634508B1 (en) False twisted combined filament yarn, method of manufacturing the same, and knitted or woven material using the same yarn
JP4292763B2 (en) Composite fabric and manufacturing method thereof
JP2964639B2 (en) Mixed fiber composite false twist yarn, method for producing the same, and knitted fabric using the yarn
JP3898344B2 (en) Woven knitted fabric with excellent stretch properties
JP2021183732A (en) Polyester false twisted yarn and knitted fabric
US5312677A (en) Latent looped yarn, a fabric made of the same, and a method for manufacturing the latent looped yarn
JP2905684B2 (en) Composite yarn fabric of rayon and polyester and method for producing the same
JP4123646B2 (en) Polyester fiber yarn and fabric
JP3972631B2 (en) Polyester composite false twisted yarn and method for producing the same
JP3680723B2 (en) Weaving fabric
JP2001262445A (en) Woven or knitted fabric having excellent elastic characteristic
JP3531531B2 (en) Long / short fiber composite yarn and woven / knitted fabric using the yarn
JPH05321064A (en) First-twisted elastic covering yarn and crimped woven fabric
JP3285018B2 (en) Polyester interwoven fabric
WO2024018818A1 (en) Composite fiber, structural yarn, woven and knitted fabric, and clothing
JP3284848B2 (en) Polyester woven or knitted fabric
JP2840189B2 (en) Woven and knitted fabric excellent in unevenness and method for producing the same
JP2986245B2 (en) Mixed yarn and method for producing the same
JPH0625930A (en) Combined conjugate filament yarn, its production and woven fabric
KR100474488B1 (en) Crimped yarns and woven fabrics and methods of making them
JP2001248034A (en) Knit or woven fabric consisting of combined filament yarn and method for producing the same
JP4385569B2 (en) Polyester stretch fabric
JP3503530B2 (en) Composite yarn and woven / knitted fabric using the yarn
JP2003278039A (en) Polyester composite false twisted yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees