JP3893919B2 - Induction heating unit for fluid heating - Google Patents

Induction heating unit for fluid heating Download PDF

Info

Publication number
JP3893919B2
JP3893919B2 JP2001258885A JP2001258885A JP3893919B2 JP 3893919 B2 JP3893919 B2 JP 3893919B2 JP 2001258885 A JP2001258885 A JP 2001258885A JP 2001258885 A JP2001258885 A JP 2001258885A JP 3893919 B2 JP3893919 B2 JP 3893919B2
Authority
JP
Japan
Prior art keywords
induction
induction coil
heating
heating unit
heater case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001258885A
Other languages
Japanese (ja)
Other versions
JP2003068443A (en
Inventor
浩三 森田
毅之 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2001258885A priority Critical patent/JP3893919B2/en
Publication of JP2003068443A publication Critical patent/JP2003068443A/en
Application granted granted Critical
Publication of JP3893919B2 publication Critical patent/JP3893919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流体加熱用の誘導加熱ユニットに関し、断面形状が長方形状であっても、加熱温度分布を均一化することができるように工夫したものである。
【0002】
【従来の技術】
誘導加熱の原理は、図6に示すように、誘導コイル(誘導子)1に交流電流iaを流すことにより発生する交番磁束Φが、誘導コイル1の近傍におかれた加熱ワーク(導電性材料)2中を通過することにより誘導電流(渦電流)ieを流し、これによりジュール熱が発生することにより加熱が行われる。誘導加熱は温度制御時の応答性が良く、加熱効率も非常に優れた特長を有している。誘導加熱技術の応用例としては、溶解炉や溶接やろう付けをはじめとする金属材料の熱加工装置などが主流である。
【0003】
一方、このような誘導加熱を利用して気体や液体などを加熱する場合には、図6の加熱ワークを熱交換体として、加熱対象物である流体を二次的に加熱する方法が一般的である。
【0004】
ところで、気体を加熱する場合には、加熱対象が金属材料のような直接加熱とは異なり、加熱ワークからの熱伝達による間接加熱であることから、効率良く加熱するためには加熱ワークと気体の接触面積を多くする必要がある。
【0005】
図7は誘導加熱を用いて気体を加熱する、流体加熱用の誘導加熱ユニットの概略図である。この誘導加熱ユニットでは、直径1mm〜2mm、肉厚0.05mm〜0.1mmの導電性金属の微細管を多数束ねた微細管集合体3を、断熱・耐熱性のあるセラミック製のヒータケース4に納め、ヒータケース4の外周に誘導コイル5を巻いて構成している。この誘導加熱ユニットでは、誘導コイル5に高周波電流(20〜50kHz)を流すと微細管集合体3が瞬時に加熱され、このとき微細管集合体3を通る気体が管内面からの熱伝達により加熱される。このときの微細管集合体3の材質は磁性体が好ましいが、周波数が400kHz以上においては非磁性体でも加熱は可能である。
【0006】
なお、誘導加熱ユニットの具体的な形状としては、図8に示すような断面円形状としたり、図9及び図10に示すような断面長方形状としている。
【0007】
【発明が解決しようとする課題】
図8に示すような断面円形状の誘導加熱ユニットの場合、その断面における微細管集合体(加熱体)3の熱分布は、中心部が最も高くなり(つまり熱集中部Hが中心部にあり)、中心部から周辺部に向かうに従い低くなる。流体加熱の場合、このような熱分布の不均一があっても、管内における気体流体の攪拌作用および熱の拡散作用によって気体そのものはほぼ均一方向に向かう。
【0008】
一方、図9及び図10に示すような断面長方形状の誘導加熱ユニットの場合、熱集中部Hは、両端部に位置し、加熱による熱分布はその両端部において集中的に高くなり、中央部ではほとんど加熱が行われない。つまり、断面形状が長方形となっている筒形のヒータケース4の外周に誘導コイル5を外周巻きした誘導加熱ユニットでは、幅方向に関して加熱温度分布が不均一となる。この場合、ユニット内での攪拌作用や拡散作用では追いつかず、幅方向に均一な流体の加熱は不可能である。
【0009】
本発明は、上記従来技術に鑑み、断面形状が長方形状であっても加熱温度分布を均一化することができる誘導加熱ユニットを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する本発明の構成は、断面形状が長方形状である筒状のヒータケースと、前記ヒータケース内に備えられており、軸方向が前記ヒータケースの軸方向に向いた状態で配置された多数の導電性の管と、前記ヒータケースの外周側の上面と下面に配置された誘導コイルとでなる流体加熱用の誘導加熱ユニットにおいて、前記誘導コイルは、渦状に巻いた複数の渦巻コイルを直列接続して形成された第1の誘導コイルと、渦状に巻いた複数の渦巻コイルを直列接続して形成された第2の誘導コイルとでなり、第1の誘導コイルの渦巻コイルを前記上面及び前記下面の幅方向に沿う両端側に、第2の誘導コイルの渦巻コイルを前記上面及び前記下面の幅方向に沿う中央側に配置し、しかも第1の誘導コイルに流す交流電流の電流値を第2の誘導コイルに流す交流電流の電流値よりも大きくすることを特徴とする。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき詳細に説明する。
【0014】
図1及び図2は本発明の実施の形態にかかる、流体加熱用の誘導加熱ユニット10を示す。この誘導加熱ユニット10のヒータケース11は、断熱・耐熱性のある材料(例えばセラミック)により形成されており、断面形状が長方形状の筒体となっている。ここにおいて、「断面形状が長方形状」とは、筒状のヒータケース11の軸方向に対して直角に切断した断面形状が長方形状になっていることを意味する。
【0015】
ヒータケース11の内部空間には、多数本の微細管12が備えられている。微細管12は導電性金属で形成されており、その軸方向が、ヒータケース11の軸方向に向いた状態で配置されている。このように、ヒータケース11の内部空間を充填するように、多数本の微細管12が緊密に配置されている。加熱対象である気体は、多数の微細管12の内部空間や、隣接する微細管12の間の隙間や、微細管12とヒータケース11の間の空間を流通していくことができる。
【0016】
誘導コイル13は、ヒータケース11の外周側の上面と下面に配置されている。この誘導コイル13は、渦状に巻いた複数の渦巻コイル13a〜13hを直列接続して形成されている。この場合、渦巻コイル13a〜13hの巻方向は、隣接するもの同志が逆になるように配置してある。そして、上面側の渦巻コイル13a〜13eと、下面側の渦巻コイル13f〜13hのうち、上下で対応する渦巻コイルの巻方向が逆になっている。図3は、このような誘導コイル13を抽出して示すものである。
【0017】
このような構成となっている誘導加熱ユニット10の誘導コイル13に交流電流iaを流すと、直列接続された各渦巻コイル13a〜13hに電流値が等しい交流電流iaが流れ、各渦巻コイル13a〜13hから同一強度の磁束が発生する。したがって、幅方向に広がったヒータケース11の内部空間の各部分(渦巻コイルを配置した部分)にて磁束が略均一に発生し、この磁束が微細管12を通過し、渦電流により微細管12が全体的に均一に加熱される。つまり、各渦巻コイル13a〜13hが分担してその近くの微細管12を加熱するため、多数の微細管12は、全体的に均一に一括加熱されることになる。
【0018】
しかも、渦巻コイル13a〜13hの巻方向(電流の流れ方向に沿って辿ったときにできる渦の巻方向)は、隣接するもの同志が逆になるように配置してあり、しかも、上面側の渦巻コイル13a〜13dと、下面側の渦巻コイル13e〜13hのうち、上下で対応する渦巻コイルの巻方向が逆になっている。したがって、磁束状態を示す図4に示すように、渦巻コイル13a〜13hのうち隣接するものから発生する磁束が打ち消し合うことなく協調して流れて磁束のループを形成する。このため、大きな磁束が維持され、微細管12を効果的に加熱することができる。
【0019】
このようにして加熱された微細管12に気体を流通させることにより、気体の加熱をすることができる。
【0020】
図5は誘導コイルの他の例を示す。この誘導コイルは、4つの渦巻コイル13A−1〜13A−4を直列接続した第1の誘導コイルと、4つの渦巻コイル13B−1〜13B−4を直列接続した第2の誘導コイルとでなる。そして、第1の誘導コイルの渦巻コイル13A−1〜13A−4は両端側に配置され、第2の誘導コイルの渦巻コイル13B−1〜13B−4は中央側に配置されている。そして、第1の誘導コイルには交流電流ia−Aを流し、第2の誘導コイルには交流電流ia−Bを流している。しかも、隣接する渦巻コイルの巻方向を逆にしている。
【0021】
幅方向に長い誘導加熱ユニットでは、両端での放熱が大きいため、両端側に配置された渦巻コイル13A−1〜13A−4でなる第1の誘導コイルに流す交流電流ia−Aの電流値を、中央側に配置された渦巻コイル13B−1〜13B−4でなる第2の誘導コイルに流す交流電流ia−Bよりも大きくすることにより、誘導加熱ユニットでの温度分布をより均一に保つことが可能となる。
【0022】
なお、上述した実施の形態により液体の加熱を行うこともできる。
【0023】
【発明の効果】
以上、実施の形態と共に具体的に説明したように、本発明にかかる流体加熱用の誘導加熱ユニットは、複数の渦巻コイルを分割して設置するようにしているため、各渦巻コイルがその近傍の微細パイプを分担して加熱するため、断面形状が長方形状のヒータケース内に配置した管の全体の温度を均一に一括加熱することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる誘導加熱コイルを示す斜視図。
【図2】本発明の実施の形態にかかる誘導加熱コイルを示す正面図。
【図3】誘導コイルを示す説明図。
【図4】本発明の実施の形態にかかる誘導加熱コイルを、磁束状態と共に示す正面図。
【図5】誘導コイルの他の例を示す説明図。
【図6】誘導加熱の原理を示す説明図。
【図7】従来の誘導加熱ユニットの概要を示す分解斜視図。
【図8】従来の円形状の誘導加熱ユニットを示す断面図。
【図9】従来の長方形状の誘導加熱ユニットを示す断面図。
【図10】従来の長方形状の誘導加熱ユニットを示す斜視図。
【符号の説明】
10 誘導加熱ユニット
11 ヒータケース
12 微細管
13 誘導コイル
13a〜13h 渦巻コイル
13A−1〜13A−4,13B−1〜13B−4 渦巻コイル
ia,ia−A,ia−B 交流電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating unit for fluid heating, which is devised so that the heating temperature distribution can be made uniform even if the cross-sectional shape is rectangular.
[0002]
[Prior art]
As shown in FIG. 6, the principle of induction heating is a heating work (conductive material) in which an alternating magnetic flux Φ generated by passing an alternating current ia through an induction coil (inductor) 1 is placed in the vicinity of the induction coil 1. ) An induction current (eddy current) ie is passed by passing through 2, and heating is performed by generating Joule heat. Induction heating has excellent responsiveness during temperature control, and has very excellent heating efficiency. Application examples of induction heating technology are mainly melting furnaces and thermal processing equipment for metal materials such as welding and brazing.
[0003]
On the other hand, in the case of heating a gas or liquid using such induction heating, a method of secondarily heating a fluid that is a heating target using the heating workpiece of FIG. 6 as a heat exchanger is common. It is.
[0004]
By the way, when heating a gas, the object to be heated is indirect heating by heat transfer from a heated work, unlike direct heating such as a metal material. It is necessary to increase the contact area.
[0005]
FIG. 7 is a schematic view of an induction heating unit for fluid heating that heats a gas using induction heating. In this induction heating unit, a fine tube assembly 3 in which a large number of fine tubes of conductive metal having a diameter of 1 mm to 2 mm and a thickness of 0.05 mm to 0.1 mm are bundled is used as a ceramic heater case 4 having heat insulation and heat resistance. The induction coil 5 is wound around the outer periphery of the heater case 4. In this induction heating unit, when a high-frequency current (20 to 50 kHz) is passed through the induction coil 5, the microtubule assembly 3 is instantaneously heated. At this time, the gas passing through the microtubule assembly 3 is heated by heat transfer from the inner surface of the tube. Is done. At this time, the material of the microtubule assembly 3 is preferably a magnetic material, but when the frequency is 400 kHz or higher, a nonmagnetic material can be heated.
[0006]
In addition, as a specific shape of the induction heating unit, a circular cross section as shown in FIG. 8 or a rectangular cross section as shown in FIGS. 9 and 10 is used.
[0007]
[Problems to be solved by the invention]
In the case of the induction heating unit having a circular cross section as shown in FIG. 8, the heat distribution of the fine tube aggregate (heating body) 3 in the cross section is highest at the center (that is, the heat concentration part H is at the center). ), And lowers from the center to the periphery. In the case of fluid heating, even if there is such a non-uniform heat distribution, the gas itself is directed in a substantially uniform direction by the stirring action of the gaseous fluid and the heat diffusion action in the pipe.
[0008]
On the other hand, in the case of an induction heating unit having a rectangular cross section as shown in FIGS. 9 and 10, the heat concentrating portions H are located at both end portions, and the heat distribution due to heating is intensively increased at both end portions. Then there is almost no heating. That is, in the induction heating unit in which the induction coil 5 is wound around the outer periphery of the cylindrical heater case 4 having a rectangular cross-sectional shape, the heating temperature distribution is not uniform in the width direction. In this case, the stirring action and the diffusion action in the unit cannot catch up, and it is impossible to heat the fluid uniformly in the width direction.
[0009]
An object of the present invention is to provide an induction heating unit that can make the heating temperature distribution uniform even if the cross-sectional shape is rectangular.
[0012]
[Means for Solving the Problems]
The configuration of the present invention that solves the above problems is provided in a cylindrical heater case having a rectangular cross-sectional shape , and in the heater case, with the axial direction facing the axial direction of the heater case. In the induction heating unit for fluid heating, which includes a plurality of conductive tubes formed and induction coils arranged on the upper and lower surfaces of the outer periphery of the heater case, the induction coil includes a plurality of spiral coils wound in a spiral shape. A first induction coil formed by connecting coils in series and a second induction coil formed by connecting a plurality of spiral coils wound in series, the spiral coil of the first induction coil being A spiral coil of a second induction coil is disposed on both sides along the width direction of the upper surface and the lower surface, and arranged on the center side along the width direction of the upper surface and the lower surface , and the alternating current flowing through the first induction coil The current value is Characterized by larger than the current value of the alternating current supplied to the induction coil.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0014]
1 and 2 show an induction heating unit 10 for fluid heating according to an embodiment of the present invention. The heater case 11 of the induction heating unit 10 is formed of a heat-insulating and heat-resistant material (for example, ceramic), and has a rectangular cross section. Here, “the cross-sectional shape is rectangular” means that the cross-sectional shape cut at right angles to the axial direction of the cylindrical heater case 11 is rectangular.
[0015]
A large number of micro tubes 12 are provided in the internal space of the heater case 11. The fine tube 12 is made of a conductive metal, and is arranged with its axial direction facing the axial direction of the heater case 11. In this way, a large number of fine tubes 12 are closely arranged so as to fill the internal space of the heater case 11. The gas to be heated can circulate in the internal space of many microtubes 12, the gaps between adjacent microtubes 12, and the space between the microtubes 12 and the heater case 11.
[0016]
The induction coil 13 is disposed on the upper surface and the lower surface on the outer peripheral side of the heater case 11. The induction coil 13 is formed by connecting a plurality of spiral coils 13 a to 13 h wound in a spiral shape in series. In this case, the winding directions of the spiral coils 13a to 13h are arranged such that adjacent ones are reversed. Of the spiral coils 13a to 13e on the upper surface side and the spiral coils 13f to 13h on the lower surface side, the winding directions of the spiral coils corresponding to the upper and lower sides are reversed. FIG. 3 shows such an induction coil 13 extracted.
[0017]
When an alternating current ia is passed through the induction coil 13 of the induction heating unit 10 having such a configuration, the alternating current ia having the same current value flows through the spiral coils 13a to 13h connected in series, and the spiral coils 13a to 13h. Magnetic fluxes having the same strength are generated from 13h. Therefore, the magnetic flux is generated substantially uniformly in each portion (the portion where the spiral coil is disposed) of the internal space of the heater case 11 extending in the width direction, and this magnetic flux passes through the fine tube 12 and is caused by the eddy current. Is heated uniformly. That is, since each spiral coil 13a-13h shares and heats the microtube 12 near it, many microtubes 12 are heated collectively uniformly as a whole.
[0018]
Moreover, the winding direction of the spiral coils 13a to 13h (the vortex winding direction when the traces are made along the direction of current flow) is arranged so that adjacent ones are opposite to each other, Among the spiral coils 13a to 13d and the spiral coils 13e to 13h on the lower surface side, the winding directions of the corresponding spiral coils in the upper and lower sides are reversed. Therefore, as shown in FIG. 4 showing the magnetic flux state, magnetic fluxes generated from adjacent ones of the spiral coils 13a to 13h flow in a coordinated manner without canceling each other to form a magnetic flux loop. For this reason, a big magnetic flux is maintained and the microtube 12 can be heated effectively.
[0019]
The gas can be heated by allowing the gas to flow through the microtube 12 thus heated.
[0020]
FIG. 5 shows another example of the induction coil. This induction coil includes a first induction coil in which four spiral coils 13A-1 to 13A-4 are connected in series, and a second induction coil in which four spiral coils 13B-1 to 13B-4 are connected in series. . The spiral coils 13A-1 to 13A-4 of the first induction coil are disposed on both ends, and the spiral coils 13B-1 to 13B-4 of the second induction coil are disposed on the center side. An alternating current ia-A is passed through the first induction coil, and an alternating current ia-B is passed through the second induction coil. Moreover, the winding directions of adjacent spiral coils are reversed.
[0021]
In the induction heating unit that is long in the width direction, since the heat radiation at both ends is large, the current value of the alternating current ia-A that flows through the first induction coil composed of the spiral coils 13A-1 to 13A-4 arranged at both ends is set. The temperature distribution in the induction heating unit can be kept more uniform by making it larger than the alternating current ia-B flowing through the second induction coil composed of the spiral coils 13B-1 to 13B-4 arranged on the center side. Is possible.
[0022]
Note that the liquid can also be heated according to the above-described embodiment.
[0023]
【The invention's effect】
As described above in detail with the embodiment, the fluid heating induction heating unit according to the present invention divides and installs a plurality of spiral coils. Since the fine pipes are shared and heated, the entire temperature of the pipes arranged in the heater case having a rectangular cross-sectional shape can be uniformly and collectively heated.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an induction heating coil according to an embodiment of the present invention.
FIG. 2 is a front view showing the induction heating coil according to the embodiment of the present invention.
FIG. 3 is an explanatory view showing an induction coil.
FIG. 4 is a front view showing the induction heating coil according to the embodiment of the present invention together with a magnetic flux state.
FIG. 5 is an explanatory view showing another example of the induction coil.
FIG. 6 is an explanatory diagram showing the principle of induction heating.
FIG. 7 is an exploded perspective view showing an outline of a conventional induction heating unit.
FIG. 8 is a cross-sectional view showing a conventional circular induction heating unit.
FIG. 9 is a cross-sectional view showing a conventional rectangular induction heating unit.
FIG. 10 is a perspective view showing a conventional rectangular induction heating unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Induction heating unit 11 Heater case 12 Fine tube 13 Inductive coils 13a-13h Spiral coils 13A-1 to 13A-4, 13B-1 to 13B-4 Spiral coils ia, ia-A, ia-B AC current

Claims (1)

断面形状が長方形状である筒状のヒータケースと、
前記ヒータケース内に備えられており、軸方向が前記ヒータケースの軸方向に向いた状態で配置された多数の導電性の管と、
前記ヒータケースの外周側の上面と下面に配置された誘導コイルとでなる流体加熱用の誘導加熱ユニットにおいて、
前記誘導コイルは、渦状に巻いた複数の渦巻コイルを直列接続して形成された第1の誘導コイルと、渦状に巻いた複数の渦巻コイルを直列接続して形成された第2の誘導コイルとでなり、第1の誘導コイルの渦巻コイルを前記上面及び前記下面の幅方向に沿う両端側に、第2の誘導コイルの渦巻コイルを前記上面及び前記下面の幅方向に沿う中央側に配置し、しかも第1の誘導コイルに流す交流電流の電流値を第2の誘導コイルに流す交流電流の電流値よりも大きくすることを特徴とする流体加熱用の誘導加熱ユニット。
A cylindrical heater case having a rectangular cross-sectional shape;
Provided in the heater case, a number of conductive tubes arranged in a state in which the axial direction faces the axial direction of the heater case;
In the induction heating unit for fluid heating comprising the upper and lower induction coils on the outer peripheral side of the heater case,
The induction coil includes a first induction coil formed by connecting a plurality of spiral coils wound in series, and a second induction coil formed by connecting a plurality of spiral coils wound in series; The spiral coil of the first induction coil is disposed on both ends along the width direction of the upper surface and the lower surface, and the spiral coil of the second induction coil is disposed on the center side along the width direction of the upper surface and the lower surface. Moreover , an induction heating unit for fluid heating is characterized in that the current value of the alternating current flowing through the first induction coil is made larger than the current value of the alternating current flowing through the second induction coil .
JP2001258885A 2001-08-29 2001-08-29 Induction heating unit for fluid heating Expired - Fee Related JP3893919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001258885A JP3893919B2 (en) 2001-08-29 2001-08-29 Induction heating unit for fluid heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001258885A JP3893919B2 (en) 2001-08-29 2001-08-29 Induction heating unit for fluid heating

Publications (2)

Publication Number Publication Date
JP2003068443A JP2003068443A (en) 2003-03-07
JP3893919B2 true JP3893919B2 (en) 2007-03-14

Family

ID=19086331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001258885A Expired - Fee Related JP3893919B2 (en) 2001-08-29 2001-08-29 Induction heating unit for fluid heating

Country Status (1)

Country Link
JP (1) JP3893919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517476A (en) * 2013-10-23 2014-01-15 北京久顺科技有限公司 Super-audio digital electromagnetic induction multifunctional arc heating wire coil device assembly
CN103517477A (en) * 2013-10-23 2014-01-15 北京久顺科技有限公司 Super-audio digital electromagnetic induction multifunctional arc heating wire coil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129663A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Electro-thermal converter
KR101353313B1 (en) 2008-02-25 2014-01-21 삼성전자주식회사 Electric range and induction coil unit
JP5606133B2 (en) * 2010-04-13 2014-10-15 中部電力株式会社 Heating device
JP2015192067A (en) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 Thermal treatment apparatus
KR101827252B1 (en) * 2017-11-09 2018-02-09 정한비 Miniature self-induction heating boiler with integral heating module
KR102130381B1 (en) * 2018-02-09 2020-07-06 엘지전자 주식회사 Drum type washing machine having enhanced induction heating performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517476A (en) * 2013-10-23 2014-01-15 北京久顺科技有限公司 Super-audio digital electromagnetic induction multifunctional arc heating wire coil device assembly
CN103517477A (en) * 2013-10-23 2014-01-15 北京久顺科技有限公司 Super-audio digital electromagnetic induction multifunctional arc heating wire coil

Also Published As

Publication number Publication date
JP2003068443A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
JP3893919B2 (en) Induction heating unit for fluid heating
JP2006228438A (en) Electromagnetic induction heating device
TW200944352A (en) Tire vulcanizer
JP2008270123A (en) Fluid temperature rising apparatus
JP4958679B2 (en) Fluid heating device
JP4275070B2 (en) Magnetic heating device
TW202024533A (en) Superheated steam generator
KR102653703B1 (en) Heating coil and heating method
JP2013057482A (en) Induction heating type liquid heater and induction heating type liquid heating apparatus
JP2007328917A (en) Induction-heating cooker
JP2004214039A (en) Fluid heater
JP3642415B2 (en) Fluid heating device
JP5842183B2 (en) Induction heating device
JP2008053010A (en) Induction heating device and method for metal plate
JP2002305074A (en) Induction heating equipment
JP5196549B2 (en) Induction heating roller device
JP2016520249A (en) Heater device and controllable heating process
JP2002313546A (en) Heating cell for electromagnetic induction type fluid heating device
CA2096725C (en) Dual surface heaters
JP6295481B2 (en) Induction heating coil
JP2014238995A (en) Induction heating apparatus
JP4987565B2 (en) Cooker
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
JPH0992449A (en) Induction heater
JP2003100426A (en) Hot blast generator by induction heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees