JP3898123B2 - 燃料電池式発電システムの改質器 - Google Patents

燃料電池式発電システムの改質器 Download PDF

Info

Publication number
JP3898123B2
JP3898123B2 JP2002380658A JP2002380658A JP3898123B2 JP 3898123 B2 JP3898123 B2 JP 3898123B2 JP 2002380658 A JP2002380658 A JP 2002380658A JP 2002380658 A JP2002380658 A JP 2002380658A JP 3898123 B2 JP3898123 B2 JP 3898123B2
Authority
JP
Japan
Prior art keywords
gas
fuel
flame
fuel cell
flame detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380658A
Other languages
English (en)
Other versions
JP2004210576A (ja
Inventor
尚優 杉本
章夫 田中
芳彦 高須
務 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002380658A priority Critical patent/JP3898123B2/ja
Publication of JP2004210576A publication Critical patent/JP2004210576A/ja
Application granted granted Critical
Publication of JP3898123B2 publication Critical patent/JP3898123B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池を用いた発電システムに配設される改質器に関し、詳しくは、改質器の燃焼部で安定的に燃焼させ続ける技術に関する。
【0002】
【従来の技術】
水素と酸素を燃料とする燃料電池を用いた発電システムが知られている。この発電システムには、炭化水素系ガスと水蒸気とから、燃料となる高濃度水素ガスを生成する改質器が備えられている。改質器で実行する改質反応は改質触媒を利用する吸熱反応であり、改質反応を持続させるには、改質を行なう改質部を600℃から800℃程度の高温に維持する必要がある。このため、改質器は、改質部を高温に加熱するための燃焼部を備えている。
【0003】
燃焼部には、着火不良や失火、あるいは異常燃焼等を検知するための火炎検知手段が配設される。多くの場合、フレームロッドが用いられる。フレームロッドによる火炎検知手段は、所定の電圧を印加したときに火炎があればイオン電流が流れることから火炎の発生を検知し、火炎がなければイオン電流が流れないことから火炎の消失(失火)を検知する。フレームロッドによる火炎検知は応答性がよく、火炎の発生を遅れなく検知する。しかしながら、フレームロッドは、水素を主体とするガスが燃焼する場合には火炎の発生を検知することができない。
改質器が改質を開始すると、改質開始直後の高濃度水素ガスは燃焼部に送られて燃焼ガスの一部とされる。改質ガスを利用して燃料電池で発電する場合、燃料電池は全部の水素を酸素と反応させることができず、一部の水素ガスは燃料電池を通過する。燃料電池を通過した水素ガスは、燃焼部に送られて燃焼ガスの一部とされる。燃料ガスに占める水素ガスの濃度が高くなると、フレームロッドでは火炎を検知することができなくなる。フレームロッドで、炭化水素系ガスと高濃度水素ガスの混合ガス又は炭化水素系ガスを燃焼させる燃焼部での着火不良や失火を検知する方式では、燃料ガスに占める水素ガスの濃度が高くなると、失火していないにもかかわらずに失火したものと誤判定してしまう。換言すれば、本当に失火したことを検知することができない。
【0004】
上記の問題を解決するために、例えば、改質部内の温度を所定温度以下となるように制御し、炭化水素系ガスの水素転化率を所定値以下にすることによって、バーナの燃料ガス中の炭化水素系ガスを所定濃度以上に維持し、フレームロッドによる火炎検知を可能とする技術(特許文献1)が公開されている。
また、別の技術では、バーナの燃料として供給される高濃度水素ガスに、フレームロッドによる火炎検知を可能とするに足りるだけの炭化水素系ガスを混合させる技術(特許文献2)も公開されている。
【0005】
【特許文献1】
特開2002−75412号公報
【特許文献2】
特開2001−201046号公報
【0006】
【発明が解決しようとする課題】
上記の炭化水素系ガスの水素転化率を所定値以下にする技術では、得られる水素ガス量が抑えられてしまうため、確実に火炎検知を行なうためではあるが、結果としてエネルギー効率を悪化させている。
また、上記の炭化水素系ガスを混合させる技術では、火炎検知を行なうために、本来バーナの燃焼には不要な分の炭化水素系ガスを消費するため、エネルギ−効率を悪化させている。
上記の2つの技術では、水素リッチなガスの火炎を検知することが不得意なフレームロッドを、水素リッチなガスの火炎検知手段として利用しようとしたために、結果としてエネルギー効率の悪化を招いている。
【0007】
別の火炎検知手段として、サーモカップルが知られている。サーモカップルによる火炎検知手段は、火炎の内外の温度差により発生する起電力を利用して温度の計測を行なうものである。このサーモカップルによる火炎検知は、炭化水素系ガスの火炎だけではなく、フレームロッドでは火炎検知することができなかった高濃度水素ガスの火炎も検知することが可能である。しかし、このサーモカップルは、これ自身が熱容量を持ち、また、周囲の温度の影響を受けて温度を変えるために、バーナが燃焼を開始したのよりも遅れて昇温する。即ち、サーモカップルによる火炎検知手段では、着火したことの検出が遅れてしまう。
【0008】
着火の検出が遅れると、以下の問題が発生する。バーナへの点火動作が行なわれるとガスが供給される。サーモカップルによって検知を行なうと、着火を検出するまでに数秒掛るため、この間は、火が点いていても、点いていなくてもガスが供給され続けることとなる。着火検知が行なわれたときに着火が検出されれば何の問題もない。しかし、点火ミスが発生していると、着火検知が行われるまでの間、ガスが放出され続けることとなる。点火ミスを受けて再度点火動作を行なうと、このとき既に燃焼部内にガスが充満しているため、爆発着火が起こる。この爆発着火が起こると、燃焼部内に内圧が掛って器具に負担が掛ってしまう。また、爆発着火時の着火音が通常の着火音よりも大きくなってしまう。
火炎検知手段としてサーモカップルを配設する場合、火炎検知に遅れが生じて爆発着火に伴う問題が発生する。一方、フレームロッドを利用すれば、火炎検知に遅れが生じるという問題は生じないが、高濃度水素ガスを中心に燃焼しているときには失火しても失火を検知することができない。
本発明は、火炎の発生を応答性良く検知してシステム開始時の爆発着火を防止し、しかも高濃度水素ガスを中心に燃焼しているときの失火を見過ごすことなく検知する技術を提案する。
【0009】
本発明では、燃料電池式発電システムの改質器の燃焼部において、火炎の発生を応答性良く検知してシステム開始時の爆発着火とこれに伴う不具合を防止し、しかも、高濃度水素ガスを中心に燃焼しているときに失火が生じれば、それを見過ごすことなく検知することができる技術を提案する。
【0010】
【課題を解決するための手段と作用と効果】
本発明の燃料電池式発電システムの改質器は、炭化水素系ガスと水蒸気から高濃度水素ガスを生成して燃料電池に供給する改質部と、炭化水素系ガスと高濃度水素ガスの混合ガス又は炭化水素系ガスを燃料として改質部を加熱する燃焼部とを備えている。さらに、燃焼部で炭化水素系ガスの火炎が生じたことを検知する第1火炎検知手段と、燃焼部で混合ガス又は炭化水素系ガスの火炎が生じたことを検知する第2火炎検知手段をも備えている。
【0011】
改質器に配設されている燃焼部のバーナが失火すると、COが大量発生し、燃料電池を劣化させる恐れがあるため、確実に検知する必要がある。この燃焼部のバーナは、炭化水素系ガスを燃料とするときと、主に高濃度水素ガスからなる混合ガスを燃料とするときがある。炭化水素系ガスと水素ガスでは火炎の種類が違うため、それぞれの火炎を検知するために適した2種類の検知手段をバーナに併設することによって、何れの火炎も確実に検知を行なうことができる。バーナの失火を速やかに検出することができる。
【0012】
この燃料電池式発電システムの改質器の燃焼部は、炭化水素系ガスを燃料とするときと、主に改質部で生成された高濃度水素ガスを燃料とするときと、主に燃料電池通過後のオフガスを燃料とするときがあり、燃焼部が炭化水素系ガスを燃料とするときは第1火炎検知手段を用いて火炎検知を行い、燃焼部が主に改質部で生成された高濃度水素ガスを燃料とするときと、主に燃料電池通過後のオフガスを燃料とするときは第2火炎検知手段を用いて火炎検知を行なう。
【0013】
改質部で改質を行なうまでのバーナの燃料は炭化水素系ガスである。そして、改質中のバーナの主な燃料は、改質部で生成された高濃度水素ガスである。さらに発電中のバーナの主な燃料は、燃料電池に供給された高濃度水素ガスのうち、利用されずに燃料電池を通過した、いわゆるオフガスといわれる高濃度水素ガスである。炭化水素系ガスの火炎を検知するために適した第1火炎検知手段と、水素ガスの火炎を検知するために適した第2火炎検知手段をバーナに併設することによって、何れの火炎も確実に検知を行なうことができる。バーナの失火を速やかに検出することができる。
【0014】
この燃料電池式発電システムの改質器の燃焼部は、バーナに点火する点火手段を備え、燃焼部が燃料とするガスを切換えてから所定時間が経過するまでは、第1火炎検知手段と第2火炎検知手段による火炎検知を解除し、点火手段による点火動作を継続することが好ましい。
改質器の運転を開始させ、燃焼部のバーナが燃料とするガスを切換えると、改質部で生成される高濃度水素ガスの組成や流量が不安定となるため、リフトや失火等の燃焼不良が発生しやすくなる。
この燃料電池式発電システムの改質器では、燃焼部のバーナが燃料とするガスを切換えてからしばらくは、点火動作が行なわれる。これによれば、バーナの燃料となるガスの組成や流量が不安定になり、万一失火したとしても、点火動作が行なわれて再点火される。失火しても即座に点火されるため、何ら支障は生じない。従って、このとき、たとえ失火が検出されても、エラー処理が行なわれないようにする必要があるため、2種類の火炎検知手段による火炎検知を解除する。あるいは、このとき火炎検知は継続し、失火が検出されてもエラー処理は行なわれないように制御してもよい。
【0015】
この燃料電池式発電システムの改質器の燃焼部に配設される第1火炎検知手段はフレームロッドを有しており、第2火炎検知手段はサーモカップルを有していることが好ましい。
フレームロッドは、燃焼時にイオン化する炭化水素系ガスの火炎を検知するのには適しているが、主に高濃度水素ガスからなる水素リッチな混合ガスの火炎を検知することは困難である。また、サーモカップルは、それ自身の熱容量を持ち、火炎検知に対して応答遅れが発生し、万一点火ミスが起こると爆発着火とこれに伴う不具合が発生するため、システム開始時の着火検知には適さないが、燃料となるガスの種類を選ばないため、水素リッチなガスの火炎も検知することができる。従って、この燃料電池式発電システムの改質器では、システム開始時の炭化水素系ガスの火炎はフレームロッドを用いた火炎検知手段によって検知させ、水素リッチなガスの火炎はサーモカップルを用いた火炎検知手段によって検知させる。これによって、それぞれの火炎に適した検知手段で確実に火炎検知を行なうことができる。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施形態を説明する。
(形態1) 燃焼部において、点火動作を継続する所定の時間とは、燃焼部に供給される高濃度水素ガスの組成や流量が安定化するのに要する時間である。
【0017】
【実施例】
本発明を具現化した一実施例を図1と図2を用いて説明する。図1は本実施例に係る燃料電池式発電システムの構成を模式的に示した図であり、図2は同システムの改質器の燃焼部における火炎検知の処理を示すフローチャートである。
図1に示すように、本実施例の燃料電池式発電システム1は、主に改質器10と燃料電池12から構成されている。燃料電池12は水素と空気中の酸素を原料として発電を行なう。原料となる水素は改質器10において生成されて供給される。改質器10は、改質部14と燃焼部16を有している。改質部14は、図示しない触媒層を有している。燃焼部16は、バーナ16aとファンモータ16bを有している。改質部14に原燃料ガスが供給され、燃焼部16のバーナ16aによって加熱されると、触媒を介して化学反応が起こり、高濃度水素ガスである改質ガスが生成される。このガスが燃料電池12の発電に利用される。
【0018】
この燃料電池式発電システム1について、改質器10を中心にさらに詳しく説明する。原燃料ガスは、プロパンガス等の炭化水素系ガスから構成され、原燃料ガス供給ユニット18から供給される。原燃料ガスは、燃料電池12の発電に利用される改質ガスの原料となるとともに、バーナ16aの燃料ともなる。開閉弁24を通じて改質部14へ供給された原燃料ガスは、水素濃度の高い改質ガスに改質される。比例弁20と開閉弁22を通じて改質器10の燃焼部16へ供給された原燃料ガスはバーナ16aの燃料となる。比例弁20の開閉量や開閉弁22,24の開閉は図示しない制御部によって制御され、詳しくは後述する。
【0019】
改質部14には、原燃料ガスとともに改質ガスの材料となる水が供給される。水は水蒸気の形で供給される。供給された原燃料ガスと水は燃焼部16のバーナ16aによって加熱され、改質反応する。改質反応は改質触媒を介した吸熱反応であり、改質触媒の活性温度は600〜800℃という高温であるため、バーナ16aによる加熱は継続的に行なう。
【0020】
改質反応により、副生成物としてCOが発生する。COは燃料電池12の電極を劣化させるため、燃料電池12に供給されないように除去する必要がある。このため、改質部14内には改質触媒のほかに、2種類の触媒を有している。1つは副生成物であり有害なCOを酸化して無害なCOに変えるシフト触媒である。このシフト触媒によって、生成される改質ガス中のCO濃度が約1%程度に抑えられる。もう1つはCOだけを酸化する触媒である選択酸化触媒である。この選択酸化触媒によって、CO濃度を約1%から10ppm以下に低下させる。
【0021】
改質部14で生成された改質ガスは、燃料電池12に供給される。しかし、改質開始直後は改質部14内の各触媒の温度が不安定であるため、ガス組成やガス量が不安定であり、COを多く含んでいる。従って、改質ガスは、各触媒の温度が安定するまでは、燃料電池12をバイパスする第1経路26を経て燃焼部16に供給される。即ち、改質開始後しばらくの間、改質ガスは燃料電池12へは供給されず、燃焼部16に供給されて燃やされる。
改質触媒の温度が安定すると、改質ガスは第2経路30の経路30aを経て燃料電池12に供給される。燃料電池12では、この水素リッチな改質ガスと空気中の酸素を元に発電が行なわれる。燃料電池12に供給されたが発電に用いられずに燃料電池12を通過したオフガスは、第2経路30の経路30bを経て燃焼部16に供給されて燃やされる。
なお、第1経路26には開閉弁28が配設されており、第2経路30には開閉弁32が配設されている。これらの開閉弁28,32は図示しない制御部によって開閉制御され、詳しくは後述する。
【0022】
燃焼部16は、バーナ16aとファンモータ16bを有している。バーナ16aは、燃料となるガスと、ファンモータ16bによって供給された空気とを混合して燃焼させる。バーナ16aの熱量は、ファンモータ16bの回転数および原燃料ガスの供給量(比例弁20の開閉度)によって調整される。この燃焼によって得られる熱によって改質部14を加熱し、改質反応を促進する。
バーナ16aには、火炎の検知を行なうために、フレームロッド34と、サーモカップル36が配設されている。フレームロッド34は炭化水素系ガスの火炎を検知するときに用いられ、サーモカップル36は高濃度水素ガスを検知するときに用いられる。また、点火装置として火花放電を行なう点火電極38が配設されている。
なお、ファンモータ16bと、フレームロッド34と、サーモカップル36と、点火電極38は図示しない制御部によって制御され、詳しくは後述する。
【0023】
燃料電池式発電システム1の動作は、以下に説明する3つのモードに分けることができる。
システムが運転を開始すると、燃焼部16にバーナ16aの燃料となる原燃料ガスを供給し、改質部14を加熱する。改質触媒とシフト触媒と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達していないときに改質反応を行なおうとすると、副生成物であるCOやCO等の副生成物を大量に含む水素ガスを生成してしまう。従って、改質触媒とシフト触媒と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達するまでは改質部14を加熱するのみに留め、改質部14に原燃料ガスを供給しない。このシステムの運転開始から、改質触媒とシフト触媒と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達するまでを「モード1」とする。
モード1では、バーナ16aの燃料は炭化水素系ガスである原燃料ガスである。従って、フレームロッド34を用いて火炎検知を行なう。
【0024】
なお、バーナ16aの燃料が炭化水素系ガスであるとき、サーモカップル36によっても火炎検知は可能である。しかし、本実施例では以下の理由によりモード1においてはサーモカップル36による火炎検知を行なわない。バーナ16aへの点火動作が行なわれると燃料となるガスが供給される。このとき、サーモカップル36によって検知を行なうと、着火を検出するまでに数秒掛るため、この間は、火が点いていても、点いていなくてもガスが供給され続ける。着火検知が行なわれたときに着火が検出されれば何の問題もない。しかし、万一点火ミスが発生していると、着火検知が行われるまでの間、ガスが放出され続ける。この状態で、点火ミスを受けて再度点火電極38に火花放電を行なうと、このとき既に燃焼部16内にガスが充満しているため、爆発着火が起こる。この爆発着火が起こると、燃焼部16内に内圧が掛って器具に負担が掛ってしまう。また、爆発着火時の着火音が通常の着火音よりも大きくなってしまう。従って、モード1での火炎検知にサーモカップル36を用いず、フレームロッド34を用いる。
【0025】
改質触媒とシフト触媒の温度と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達すると、改質部14に改質ガスの原料となる原燃料ガスを供給して改質を開始する。改質開始直後に生成される改質ガスは組成が不安定であり、安定時に比べて水素濃度が低く、CO等の副生成物の濃度が高い。この不安定な改質ガスを燃料電池12に供給すると、所定の電力が得られないばかりか、COによって電極が劣化する不具合が生じる。従って、各触媒の温度が安定するまでは、不安定な改質ガスを燃料電池12へは供給せず、バーナ16aの燃料として直接燃焼部16に供給する。この各触媒の温度が安定するまでを「モード2」とする。
モード2では、バーナ16aの燃料は、主に高濃度水素ガスである改質ガスである。燃料中の水素ガスの濃度が高くなると、フレームロッド34では火炎を検知することができなくなる。補足的に原燃料ガスも供給されるが、フレームロッド34で火炎検知が可能なほどの量ではない。即ち、モード2での火炎検知にフレームロッド34を用いると、失火しても失火しなくても、失火として検知してしまうことがある。従って、サーモカップル36を用いて火炎検知を行なう。
【0026】
各触媒の温度が安定すると、改質ガスの組成は安定する。この安定した改質ガスを燃料電池12へ供給して発電を開始する。燃料電池12に供給された改質ガスのうち、発電に利用されなかった分の改質ガスはオフガスとして燃料電池12を通過する。このオフガスもバーナ16aの燃料として燃焼部16に供給する。この発電運転を開始してから停止するまでを「モード3」とする。
モード3でも、バーナ16aの燃料は、モード2と同様に、主に高濃度水素ガスである改質ガスである。補足的に原燃料ガスも供給されるが、フレームロッド34で火炎検知が可能なほどの量ではない。即ち、モード3での火炎検知にフレームロッド34を用いると、失火しても失火しなくても、失火として検知してしまうことがある。従って、サーモカップル36を用いて火炎検知を行なう。
【0027】
上記のモード1とモード2とモード3では、バーナ16aの燃料となるガスが異なる。従って、モード1からモード2への過渡的なモード(「モード1.5」とする)と、モード2からモード3への過渡的なモード(「モード2.5」とする)では、バーナ16aへ燃料となるガスを供給する配管が切換えられる。
モード1.5ではバーナ16aの燃料が原燃料ガスから改質ガスへ切換えられる。この改質ガスは第1経路26を経てバーナ16aに供給される。この切換え時に、改質部14から送られる改質ガスの組成や流量が不安定となる。
モード2.5でも同様の現象が発生する。モード2.5では、バーナ16aへ燃料を供給する経路が第1経路26から第2経路30へ切換えられる。これによって、安定化した改質ガスが第2経路30の経路30aを経て燃料電池12に供給される。そして燃料電池12を通過したオフガスが経路30bを経てバーナ16aに供給される。この切換え時に、改質部14から送られる改質ガスの組成や流量が不安定となる。
【0028】
上記のように、過渡的なモード(モード1.5、モード2.5)では、改質部14から送られる改質ガスの組成や流量が不安定となるため、特にリフトや失火等が発生しやすい。バーナ16aが失火すると、改質部14において改質触媒の最適な反応温度が得られなくなり、改質ガス中の水素濃度が低くなるだけでなく、COが発生して燃料電池12の電極を劣化させる恐れがある。従って、この過渡的なモードでは、点火電極38に火花放電を継続的に行なう。これによって、バーナ16aが万が一失火しても、速やかに点火し、改質部14の加熱を継続することができる。
【0029】
次に、本実施例の燃料電池式発電システム1の改質器10の燃焼部16における火炎検知の処理を図2を用いて説明する。
図2のステップS10では、開閉弁22と、比例弁20が開かれ、バーナ16aが点火される。これらの弁22,20が開かれることによって原燃料ガス供給ユニット18から燃焼部16に原燃料ガスが供給される。バーナ16aへの点火は、点火電極38によって行なわれる。このステップS10によってバーナ16aが燃焼を開始する。
ステップS10に続いてステップS12に進み、フレームロッド34による火炎検知を行なう。バーナ16aの燃料が炭化水素系ガスであるため、火炎検知手段としてフレームロッド34を用いる。
バーナ16aの燃焼によって改質部14内の温度が上昇を開始する(ステップS14)。改質触媒とシフト触媒と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達するまで(ステップS16でYESとなるまで)がモード1である。
【0030】
ステップS16で、改質触媒とシフト触媒と選択酸化触媒のそれぞれの温度が所定の温度範囲内に達すると(YESとなると)、ステップS18に進む。ステップS18では、開閉弁24,28が開かれ、このときタイマT1が計測を開始する。なお、このとき、開閉弁32は閉じたままである。開閉弁24が開かれることによって、改質部14に原燃料ガスが供給され、改質反応が開始する(ステップS20)。改質反応が開始してしばらくは、生成される改質ガスの組成も不安定となり、COを多く含んでいるため、開閉弁28を開いて、このときの改質ガスを、燃料電池12をバイパスさせてバーナ16aへ供給するようにする。
【0031】
第1経路26に改質ガスが送られ始めたとき、ガス組成やガス流量は不安定であるため、失火しやすい。従って、ステップS22に進んでフレームロッド34での火炎検知を解除し、点火電極38に火花放電を継続的に行なう。この点火操作を行なうことによって、たとえ失火しても、すぐに点火してバーナ16aの燃焼を復帰することができる。この動作はタイマT1が所定時間計測するまで(ステップS24でYESとなるまで)行なわれる。なお、タイマT1が計測する所定時間は、改質が開始されてからガス組成やガス流量が安定化した改質ガスがバーナ16aに供給されるまでの時間である。第1経路26内の改質ガスが安定化するまでがモード1.5である。なお、タイマT1が計測する所定時間は、第1経路26の配管内の容積等によって予め決定されている。
【0032】
第1経路26内の改質ガスが安定化すると(ステップS24でYESとなると)、バーナ16aの燃焼温度が安定し、改質部14内の温度も安定する。従って、ステップS26に進み、点火電極38に継続的に行なっていた火花放電を停止し、サーモカップル36による火炎検知を行なう。バーナ16aの燃料となるガスの組成や流量が安定化し、失火する可能性が低くなったため、火花放電を停止する。このとき、バーナ16aの燃料は高濃度水素ガスである改質ガスであるため、火炎検知手段としてサーモカップル36を用いる。改質部14の加熱が安定化し、各触媒の温度が安定するまで(ステップS28でYESとなるまで)がモード2である。
【0033】
ステップS28で、各触媒の温度が安定すると(YESとなると)、ステップS30に進む。ステップS30では、開閉弁28が閉じられ、開閉弁32が開かれ、このときタイマT2が計測を開始する。開閉弁32が開かれることによって、燃料電池12を通過する第2経路30に改質ガスが供給される。しかし、まだこの時点では改質ガスを燃料電池12に供給せずに通過させ、発電を開始させない。
【0034】
第2経路30に改質ガスが送られ始めたとき、ガスの組成や流量は不安定であるため、失火しやすい。従って、ステップS32に進んでサーモカップル36での火炎検知を解除し、失火防止のために点火電極38に火花放電を継続的に行なう。この動作はタイマT2が所定時間計測するまで(ステップS34でYESとなるまで)行なわれる。なお、タイマT2が計測する所定時間は、改質部14の加熱が安定的に行なわれて生成された、組成や流量の安定した改質ガスが最初にバーナ16aに供給されるまでの時間である。第2経路30内の改質ガスが安定化するまでがモード2.5である。なお、タイマT2が計測する所定時間は、第2経路30の配管内の容積等によって予め決定されている。
【0035】
第2経路30内の改質ガスが安定化すると(ステップS34でYESとなると)、バーナ16aの燃焼温度が安定し、改質部14内の温度も改質触媒の最適な反応温度で安定する。従って、ステップS36に進み、点火電極38に継続的に行なっていた火花放電を停止し、サーモカップル36による火炎検知を行なう。バーナ16aの燃料となるガスの組成や流量が安定化し、失火する可能性が低くなったため、火花放電を停止する。このとき、バーナ16aの燃料は高濃度水素ガスである改質ガスであるため、火炎検知手段としてサーモカップル36を用いる。安定した改質ガスが燃料電池12に供給されるようになったら発電を開始する(ステップS38)。発電運転を開始してから停止するまでがモード3である。
【0036】
本実施例の燃料電池式発電システム1の改質器10では、燃焼部16のバーナ16aが、炭化水素系ガスを燃料とするときと、主に高濃度水素ガスを燃料とするときがある。即ち、改質部14で改質を行なうまで(モード1)のバーナ16aの燃料は炭化水素系ガスである。そして、改質が開始されてから改質が安定するまで(モード2)のバーナ16aの主な燃料は、改質部14で生成された高濃度水素ガスである。さらに発電中(モード3)のバーナ16aの主な燃料は、燃料電池12に供給された改質ガスのうち、利用されずに燃料電池12を通過したオフガスである高濃度水素ガスである。
【0037】
本実施例の改質器10では、バーナ16aへの点火動作が行なわれると、着火検知が行われるまでは、火が点いていても、点いていなくてもガスが供給され続ける。システム開始時の着火検知に遅れがあると、点火ミスが発生したときに、着火検知が行われるまでの間、ガスが放出され続けることとなる。この状態で、点火ミスを受けて再度点火動作を行なうと、燃焼部16内にガスが充満しているため、爆発着火が起こる。この爆発着火が起こると、燃焼部16内に内圧が掛って器具に負担が掛ったり、爆発着火時の着火音が通常の着火音よりも大きくなったりする不具合が発生する。
また、燃焼部16のバーナ16aが失火すると、改質反応が不安定となって副生成物であるCOが大量発生し、燃料電池12を劣化させる恐れがあるため、確実に検知する必要がある。
本実施例では、フレームロッド34と、サーモカップル36をバーナ16aに併設している。フレームロッド34は、応答性がよく、火炎検知に遅れが生じるという問題は起こらない。また、フレームロッド34は、水素リッチな混合ガスの火炎を検知することは困難であるが、燃焼時にイオン化する炭化水素系ガスの火炎を検知するのには適している。一方、サーモカップル36は、火炎検知に対して応答遅れが発生し、システム開始直後のバーナ16aの着火時に爆発着火に伴う問題が発生する。しかし、サーモカップル36は、火炎の種類を選ばないため、フレームロッド34では火炎検知することができなかった高濃度水素ガスの火炎も検知することができる。従って、この燃料電池式発電システム1の改質器10は、モード1ではフレームロッド34を用いて火炎検知を行い、モード2とモード3ではサーモカップル36を用いて火炎検知を行なう。これによって、それぞれのモードに適した検知手段で確実に火炎検知を行なうことができる。
【0038】
また、バーナ16aに供給されるガスが切換えられるとき(モード1.5、モード2.5)、配管内のガスの組成や流量が不安定化するため、バーナ16aが失火することがある。このとき、フレームロッド34による火炎検知手段では、燃料ガス中の炭化水素系ガスの濃度が配管内の充填ガスによって希釈されてしまうため、検知できない可能性がある。また、サーモカップル36による火炎検知手段では、燃料ガスの組成や流量が大きく変化して火炎の温度が変化するため、応答遅れが発生する可能性がある。即ち、過渡的なモードでは、何れの火炎検知手段においても確実に火炎検知することが困難である。
本実施例の燃料電池式発電システム1の改質器10では、燃焼部16のバーナ16aが燃料とするガスを切換えてからしばらくは、点火電極38に火花放電を行なう。これによって、過渡的なモードにおいて万一失火したとしても、火花放電によって即座に再点火される。改質部14の加熱を維持することができ、支障は生じないため、この一瞬の失火がエラーとして検出されることがないよう、このときの火炎検知を解除する。
【0039】
以上のように、本発明の燃料電池式発電システムの改質器では、燃焼部において、バーナの火炎を確実に検知することができ、失火しやすい過渡的なモードでは、火炎検知を解除し、失火したとしても即座に再点火を行なうため、常に良好な燃焼を維持することができる。
【0040】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】 本実施例に係る燃料電池式発電システムの構成を模式的に示した図。
【図2】 同システムの改質器の燃焼部における火炎検知の処理を示すフローチャート。
【符号の説明】
1:燃料電池式発電システム
10:改質器
12:燃料電池
14:改質部
16:燃焼部、16a:バーナ、16b:ファンモータ
18:原燃料ガス供給ユニット
20:比例弁
22:開閉弁
24:開閉弁
26:第1経路
28:開閉弁
30:第2経路
32:開閉弁
34:フレームロッド
36:サーモカップル
38:点火電極

Claims (3)

  1. 炭化水素系ガスと水蒸気から高濃度水素ガスを生成して燃料電池に供給する改質部と、
    炭化水素系ガスと高濃度水素ガスの混合ガス又は炭化水素系ガスを燃料として改質部を加熱する燃焼部と、
    燃焼部で炭化水素系ガスの火炎が生じたことを検知する第1火炎検知手段と、
    燃焼部で混合ガス又は炭化水素系ガスの火炎が生じたことを検知する第2火炎検知手段とを備えており、
    前記燃焼部は、炭化水素系ガスを燃料とするときと、主に改質部で生成された高濃度水素ガスを燃料とするときと、主に燃料電池通過後のオフガスを燃料とするときがあり、
    燃焼部が炭化水素系ガスを燃料とするときは第1火炎検知手段を用いて火炎検知を行い、
    燃焼部が主に改質部で生成された高濃度水素ガスを燃料とするときと、主に燃料電池通過後のオフガスを燃料とするときは第2火炎検知手段を用いて火炎検知を行なうことを特徴とする燃料電池式発電システムの改質器。
  2. バーナに点火する点火手段を備え、燃焼部が燃料とするガスを切換えてから所定時間が経過するまでは、第1火炎検知手段と第2火炎検知手段による火炎検知を解除し、点火手段による点火動作を継続することを特徴とする請求項に記載の燃料電池式発電システムの改質器。
  3. 前記第1火炎検知手段はフレームロッドを有しており、前記第2火炎検知手段はサーモカップルを有していることを特徴とする請求項1または2に記載の燃料電池式発電システムの改質器。
JP2002380658A 2002-12-27 2002-12-27 燃料電池式発電システムの改質器 Expired - Fee Related JP3898123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380658A JP3898123B2 (ja) 2002-12-27 2002-12-27 燃料電池式発電システムの改質器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380658A JP3898123B2 (ja) 2002-12-27 2002-12-27 燃料電池式発電システムの改質器

Publications (2)

Publication Number Publication Date
JP2004210576A JP2004210576A (ja) 2004-07-29
JP3898123B2 true JP3898123B2 (ja) 2007-03-28

Family

ID=32816814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380658A Expired - Fee Related JP3898123B2 (ja) 2002-12-27 2002-12-27 燃料電池式発電システムの改質器

Country Status (1)

Country Link
JP (1) JP3898123B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194373B2 (ja) 2006-03-27 2013-05-08 トヨタ自動車株式会社 改質装置
JP5369370B2 (ja) * 2006-09-29 2013-12-18 アイシン精機株式会社 燃料電池システム
JP5495167B2 (ja) * 2008-09-12 2014-05-21 Toto株式会社 燃料電池モジュール
JP2010135287A (ja) * 2008-11-04 2010-06-17 Panasonic Corp 燃料電池システム
JP5352301B2 (ja) * 2009-03-24 2013-11-27 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の状態検知方法
US20120021315A1 (en) * 2009-03-31 2012-01-26 Yoshio Tamura Fuel cell system
WO2010119608A1 (ja) * 2009-04-17 2010-10-21 パナソニック株式会社 水素生成装置及びこれを備える燃料電池システム
JP5548987B2 (ja) * 2010-03-29 2014-07-16 Jx日鉱日石エネルギー株式会社 燃料電池システム及び燃料電池システムの制御方法
JP5513209B2 (ja) * 2010-03-30 2014-06-04 Jx日鉱日石エネルギー株式会社 燃料電池システム及び燃料電池システムの制御方法
JP5849186B2 (ja) * 2011-12-28 2016-01-27 パナソニックIpマネジメント株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2004210576A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
KR100557894B1 (ko) 연료 개질 시스템 및 이를 구비하는 연료 전지 시스템
EP2416428B1 (en) Fuel cell system
EP2380849B1 (en) Hydrogen generator, fuel cell system, and method of stopping hydrogen generator
JP5230958B2 (ja) 改質装置の制御方法及び改質装置並びに燃料電池システム
JP5369370B2 (ja) 燃料電池システム
JP4988590B2 (ja) 燃料電池ヒーター用バーナーの空気比決定方法並びに燃料電池ヒーター
JP3898123B2 (ja) 燃料電池式発電システムの改質器
JP4130681B2 (ja) 燃料電池システム
EP2420473B1 (en) Method of operating a hydrogen generation device
US8758950B2 (en) Fuel cell system
JP5366357B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP2011181440A (ja) 燃料電池システム
JP2005174745A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP2004196600A (ja) 燃料電池に用いる水素製造装置および起動方法
JP3765989B2 (ja) 改質器の加熱方法と加熱装置
JP3947665B2 (ja) 燃料電池発電システム
JP4917756B2 (ja) 燃料電池システムの起動方法並びに改質装置及び燃料電池システム
JP5548987B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP5590964B2 (ja) 燃料電池システムの制御方法
JP5511419B2 (ja) 水素生成装置及び燃料電池システム
JP5309799B2 (ja) 改質装置および燃料電池システム
JP2005332834A (ja) 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP4278366B2 (ja) 燃料処理装置、燃料処理方法および燃料電池発電システム
JP5759597B2 (ja) 燃料電池システムの制御方法
JP5537218B2 (ja) 燃料電池システム、及び、燃料電池システムの起動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees