JP3897936B2 - Leveler concentration measurement method in copper sulfate plating solution - Google Patents

Leveler concentration measurement method in copper sulfate plating solution Download PDF

Info

Publication number
JP3897936B2
JP3897936B2 JP24458299A JP24458299A JP3897936B2 JP 3897936 B2 JP3897936 B2 JP 3897936B2 JP 24458299 A JP24458299 A JP 24458299A JP 24458299 A JP24458299 A JP 24458299A JP 3897936 B2 JP3897936 B2 JP 3897936B2
Authority
JP
Japan
Prior art keywords
concentration
leveler
copper sulfate
measured
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24458299A
Other languages
Japanese (ja)
Other versions
JP2001073183A (en
Inventor
保志 諌山
浩幸 上山
明久 本郷
亮一 君塚
恵美 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
JCU Corp
Original Assignee
Ebara Corp
JCU Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24458299A priority Critical patent/JP3897936B2/en
Application filed by Ebara Corp, JCU Corp filed Critical Ebara Corp
Priority to US09/830,407 priority patent/US6627066B1/en
Priority to KR1020017005245A priority patent/KR100709369B1/en
Priority to PCT/JP2000/005854 priority patent/WO2001016405A1/en
Priority to KR1020067027248A priority patent/KR100760408B1/en
Priority to TW089117586A priority patent/TW457544B/en
Priority to EP00956786A priority patent/EP1136595A4/en
Publication of JP2001073183A publication Critical patent/JP2001073183A/en
Priority to US10/627,684 priority patent/US7172683B2/en
Priority to US11/643,771 priority patent/US20070102285A1/en
Application granted granted Critical
Publication of JP3897936B2 publication Critical patent/JP3897936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体基板等の表面上に形成された配線用溝や穴を銅めっきで充填するのに用いる硫酸銅めっき装置のめっき液のレベラー濃度測定方法に関するものである。
【0002】
【従来の技術】
半導体基板等の表面上に配線用溝や穴の充填(埋め込み)を硫酸銅電解めっきで行う場合、基本組成である硫酸銅(CuSO4・5H2O)と、硫酸(H2SO4)と、塩素(Cl)に加え、めっき膜質を改善し、溝や穴の充填性(埋め込み性)を向上させるため、下記の3種類の有機添加剤を混入させることが多い。
【0003】
一つはめっき膜を緻密にし、光沢性を上げるキャリア(ブライトナーともいう)である。一般的には硫黄化合物(例えば、HS‐Cn2n‐SO3 Mercapto alkylsulfonic acid)でアニオンとして存在し、銅イオンの析出を妨害し、微細化が促進される。
【0004】
二つ目は陰極表面に吸着銅イオンの析出を抑制することで活性化分極を大きくし、均一電着性を上げるポリマー(サプレッサー,キャリアともいう)であり、一般的にはPEG、PPGなどの界面活性剤である。
【0005】
三つ目はポリアミン等の窒素含有の化合物からなるレベラーである。めっき液中ではカチオンとして存在する。
【0006】
上記レベラーの吸着は電流密度の高い場所に多く、レベラーの吸着が多いところは活性化過電圧が増え、銅の析出が抑制される。反対に微細溝や穴の底ではレベラーの吸着が少なく、銅の析出が優先される。ボトムアップの析出状態をレベリング性が優れているという。
【0007】
硫酸銅のめっき液中の添加剤の濃度管理はめっき膜質、穴埋め性を管理する上で重要なことである。しかしながら、現在強酸中の微量の有機化合物の濃度絶対量を測定する方法はない。
【0008】
現在、行われているめっき液中の添加剤の濃度分析法はCV(Cyclic Voltammetric)法又はCVS(Cyclic Voltammetric Stripping)法と呼ばれる方法で、回転する陰極電極に析出する銅量を測定することで析出抑制剤又は促進剤という添加剤の濃度に換算している。
【0009】
しかし、上記方法では測定できるものはキャリアとポリマーの濃度であり、レベラーの濃度の測定は不可能であった。レベラーの濃度は上記3つの添加剤中で最も微量で、ポリマーと性質が類似しており、いままでCV法又はCVS法でも測定不可能といわれてきた。
【0010】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、従来のCV法又はCVS法でも不可能といわれてきた硫酸銅めっき液中の添加剤であるレベラーの濃度を測定できる硫酸銅めっき液中のレベラー濃度測定方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、硫酸銅電解めっき液中に含まれる有機添加剤のうちレベラーと呼ばれる窒素を含む添加剤の濃度を測定する硫酸銅めっき液中のレベラー濃度測定方法において、レベラー濃度を測定しようとする硫酸銅電解めっき液のポリマー濃度とキャリア濃度を測定し、硫酸銅と硫酸を所定の割合で混合した基本液に、ポリマー濃度が測定したポリマー濃度と同一になるようにポリマーと呼ばれる界面活性剤を添加すると共に、キャリア濃度が測定したキャリア濃度の2乃至40倍となるようにキャリアと呼ばれる硫黄化合物である促進添加剤を添加して測定液を作製し、該測定液にレベラーを添加してCV法又はCVS法により剥離領域での第1のピーク値面積(Ar値)の測定を添加するレベラー量を変えて複数回行い、測定した複数の第1のピーク値面積(Ar値)と添加したレベラー量から、第1のピーク値面積に対するレベラー濃度の検量線を作成し、レベラー濃度を測定しようとする硫酸銅電解めっき液に促進添加剤を前記測定したキャリア濃度の2乃至40倍の濃度となるように添加してキャリア濃度を調整し、該キャリア濃度を調整した硫酸銅電解めっき液を使用してCV法又はCVS法により剥離領域での第2のピーク値面積を測定し、第2のピーク値面積で作成した検量線を用いてレベラー濃度を測定しようとする硫酸銅電解めっき液中のレベラー濃度を測定することを特徴とする。
【0014】
硫酸銅めっき液におけるレベラーの効能はレベラー単独の濃度で決まるものではなく、他のキャリア、ポリマーの濃度に影響される。特にキャリアの濃度はレベリング性に影響を与える。レベラーにポリアミン等の非染料型窒素化合物を用いた場合、分析するめっき液中のキャリア濃度を相対的に2〜40倍に増すことで、レベリング性状が顕著になり、検量線をはっきり描くことができる。
【0015】
また、請求項2に記載の発明は、硫酸銅電解めっき液中に含まれる有機添加剤のうちレベラーと呼ばれる窒素を含む添加剤の濃度を測定する硫酸銅めっき液中のレベラー濃度測定方法において、レベラー濃度を測定しようとする硫酸銅電解めっき液のポリマー濃度を測定し、硫酸銅と硫酸を所定の割合で混合した基本液に、ポリマー濃度が測定したポリマー濃度と同一になるようにポリマーと呼ばれる界面活性剤を所定量添加して測定液を作製し、該測定液にレベラーを添加してCV法又はCVS法により剥離領域での第1のピーク値面積(Ar値)の測定を添加するレベラー量を変えて複数回行い、測定した複数の第1のピーク値面積(Ar値)と添加したレベラー量から、第1のピーク値面積に対するレベラー濃度の検量線を作成し、レベラー濃度を測定しようとする硫酸銅電解めっき液を有機アニオン選択性吸着膜を通過させ、該硫酸銅電解めっき液中からキャリアを除去したものを使用してCV法又はCVS法により剥離領域での第2のピーク値面積を測定し、第2のピーク値面積で作成した検量線を用いてレベラー濃度を測定しようとする硫酸銅電解めっき液中のレベラー濃度を測定することを特徴とする。
【0016】
レベラーにヤヌスグリーン等の窒素化合物を用いた場合、キャリアの量を零に近づけた方が、レベリング性状が顕著になり、検量線をはっきり描くことができる。従って、上記のようにめっき液を有機アニオン選択性吸着膜を通過させることにより、めっき液中のキャリアが除去され、検量線を描くことができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1は本発明に係る硫酸銅めっき液中のレベラー濃度測定方法を実施する装置の構成を示す図である。図1において、本装置は測定セル10を具備し、該測定セル10内には電極ホルダー11に保持された回転ディスク電極12が配置されるとともに、スターラ14により非接触で駆動される攪拌羽根13が配置されている。また、電極ホルダー11には、電極間の電位が設定値になるように電流を自動調節するポテンショスタット15が接続されている。
【0018】
21は低濃度基本液Q1を収容する低濃度基本液槽、22は高濃度基本液Q2を収容する高濃度基本液槽、23は検定用液Q3を収容する検定液槽、24は添加剤A(ポリマー)液Q4を収容する添加剤液槽、25は添加剤B(キャリア)液Q5を収容する添加剤液槽、26は添加剤C(レベラー)液Q6を収容する添加剤液槽、27は標準液Q7を収容する標準液槽である。ここで、基本液は硫酸銅(CuSO4・5H2SO4)と硫酸(H2SO4)等を所定の割合で混合した溶液、標準液は該基本液に複数の添加剤及び塩酸を所定の割合混合した溶液、検定用液はポリマー検定用の溶液であり、基本液に所定量の添加剤を混入したものである。
【0019】
低濃度基本液槽21には三方弁28を介してビュレット29が接続され、該ビュレット29で該低濃度基本液槽21から所定量の低濃度基本液Q1を抽出し測定セル10内に供給できるようになっている。また、高濃度基本液槽22、検定液槽23、添加剤液槽24、添加剤液槽25、添加剤液槽26、標準液槽27にはそれぞれ三方弁30、32、34、36、38、40を介してビュレット31、33、35、37、39、41が接続され、所定量の高濃度基本液Q2、検定用液Q3、添加剤A液Q4、添加剤B液Q5、添加剤C液Q6、標準液Q7を抽出し測定セル10内に供給できるようになっている。
【0020】
42はCPUを具備する制御装置であり、後述するように、ポリマー濃度測定モード、キャリア濃度測定モード、レベラー濃度測定モードに応じて三方弁28、30、32、34、36、38、40の切り換え及びビュレット29、31、33、35、37、39、41の起動停止を行うドライバ43や各部の制御を行うようになっている。
【0021】
44は濃度を測定するサンプルめっき液を収容するサンプル槽であり、サンプル入口45からサンプル槽44に流入し、オーバフローしたサンプルめっき液はサンプル戻り口46からめっき装置(図示せず)に戻るようになっている。47はサンプルノズルであり、該サンプルノズル47には三方弁49を介してビュレット48が接続され、該ビュレット48によりサンプルノズル47を介して所定量のサンプルめっき液を抽出し、該サンプルノズル47を測定セル10の上に移動させ、サンプルめっき液を測定セル10内に供給することができるようになっている。
【0022】
51は純水を送るポンプであり、該ポンプ51で三方弁49を通してビュレット48やサンプルノズル47に純水を送りこれらを洗浄できるようになっている。また、測定セル10内も純水で洗浄するようになっている。また、50は測定セル10内の溶液を排出するポンプである。以下、上記構成の濃度測定装置において、ポリマー濃度を測定するポリマー濃度測定モード、キャリア濃度を測定するキャリア濃度測定モード、レベラー濃度を測定するレベラー濃度測定モードについて一例を説明する。
【0023】
〔ポリマー濃度測定モード〕
先ず、電極が安定していることを確認する。この確認は、低濃度基本液槽21から低濃度基本液Q1を50ml抽出し、測定セル10に供給し、CVS法でAr値、即ち剥離領域でのピーク値面積(時間×電流密度=電気量)を求め、該Ar値が適正な値であるか否かを判断し、適正でない場合は測定セル10から低濃度基本液を排出し、洗浄して、再び低濃度基本液Q1を50ml抽出し、測定セル10に供給して上記操作を繰返す。
【0024】
Ar値が適正な値であった場合、検定液槽23から1mlの検定用液Q3を抽出し、測定セル10に供給し、CVS法によるAr値を測定する。この検定用液Q3の抽出供給、CVS法によるAr値の測定を所定回(通常5回、最大10回)繰返し、検量線を作成する。上記検量線の作成が終了したら、測定セル10内の液を排出し、内部を洗浄する。
【0025】
続いて、低濃度基本液槽21から低濃度基本液Q1を50ml抽出して測定セル10に供給し、Ar値が適正な値であるか否かを判断し(電極が安定していることの確認)、適正な場合はサンプルめっき液(試料)を1ml抽出し、測定セル10内に添加し、CVS法によるAr値を測定する。このサンプル液の抽出添加、CVS法によるAr値の測定を所定回(通常5回、最大10回)繰返し、検量線を作成する。上記検量線の作成が終了したら、測定セル10内の液を排出し、内部を洗浄する。上記検量線とこの検量線の比較からサンプルめっき液のポリマー濃度を求める。即ち、検定用液Q3にはポリマー濃度は既知であるから、この検定用液Q3で得られた検量線とサンプルめっき液の検量線を比較することにより、サンプルめっき液のポリマー濃度を求めることができる。
【0026】
〔キャリア濃度測定モード〕
先ず、上記同様、電極が安定していることを確認する。即ち、低濃度基本液槽21から低濃度基本液Q1を50ml抽出し、測定セル10に供給する。CVS法でAr値を測定し、該Ar値が適正な値であることを確認する。
【0027】
Ar値が適正な値であることを確認したら、測定セル10内の液を排出洗浄した後、高濃度基本液槽22から高濃度基本液Q2を48.5ml、添加剤液槽24から添加剤A液Q4を1ml、添加剤液槽26から添加剤C液Q6を0.5mlそれぞれ抽出し測定セル10に供給し、CVS法によるAr値を測定する。続いて添加剤液槽25から添加剤B液Q5を0.5ml抽出し測定セル10に供給し、CVS法によるAr値を測定する。この添加剤B液Q5を0.5ml抽出し測定セル10に添加し、CVS法によるAr値を測定する操作を所定回数(通常4回)繰返し、検量線を作成する。測定データを判断し、測定データが適正であったら、測定セル10内の液を排出し洗浄する。
【0028】
次に、再度、電極が安定していることを確認する。即ち、低濃度基本液槽21から低濃度基本液Q1を50ml抽出し、測定セル10に供給する。CVS法でAr値を測定し、該Ar値が適正な値であることを確認する。
【0029】
Ar値が適正な値であることを確認したら、測定セル10内の液を排出洗浄した後、サンプルめっき液99.6ml抽出して、測定セル10に供給すると共に、添加剤液槽24から添加剤A液Q4を1ml抽出して測定セル10内に添加し、CVS法でAr値を測定し、該Ar値で図2に示す検量線からサンプルめっき液のキャリア濃度を測定する。
【0030】
〔レベラー濃度測定モード〕
レベラー濃度測定には、三つの方法、即ち請求項1、2、3、4に記載の発明に係るレベラー濃度測定方法がある。以下、各レベラー測定方法について説明する。
【0031】
請求項1、2に記載の発明に係るレベラー濃度測定方法は、先ず電極が安定していることを確認する。即ち、低濃度基本液槽21から低濃度基本液Q1を100ml抽出し、測定セル10に供給する。CVS法でAr値を測定し、該Ar値が適正な値であることを確認する。
【0032】
Ar値が適正な値であることを確認したら、測定セル10内の液を排出洗浄した後、高濃度基本液槽22から高濃度基本液Q2を48ml、添加剤液槽24から添加剤A液Q4を1ml、添加剤液槽25から添加剤液B液Q5を1mlをそれぞれ抽出し、測定セル10に供給して、CVS法でAr値を測定する。
【0033】
続いて、添加剤液槽26から添加剤C液Q6を0.1ml抽出し、測定セル10内に供給し、CVS法によるAr値を測定する。この添加剤Q6を0.1ml抽出し測定セル10へ供給し、CVS法によるAr値を測定する操作を所定回数(通常4回)繰返し、図2に示すような検量線を作成する。測定データを判断し、測定データが適正であったら、測定セル10から液を排出し洗浄する。
【0034】
サンプルめっき液50mlを抽出して、測定セル10に供給し、CVS法でAr値を測定し、該Ar値で図2に示す検量線からサンプルめっき液のレベラー濃度を測定する。図2において、サンプルめっき液のAr値がyであったら対応するレベラー濃度はxとして求められる。
【0035】
請求項3に記載の発明に係るレベラー濃度測定方法は、上記電極が安定していることを確認したら、高濃度基本液槽22から高濃度基本液Q2を所定量、添加剤液槽25から添加剤B液Q5をその濃度が上記の場合の2〜40倍なる所定量(高濃度基本液Q2+添加剤B液Q5=50ml)それぞれ抽出し、測定セル10に供給し、CVS法でAr値を測定する。
【0036】
続いて、添加剤液槽26から添加剤C液Q6を0.1ml抽出し、測定セル10内に供給し、CVS法によるAr値を測定する。この添加剤Q6を0.1ml抽出し測定セル10へ供給し、CVS法によるAr値を測定する操作を所定回数(通常4回)繰返し、検量線(図示省略)を作成する。測定データを判断し、測定データが適正であったら、測定セル10から液を排出し洗浄する。
【0037】
サンプルめっき液を50ml抽出して、測定セル10に供給し、CVS法でAr値を測定し、該Ar値で検量線からサンプルめっき液のレベラー濃度を測定する。
【0038】
請求項4に記載の発明に係るレベラー濃度測定方法は、上記電極が安定していることを確認したら、高濃度基本液槽22から高濃度基本液Q2を49ml、添加剤液槽24から添加剤A液Q4を1mlそれぞれ抽出し、測定セル10に供給し、CVS法でAr値を測定する。
【0039】
続いて、添加剤液槽26から添加剤C液Q6を0.1ml抽出し、測定セル10内に供給し、CVS法によるAr値を測定する。この添加剤Q6を0.1ml抽出し測定セル10へ供給し、CVS法によるAr値を測定する操作を所定回数(通常4回)繰返し、検量線(図示省略)を作成する。測定データを判断し、測定データが適正であったら、測定セル10から液を排出し洗浄する。
【0040】
サンプルめっき液を有機アニオン選択性吸着膜を通過させ、該サンプルめっき液中からキャリアを除去したものを50ml抽出し、測定セル10に供給し、CVS法でAr値を測定し、該Ar値で検量線からサンプルめっき液のレベラー濃度を測定する。
【0041】
上記構成の濃度測定装置において、予めキャリア、ポリマーの濃度を変えた多数のレベラー検量線を制御装置42のコンピュータに記憶しておき、サンプルの分析操作は、より容易に短時間で行うことができる。
【0042】
【発明の効果】
以上、説明したように各請求項に記載の発明によれば、従来CV法又はCVS法でも測定不可能であっためっき液中のレベラー濃度の測定が可能となるという優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る硫酸銅めっき液中のレベラー濃度測定方法を実施する装置の構成を示す図である。
【図2】レベラー濃度とAr値の検量線を示す図である。
【符号の説明】
10 測定セル
11 電極ホルダー
12 回転ディスク電極
13 攪拌羽根
14 スターラ
15 ポテンショスタット
21 低濃度基本液槽
22 高濃度基本液槽
23 検定液槽
24 添加剤液槽
25 添加剤液槽
26 添加剤液槽
27 標準液槽
28 三方弁
29 ビュレット
30 三方弁
31 ビュレット
32 三方弁
33 ビュレット
34 三方弁
35 ビュレット
36 三方弁
37 ビュレット
38 三方弁
39 ビュレット
40 三方弁
41 ビュレット
42 制御装置
43 ドライバ
44 サンプル槽
45 サンプル入口
46 サンプル戻り口
47 サンプルノズル
48 ビュレット
49 三方弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leveler concentration measuring method for a plating solution of a copper sulfate plating apparatus used for filling wiring grooves and holes formed on the surface of a semiconductor substrate or the like with copper plating.
[0002]
[Prior art]
When filling (embedding) wiring grooves and holes on the surface of a semiconductor substrate or the like by copper sulfate electroplating, copper sulfate (CuSO 4 .5H 2 O), which is a basic composition, and sulfuric acid (H 2 SO 4 ) In addition to chlorine (Cl), the following three kinds of organic additives are often mixed in order to improve the plating film quality and improve the filling property (embedding property) of grooves and holes.
[0003]
One is a carrier (also called brightener) that densifies the plating film and improves glossiness. Generally the sulfur compounds (e.g., HS-C n H 2n -SO 3 Mercapto alkylsulfonic acid) is present as an anion, obstructing the precipitation of copper ions, and promotes refinement.
[0004]
The second is a polymer (also called a suppressor or carrier) that increases the activation polarization by suppressing the deposition of adsorbed copper ions on the cathode surface and improves the uniform electrodeposition. It is a surfactant.
[0005]
The third is a leveler made of a nitrogen-containing compound such as polyamine. It exists as a cation in the plating solution.
[0006]
The leveler is adsorbed frequently in places where the current density is high, and where the leveler is adsorbed frequently, the activation overvoltage increases and the copper deposition is suppressed. On the other hand, there is little leveler adsorption at the bottom of fine grooves and holes, and copper deposition is given priority. The bottom-up precipitation state is said to have excellent leveling properties.
[0007]
Controlling the concentration of the additive in the copper sulfate plating solution is important in managing the plating film quality and hole filling performance. However, there is currently no method for measuring the absolute concentration of trace amounts of organic compounds in strong acids.
[0008]
Currently, the concentration analysis method for additives in plating solution is a method called CV (Cyclic Voltammetric) method or CVS (Cyclic Voltammetric Stripping) method, which measures the amount of copper deposited on the rotating cathode electrode. It is converted into the concentration of an additive called precipitation inhibitor or accelerator.
[0009]
However, what can be measured by the above method is the concentration of the carrier and the polymer, and the concentration of the leveler cannot be measured. The leveler concentration is the smallest among the above three additives and is similar in nature to the polymer, and until now it has been said that it cannot be measured by the CV method or the CVS method.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and in a copper sulfate plating solution that can measure the concentration of a leveler that is an additive in a copper sulfate plating solution that has been said to be impossible even by the conventional CV method or CVS method. An object of the present invention is to provide a leveler concentration measurement method.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is characterized in that the leveler concentration in the copper sulfate plating solution for measuring the concentration of an additive containing nitrogen called leveler among the organic additives contained in the copper sulfate electrolytic plating solution. In the measurement method, the polymer concentration and carrier concentration of the copper sulfate electroplating solution whose leveler concentration is to be measured are measured, and the polymer concentration is the same as the measured polymer concentration in the basic solution in which copper sulfate and sulfuric acid are mixed at a predetermined ratio. with the addition of a surfactant called polymer so that the accelerator additive is a sulfur compounds called carrier to be 2 to 40 times the carrier concentration carrier concentration was measured by adding to prepare a measurement liquid , leveler amount of addition of the measurement of the first peak value area at the peeled area (Ar value) by CV method or CVS process by adding a leveler to the test solution It is performed multiple times, and a calibration curve of the leveler concentration with respect to the first peak value area is created from the measured first peak value areas (Ar values) and the added leveler amount, and the leveler concentration is measured. The copper sulfate electroplating solution is used to adjust the carrier concentration by adding an accelerating additive to the concentration of 2 to 40 times the measured carrier concentration. Measure the second peak value area in the peeling region by the CV method or CVS method, and measure the leveler concentration using the calibration curve created with the second peak value area. Is measured .
[0014]
The efficacy of the leveler in the copper sulfate plating solution is not determined by the concentration of the leveler alone, but is affected by the concentration of other carriers and polymers. In particular, the carrier concentration affects leveling properties. When a non-dye type nitrogen compound such as polyamine is used as a leveler, leveling properties become remarkable and a calibration curve can be clearly drawn by relatively increasing the carrier concentration in the plating solution to be analyzed by 2 to 40 times. it can.
[0015]
The invention according to claim 2 is a leveler concentration measurement method in a copper sulfate plating solution for measuring a concentration of an additive containing nitrogen called a leveler among organic additives contained in a copper sulfate electrolytic plating solution. Measure the polymer concentration of the copper sulfate electroplating solution whose leveler concentration is to be measured, and it is called a polymer so that the polymer concentration is the same as the measured polymer concentration in the basic solution in which copper sulfate and sulfuric acid are mixed in a predetermined ratio A leveler is prepared by adding a predetermined amount of a surfactant to prepare a measurement liquid, adding a leveler to the measurement liquid, and adding a measurement of the first peak value area (Ar value) in the peeling region by the CV method or the CVS method. A calibration curve of the leveler concentration with respect to the first peak value area is created from the plurality of first peak value areas (Ar values) measured and the added leveler amount. Copper sulfate electrolytic plating solution to be measured Rah concentration is passed through the organic anion selective adsorption film, in the peeled area by CV method or CVS method using the obtained by removing the carrier from the sulfuric acid copper electroplating solution a second peak value area is measured, and measuring the leveler concentration of the copper sulfate electroplating solution to be measured to the leveler concentration using a calibration curve prepared in the second peak value area.
[0016]
When a nitrogen compound such as Janus Green is used for the leveler, the leveling properties become more prominent and the calibration curve can be clearly drawn when the carrier amount is made closer to zero. Therefore, by passing the plating solution through the organic anion selective adsorption membrane as described above, carriers in the plating solution are removed, and a calibration curve can be drawn.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a configuration of an apparatus for carrying out a method for measuring a leveler concentration in a copper sulfate plating solution according to the present invention. In FIG. 1, the apparatus includes a measurement cell 10, in which a rotating disk electrode 12 held by an electrode holder 11 is disposed, and a stirring blade 13 that is driven in a non-contact manner by a stirrer 14. Is arranged. The electrode holder 11 is connected to a potentiostat 15 that automatically adjusts the current so that the potential between the electrodes becomes a set value.
[0018]
21 is a low-concentration basic solution tank containing a low-concentration basic solution Q1, 22 is a high-concentration basic solution tank containing a high-concentration basic solution Q2, 23 is a test solution tank containing a test solution Q3, and 24 is an additive A. (Polymer) Liquid tank containing the liquid Q4, 25 is an additive liquid tank containing the additive B (carrier) liquid Q5, 26 is an additive liquid tank containing the additive C (leveler) liquid Q6, 27 Is a standard solution tank containing the standard solution Q7. Here, the basic solution is a solution in which copper sulfate (CuSO 4 .5H 2 SO 4 ) and sulfuric acid (H 2 SO 4 ) are mixed at a predetermined ratio, and the standard solution is a predetermined solution containing a plurality of additives and hydrochloric acid. The mixed solution and the test solution are polymer test solutions, and a predetermined amount of additive is mixed into the base solution.
[0019]
A burette 29 is connected to the low-concentration basic liquid tank 21 via a three-way valve 28, and a predetermined amount of the low-concentration basic liquid Q 1 can be extracted from the low-concentration basic liquid tank 21 by the burette 29 and supplied into the measurement cell 10. It is like that. The three-way valves 30, 32, 34, 36, and 38 are provided in the high concentration basic liquid tank 22, the test liquid tank 23, the additive liquid tank 24, the additive liquid tank 25, the additive liquid tank 26, and the standard liquid tank 27, respectively. 40, burettes 31, 33, 35, 37, 39, 41 are connected, and a predetermined amount of high-concentration basic solution Q2, assay solution Q3, additive A solution Q4, additive B solution Q5, additive C The liquid Q6 and the standard liquid Q7 can be extracted and supplied into the measurement cell 10.
[0020]
Reference numeral 42 denotes a control device including a CPU. As will be described later, the three-way valves 28, 30, 32, 34, 36, 38, and 40 are switched according to the polymer concentration measurement mode, the carrier concentration measurement mode, and the leveler concentration measurement mode. In addition, the driver 43 for starting and stopping the bullets 29, 31, 33, 35, 37, 39, and 41 and each part are controlled.
[0021]
Reference numeral 44 denotes a sample tank for storing a sample plating solution for measuring the concentration. The sample plating solution flows into the sample tank 44 from the sample inlet 45, and the overflowed sample plating solution returns to the plating apparatus (not shown) from the sample return port 46. It has become. Reference numeral 47 denotes a sample nozzle. A burette 48 is connected to the sample nozzle 47 via a three-way valve 49, and a predetermined amount of sample plating solution is extracted by the burette 48 via the sample nozzle 47. The sample plating solution can be supplied into the measurement cell 10 by being moved onto the measurement cell 10.
[0022]
Reference numeral 51 denotes a pump for sending pure water. The pump 51 can send pure water to the burette 48 and the sample nozzle 47 through the three-way valve 49 so as to wash them. Further, the inside of the measurement cell 10 is also cleaned with pure water. Reference numeral 50 denotes a pump for discharging the solution in the measurement cell 10. Hereinafter, examples of the polymer concentration measurement mode for measuring the polymer concentration, the carrier concentration measurement mode for measuring the carrier concentration, and the leveler concentration measurement mode for measuring the leveler concentration in the concentration measuring apparatus having the above configuration will be described.
[0023]
[Polymer concentration measurement mode]
First, it is confirmed that the electrode is stable. This confirmation is made by extracting 50 ml of the low concentration basic solution Q1 from the low concentration basic solution tank 21 and supplying it to the measurement cell 10, and using the CVS method, the Ar value, that is, the peak value area in the peeling region (time × current density = electric quantity). ) And determine whether or not the Ar value is appropriate. If the Ar value is not appropriate, the low concentration basic solution is discharged from the measuring cell 10, washed, and 50 ml of the low concentration basic solution Q1 is extracted again. The measurement cell 10 is supplied and the above operation is repeated.
[0024]
When the Ar value is an appropriate value, 1 ml of the test solution Q3 is extracted from the test solution tank 23, supplied to the measurement cell 10, and the Ar value is measured by the CVS method. This calibration solution Q3 extraction supply and Ar value measurement by the CVS method are repeated a predetermined number of times (usually 5 times, a maximum of 10 times) to create a calibration curve. When the preparation of the calibration curve is completed, the liquid in the measurement cell 10 is discharged and the inside is cleaned.
[0025]
Subsequently, 50 ml of the low-concentration basic liquid Q1 is extracted from the low-concentration basic liquid tank 21 and supplied to the measurement cell 10 to determine whether the Ar value is an appropriate value (the electrode is stable). Confirmation) If appropriate, extract 1 ml of the sample plating solution (sample), add it to the measurement cell 10, and measure the Ar value by the CVS method. Extraction of the sample solution and measurement of the Ar value by the CVS method are repeated a predetermined number of times (usually 5 times and a maximum of 10 times) to create a calibration curve. When the preparation of the calibration curve is completed, the liquid in the measurement cell 10 is discharged and the inside is cleaned. The polymer concentration of the sample plating solution is determined from a comparison between the calibration curve and the calibration curve. That is, since the polymer concentration is known in the test solution Q3, the polymer concentration of the sample plating solution can be obtained by comparing the calibration curve obtained with the test solution Q3 and the calibration curve of the sample plating solution. it can.
[0026]
[Carrier concentration measurement mode]
First, as in the above, it is confirmed that the electrode is stable. That is, 50 ml of the low concentration basic solution Q1 is extracted from the low concentration basic solution tank 21 and supplied to the measurement cell 10. The Ar value is measured by the CVS method, and it is confirmed that the Ar value is an appropriate value.
[0027]
After confirming that the Ar value is an appropriate value, the liquid in the measurement cell 10 is discharged and washed, and then 48.5 ml of the high concentration basic liquid Q2 is added from the high concentration basic liquid tank 22, and the additive is added from the additive liquid tank 24. 1 ml of A liquid Q4 and 0.5 ml of additive C liquid Q6 are extracted from the additive liquid tank 26 and supplied to the measuring cell 10, and the Ar value is measured by the CVS method. Subsequently, 0.5 ml of additive B liquid Q5 is extracted from the additive liquid tank 25 and supplied to the measurement cell 10, and the Ar value is measured by the CVS method. 0.5 ml of this additive B liquid Q5 is extracted and added to the measuring cell 10, and the operation of measuring the Ar value by the CVS method is repeated a predetermined number of times (usually 4 times) to create a calibration curve. The measurement data is judged, and if the measurement data is appropriate, the liquid in the measurement cell 10 is discharged and washed.
[0028]
Next, it is confirmed again that the electrode is stable. That is, 50 ml of the low concentration basic solution Q1 is extracted from the low concentration basic solution tank 21 and supplied to the measurement cell 10. The Ar value is measured by the CVS method, and it is confirmed that the Ar value is an appropriate value.
[0029]
After confirming that the Ar value is an appropriate value, the liquid in the measurement cell 10 is discharged and washed, and then 99.6 ml of the sample plating solution is extracted and supplied to the measurement cell 10 and added from the additive liquid tank 24. 1 ml of the agent A solution Q4 is extracted and added to the measurement cell 10, and the Ar value is measured by the CVS method, and the carrier concentration of the sample plating solution is measured from the calibration curve shown in FIG.
[0030]
[Leveler concentration measurement mode]
There are three methods for leveler concentration measurement, that is, leveler concentration measurement methods according to the inventions of claims 1, 2, 3, and 4. Hereinafter, each leveler measurement method will be described.
[0031]
The leveler concentration measuring method according to the first and second aspects of the invention first confirms that the electrode is stable. That is, 100 ml of the low concentration basic solution Q1 is extracted from the low concentration basic solution tank 21 and supplied to the measurement cell 10. The Ar value is measured by the CVS method, and it is confirmed that the Ar value is an appropriate value.
[0032]
After confirming that the Ar value is an appropriate value, the liquid in the measurement cell 10 is discharged and washed, and then 48 ml of the high-concentration basic liquid Q2 is added from the high-concentration basic liquid tank 22, and the additive A liquid is supplied from the additive liquid tank 24. 1 ml of Q4 and 1 ml of additive liquid B liquid Q5 are extracted from the additive liquid tank 25 and supplied to the measuring cell 10, and the Ar value is measured by the CVS method.
[0033]
Subsequently, 0.1 ml of additive C liquid Q6 is extracted from the additive liquid tank 26 and supplied to the measurement cell 10, and the Ar value is measured by the CVS method. 0.1 ml of this additive Q6 is extracted and supplied to the measuring cell 10, and the operation of measuring the Ar value by the CVS method is repeated a predetermined number of times (usually 4 times) to create a calibration curve as shown in FIG. The measurement data is judged, and if the measurement data is appropriate, the liquid is discharged from the measurement cell 10 and washed.
[0034]
50 ml of the sample plating solution is extracted and supplied to the measurement cell 10, the Ar value is measured by the CVS method, and the leveler concentration of the sample plating solution is measured from the calibration curve shown in FIG. In FIG. 2, if the Ar value of the sample plating solution is y, the corresponding leveler concentration is obtained as x.
[0035]
In the leveler concentration measuring method according to the third aspect of the present invention, when it is confirmed that the electrode is stable, a predetermined amount of the high concentration basic solution Q2 is added from the high concentration basic solution tank 22 from the additive solution tank 25. Agent B liquid Q5 is extracted in a predetermined amount (high concentration basic liquid Q2 + additive B liquid Q5 = 50 ml) that is 2 to 40 times the concentration in the above case, supplied to measurement cell 10, and Ar value is obtained by CVS method. taking measurement.
[0036]
Subsequently, 0.1 ml of additive C liquid Q6 is extracted from the additive liquid tank 26 and supplied to the measurement cell 10, and the Ar value is measured by the CVS method. 0.1 ml of this additive Q6 is extracted and supplied to the measurement cell 10, and the operation of measuring the Ar value by the CVS method is repeated a predetermined number of times (usually 4 times) to create a calibration curve (not shown). The measurement data is judged, and if the measurement data is appropriate, the liquid is discharged from the measurement cell 10 and washed.
[0037]
50 ml of the sample plating solution is extracted and supplied to the measurement cell 10, the Ar value is measured by the CVS method, and the leveler concentration of the sample plating solution is measured from the calibration curve using the Ar value.
[0038]
When the leveler concentration measuring method according to the invention of claim 4 confirms that the electrode is stable, 49 ml of the high concentration basic solution Q2 from the high concentration basic solution tank 22 and the additive from the additive solution tank 24 are added. 1 ml each of the A solution Q4 is extracted and supplied to the measurement cell 10, and the Ar value is measured by the CVS method.
[0039]
Subsequently, 0.1 ml of additive C liquid Q6 is extracted from the additive liquid tank 26 and supplied to the measurement cell 10, and the Ar value is measured by the CVS method. 0.1 ml of this additive Q6 is extracted and supplied to the measurement cell 10, and the operation of measuring the Ar value by the CVS method is repeated a predetermined number of times (usually 4 times) to create a calibration curve (not shown). The measurement data is judged, and if the measurement data is appropriate, the liquid is discharged from the measurement cell 10 and washed.
[0040]
The sample plating solution is passed through the organic anion selective adsorption membrane, 50 ml of the sample plating solution from which the carrier has been removed is extracted, supplied to the measurement cell 10, and measured for Ar value by the CVS method. Measure the leveler concentration of the sample plating solution from the calibration curve.
[0041]
In the concentration measuring apparatus having the above configuration, a number of leveler calibration curves in which the carrier and polymer concentrations are changed are stored in advance in the computer of the control device 42, and the sample analysis operation can be performed more easily and in a short time. .
[0042]
【The invention's effect】
As described above, according to the invention described in each claim, it is possible to obtain an excellent effect that it is possible to measure the leveler concentration in the plating solution, which could not be measured by the conventional CV method or CVS method.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of an apparatus for carrying out a method for measuring a leveler concentration in a copper sulfate plating solution according to the present invention.
FIG. 2 is a diagram showing a calibration curve of leveler concentration and Ar value.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Measurement cell 11 Electrode holder 12 Rotating disk electrode 13 Stirrer blade 14 Stirrer 15 Potentiostat 21 Low concentration basic liquid tank 22 High concentration basic liquid tank 23 Test liquid tank 24 Additive liquid tank 25 Additive liquid tank 26 Additive liquid tank 27 Standard solution tank 28 Three-way valve 29 Bullet 30 Three-way valve 31 Bullet 32 Three-way valve 33 Bullet 34 Three-way valve 35 Bullet 36 Three-way valve 37 Bullet 38 Three-way valve 39 Bullet 40 Three-way valve 41 Bullet 42 Controller 43 Driver 44 Sample tank 45 Sample inlet 46 Sample return port 47 Sample nozzle 48 Buret 49 Three-way valve

Claims (2)

硫酸銅電解めっき液中に含まれる有機添加剤のうちレベラーと呼ばれる窒素を含む添加剤の濃度を測定する硫酸銅めっき液中のレベラー濃度測定方法において、
レベラー濃度を測定しようとする硫酸銅電解めっき液のポリマー濃度とキャリア濃度を測定し、
硫酸銅と硫酸を所定の割合で混合した基本液に、ポリマー濃度が前記測定したポリマー濃度と同一になるようにポリマーと呼ばれる界面活性剤を添加すると共に、キャリア濃度が前記測定したキャリア濃度の2乃至40倍となるようにキャリアと呼ばれる硫黄化合物である促進添加剤を添加して測定液を作製し、該測定液にレベラーを添加してCV(Cyclic Voltammetric)法又はCVS(Cyclic Voltammetric Stripping)法により剥離領域での第1のピーク値面積(Ar値)の測定を添加するレベラー量を変えて複数回行い、
前記測定した複数の第1のピーク値面積(Ar値)と添加したレベラー量から、第1のピーク値面積に対するレベラー濃度の検量線を作成し、
前記レベラー濃度を測定しようとする硫酸銅電解めっき液に前記促進添加剤を前記測定したキャリア濃度の2乃至40倍の濃度となるように添加してキャリア濃度を調整し、該キャリア濃度を調整した硫酸銅電解めっき液を使用してCV法又はCVS法により剥離領域での第2のピーク値面積を測定し、
前記第2のピーク値面積で前記作成した検量線を用いて前記レベラー濃度を測定しようとする硫酸銅電解めっき液中のレベラー濃度を測定することを特徴とする硫酸銅めっき液中のレベラー濃度測定方法。
In the leveler concentration measurement method in the copper sulfate plating solution to measure the concentration of the additive containing nitrogen called leveler among the organic additives contained in the copper sulfate electrolytic plating solution,
Measure the polymer concentration and carrier concentration of the copper sulfate electroplating solution whose leveler concentration is to be measured.
A surfactant called a polymer is added to a basic solution in which copper sulfate and sulfuric acid are mixed at a predetermined ratio so that the polymer concentration is the same as the measured polymer concentration, and the carrier concentration is 2 of the measured carrier concentration. or by adding an accelerator additive is a sulfur compounds called carrier such that 40-fold to prepare a measurement liquid, by adding levelers to the test solution CV (Cyclic Voltammetric) method or CVS (Cyclic Voltammetric Stripping) method By changing the leveler amount to which the measurement of the first peak value area (Ar value) in the peeled region is added is performed a plurality of times,
A calibration curve of the leveler concentration with respect to the first peak value area is created from the plurality of measured first peak value areas (Ar values) and the added leveler amount,
The carrier additive was adjusted by adding the accelerating additive to the copper sulfate electroplating solution to be measured for the leveler concentration so as to be 2 to 40 times the measured carrier concentration, and the carrier concentration was adjusted. Using the copper sulfate electroplating solution, measure the second peak value area in the peeled area by the CV method or CVS method,
Leveler concentration measuring copper sulfate plating solution, characterized by measuring the leveler concentration of the copper sulfate electroplating solution to be measured with the leveler concentration using the calibration curve prepared in the second peak value area Method.
硫酸銅電解めっき液中に含まれる有機添加剤のうちレベラーと呼ばれる窒素を含む添加剤の濃度を測定する硫酸銅めっき液中のレベラー濃度測定方法において、
レベラー濃度を測定しようとする硫酸銅電解めっき液のポリマー濃度を測定し、
硫酸銅と硫酸を所定の割合で混合した基本液に、ポリマー濃度が前記測定したポリマー濃度と同一になるようにポリマーと呼ばれる界面活性剤を所定量添加して測定液を作製し、該測定液にレベラーを添加してCV法又はCVS法により剥離領域での第1のピーク値面積(Ar値)の測定を添加するレベラー量を変えて複数回行い、
前記測定した複数の第1のピーク値面積(Ar値)と添加したレベラー量から、第1のピーク値面積に対するレベラー濃度の検量線を作成し、
前記レベラー濃度を測定しようとする硫酸銅電解めっき液を有機アニオン選択性吸着膜を通過させ、該硫酸銅電解めっき液中からキャリアを除去したものを使用してCV法又はCVS法により剥離領域での第2のピーク値面積を測定し、
前記第2のピーク値面積で前記作成した検量線を用いて前記レベラー濃度を測定しようとする硫酸銅電解めっき液中のレベラー濃度を測定することを特徴とする硫酸銅めっき液中のレベラー濃度測定方法。
In the leveler concentration measurement method in the copper sulfate plating solution to measure the concentration of the additive containing nitrogen called leveler among the organic additives contained in the copper sulfate electrolytic plating solution,
Measure the polymer concentration of the copper sulfate electroplating solution to measure the leveler concentration,
A measurement liquid is prepared by adding a predetermined amount of a surfactant called a polymer to a basic liquid in which copper sulfate and sulfuric acid are mixed at a predetermined ratio so that the polymer concentration is equal to the measured polymer concentration. A leveler is added to the CV method or CVS method, and the measurement of the first peak value area (Ar value) in the peeled region is changed several times to change the leveler amount.
A calibration curve of the leveler concentration with respect to the first peak value area is created from the plurality of measured first peak value areas (Ar values) and the added leveler amount,
The copper sulfate electroplating solution to be measured for the leveler concentration is passed through the organic anion selective adsorption membrane, and the carrier is removed from the copper sulfate electroplating solution, and the CV method or CVS method is used in the peeling region. Measuring the second peak value area of
Leveler concentration measuring copper sulfate plating solution, characterized by measuring the leveler concentration of the copper sulfate electroplating solution to be measured with the leveler concentration using the calibration curve prepared in the second peak value area Method.
JP24458299A 1999-08-30 1999-08-31 Leveler concentration measurement method in copper sulfate plating solution Expired - Fee Related JP3897936B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP24458299A JP3897936B2 (en) 1999-08-31 1999-08-31 Leveler concentration measurement method in copper sulfate plating solution
KR1020017005245A KR100709369B1 (en) 1999-08-30 2000-08-30 Method and apparatus for controlling plating solution
PCT/JP2000/005854 WO2001016405A1 (en) 1999-08-30 2000-08-30 Method for measuring leveler concentration of plating solution, and method and apparatus for controlling plating solution
KR1020067027248A KR100760408B1 (en) 1999-08-30 2000-08-30 Method for measuring leveler concentration of plating solution
US09/830,407 US6627066B1 (en) 1999-08-30 2000-08-30 Method of measuring the concentration of a leveler in a plating liquid
TW089117586A TW457544B (en) 1999-08-30 2000-08-30 Method for measuring leveler concentration of plating solution, and method and apparatus for controlling plating solution
EP00956786A EP1136595A4 (en) 1999-08-30 2000-08-30 Method for measuring leveler concentration of plating solution, and method and apparatus for controlling plating solution
US10/627,684 US7172683B2 (en) 1999-08-30 2003-07-28 Method of managing a plating liquid used in a plating apparatus
US11/643,771 US20070102285A1 (en) 1999-08-30 2006-12-22 Apparatus for managing a plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24458299A JP3897936B2 (en) 1999-08-31 1999-08-31 Leveler concentration measurement method in copper sulfate plating solution

Publications (2)

Publication Number Publication Date
JP2001073183A JP2001073183A (en) 2001-03-21
JP3897936B2 true JP3897936B2 (en) 2007-03-28

Family

ID=17120874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24458299A Expired - Fee Related JP3897936B2 (en) 1999-08-30 1999-08-31 Leveler concentration measurement method in copper sulfate plating solution

Country Status (1)

Country Link
JP (1) JP3897936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12004295B2 (en) 2018-01-29 2024-06-04 Corning Incorporated Articles including metallized vias

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014720A1 (en) * 2001-08-09 2003-02-20 Advanced Technology Materials, Inc. Interference correction of additives concentration measurements in metal electroplating solutions
US6984299B2 (en) 2004-04-27 2006-01-10 Advanced Technology Material, Inc. Methods for determining organic component concentrations in an electrolytic solution
US7435320B2 (en) 2004-04-30 2008-10-14 Advanced Technology Materials, Inc. Methods and apparatuses for monitoring organic additives in electrochemical deposition solutions
US7427346B2 (en) 2004-05-04 2008-09-23 Advanced Technology Materials, Inc. Electrochemical drive circuitry and method
JP5028575B2 (en) * 2007-08-29 2012-09-19 奥野製薬工業株式会社 Method for measuring nitrogen-containing organic compound concentration in copper sulfate plating solution
JP4682285B2 (en) * 2007-08-30 2011-05-11 日立電線株式会社 Method of forming wiring and interlayer connection via
JP5578697B2 (en) 2009-04-03 2014-08-27 公立大学法人大阪府立大学 Copper filling method
KR102147003B1 (en) 2011-12-12 2020-08-24 노벨러스 시스템즈, 인코포레이티드 Monitoring leveler concentrations in electroplating solutions
US9689083B2 (en) 2013-06-14 2017-06-27 Lam Research Corporation TSV bath evaluation using field versus feature contrast
US10094038B2 (en) 2015-04-13 2018-10-09 Lam Research Corporation Monitoring electrolytes during electroplating
KR20160131426A (en) 2015-05-07 2016-11-16 가부시끼가이샤 제이씨유 Management method of copper sulfate plating solution
CN111650249B (en) * 2020-06-05 2023-06-23 麦德美科技(苏州)有限公司 Analysis method of electroplating leveling agent for filling through hole of IC carrier plate
CN114858897A (en) * 2021-12-28 2022-08-05 麦德美科技(苏州)有限公司 Method for analyzing leveling agent of acid copper plating process of semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12004295B2 (en) 2018-01-29 2024-06-04 Corning Incorporated Articles including metallized vias

Also Published As

Publication number Publication date
JP2001073183A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
KR100760408B1 (en) Method for measuring leveler concentration of plating solution
JP3897936B2 (en) Leveler concentration measurement method in copper sulfate plating solution
KR102335508B1 (en) Tsv bath evaluation using field versus feature contrast
US9856574B2 (en) Monitoring leveler concentrations in electroplating solutions
JP6832067B2 (en) Pretreatment of nickel and cobalt liners for copper electrodeposition into silicon penetrating vias
US6808611B2 (en) Methods in electroanalytical techniques to analyze organic components in plating baths
TWI654342B (en) Low copper plating solution for charging and defect control
TWI692555B (en) Bottom-up fill in damascene features
US20050067297A1 (en) Copper bath for electroplating fine circuitry on semiconductor chips
Chiu et al. Characterization of additive systems for damascene Cu electroplating by the superfilling profile monitor
TW202129088A (en) Differential contrast plating for advanced packaging applications
US20050208201A1 (en) Method and apparatus for determining the concentrations of additives in a plating solution
JP2005148011A (en) Method and apparatus for measuring concentration of organic additive in copper sulfate plating liquid
Tenno et al. Microvia Fill Ratio Control

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061128

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees