JP3893781B2 - Gas chromatograph apparatus having a thermal conductivity detector - Google Patents

Gas chromatograph apparatus having a thermal conductivity detector Download PDF

Info

Publication number
JP3893781B2
JP3893781B2 JP32827598A JP32827598A JP3893781B2 JP 3893781 B2 JP3893781 B2 JP 3893781B2 JP 32827598 A JP32827598 A JP 32827598A JP 32827598 A JP32827598 A JP 32827598A JP 3893781 B2 JP3893781 B2 JP 3893781B2
Authority
JP
Japan
Prior art keywords
bridge
thermal conductivity
adjustment
multiplexer
conductivity detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32827598A
Other languages
Japanese (ja)
Other versions
JP2000146886A (en
Inventor
一也 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32827598A priority Critical patent/JP3893781B2/en
Publication of JP2000146886A publication Critical patent/JP2000146886A/en
Application granted granted Critical
Publication of JP3893781B2 publication Critical patent/JP3893781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガスクロマトグラフ、特に熱伝導度検出器を有するガスクロマトグラフに関する。
【0002】
【従来の技術】
ガスクロマトグラフにおいて最も広く使われる検出器として熱伝導度検出器を挙げることができる。
図2は従来の熱伝導度検出器の測定回路を示したものである。
同図において、R11〜R14はタングステン、またはその合金製のフィラメントであって、抵抗ブリッジ1を形成し、定電流電源2(定電圧電源の場合もある)から供給される電流によって加熱されている。ブリッジ1の対辺に置かれた1対のフィラメント、例えばR11とR13はガスクロマトグラフの測定側流路(分析用カラムの出口に連なる流路)中に設置され、残る1対のフィラメントは測定成分を含まない参照側流路中に設けられる。
【0003】
ブリッジ1の平衡を調整するためのポテンショメータR15は、定常状態では差動増幅器3の2つの入力端子の電位が同じになるように、言い換えると差動増幅器3の出力がゼロになるように調整されている。測定側流路に測定すべき成分ガスが流れてくると、熱伝導度の違いによりR11、R13の温度が変化すると共に抵抗値が変化して、ブリッジ1の平衡が崩れ、差動増幅器3の2つの入力間に電位差を生じ、これが増幅されてさらにAD変換器4でディジタル化され、コンピュータを含む電気制御部5で積分、同定、感度補正等の処理がなされ、特に図示しないがプリンタやCRTディスプレイ等の出力装置に出力される。
【0004】
上述したようにR15はブリッジ1の平衡を調整するものであるが、測定操作の面から見るとこれはゼロ点調整である。ここで行われるゼロ調整は調整範囲の広い粗調整であって、ベースラインが差動増幅器3の入力レンジ内に入るように手動で粗く調整しておき、微調整は別に電気制御部5内でディジタル的に、且つ自動的に行うのが今日では一般的になっている。
【0005】
図2に示す従来の装置で分析を開始するには次のような手順による。
電源オンの直後はフィラメントの温度が安定しないためブリッジ1のバランスがとれず、増幅器3の出力は振り切っている。時間経過を待ってかなり安定してきたところで、ポテンショメータR15で粗くゼロ調整しながらベースラインのドリフトの状況を観察する。ドリフトが収まり、ベースラインが直線になったら、前述のゼロ点の微調整をディジタル的に行ってから分析を開始する。
【0006】
図3は従来の別の例を示したものであるが、同図に示すように、平衡調整用のポテンショメータR15をブリッジを構成する抵抗(フィラメント)に直列に接続した例もある。ゼロ点調整の機能については図2の例と大差は無いが、ゼロ点調整を行うことによってフィラメントに流れる電流が変化しないという利点がある。
【0007】
【発明が解決しようとする課題】
以上のように構成された従来の熱伝導度検出器付きのガスクロマトグラフでは、ゼロ点の粗調整は運転開始時や分析条件変更時にのみ手動で行い、運転中は自動的に微調整するだけで用が足りるものとされていた。しかし、実際には一度調整した後も、周囲温度の変化によるドリフトや分析条件の変更の都度、再調整をしなければならないので、粗調整を必要とする頻度は予想外に高く、その作業が煩わしい。このため粗調整も自動化することが求められていた。
ポテンショメータによるゼロ調整を自動化する手段として、古くからポテンショメータにサーボモータやステッピングモータを組み合わせた自動平衡サーボ機構の実例は多いが、このような手段はメカニカルな要素が多いので組立調整のコストが高く、装置的にも大形となることが、自動化する上での問題点であった。本発明は、このような事情に鑑みてなされたものであり、熱伝導度検出器におけるゼロ点の粗調整を、プリント基板上に組み立てられるほど小形でシンプルな構成で、低コストに実現できる自動調整装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、測定対象となるガスの流路中に設置した感熱抵抗素子が少なくともその1辺に組み込まれたブリッジの平衡調整のための抵抗を、ブリッジの隣り合う2辺の間に挿入し、直列に接続された一連の複数の固定抵抗で構成すると共に、その固定抵抗の各接続点に接続される複数の開閉素子を内蔵するマルチプレクサを備え、前記ブリッジの不平衡信号をディジタル的に処理する電気制御部によって前記マルチプレクサの開閉素子の1つを選択的に閉じるように制御することによって自動的に前記ブリッジの平衡を調整することを特徴とする。
【0009】
上記のようにマルチプレクサを利用したことにより、ゼロ点調整の自動化を小形、低コストに達成することができ、また、自動調整中にもベースラインの状況を観察することができるという新たな利点も生じる。
【0010】
【発明の実施の形態】
本発明の一実施の形態を図1に示す。同図においては、図2または図3におけると同等のものには同じ符号を付すことによって説明の重複を避ける。
図1において、R1、R2、……Rnは同一の抵抗値を持つn個の固定抵抗器であって、直列に接続されて、ブリッジ1の隣り合う2辺の間に挿入されるような形で接続されている。各抵抗器の接続点P0、P1、……Pnは、マルチプレクサ7のn+1個の開閉素子S0、S1、……Snにそれぞれ接続されている。一般にマルチプレクサ(アナログスイッチという呼称もある)は、複数の開閉素子を内蔵する回路要素であって、電気信号によってこの開閉素子を制御できるものである。実際の開閉素子は機械的接点ではなく、これと等価な半導体スイッチである場合が多いが、図1では便宜的に機械的接点であるかのように示してある。各開閉素子の他端はマルチプレクサの内部で共通にコモン端子Cに接続されている。
マルチプレクサ7を制御する信号は電気制御部5から信号ライン8を経由して与えられ、開閉素子の1つを選択的に閉じる。
【0011】
このように組み合わされたn個の固定抵抗器R1、R2、……Rnとマルチプレクサ7は、段階的に変化するポテンショメータと同じように機能するので、これによってゼロ点の粗調整を行うことが可能となる。即ち、ブリッジの不平衡信号は差動増幅器3の2つの入力間の電位差であり、これが増幅器を通ってAD変換器4でディジタル化され、電気制御部5でコンピュータによって処理されて信号ライン8に制御信号が出力され、マルチプレクサ7の開閉素子の1つが選択され、差動増幅器3に入る不平衡信号の大きさが変わる。この過程を繰り返して、不平衡信号が最も小さくなるような開閉素子が閉じた状態となってゼロ点の粗調整は終わる。
【0012】
上記の粗調整に際して、差動増幅器3のゲインが高過ぎると制御ループはハンチングを起こして、マルチプレクサ7の設定点が定まらない場合があるので、粗調整時には電気制御部5から信号ライン9を通して差動増幅器3のゲインを低く設定する制御信号を送る。
【0013】
このように構成された熱伝導度検出器を有するガスクロマトグラフは次のように運転される。
まず、装置の立ち上げ当初は、差動増幅器3の出力がAD変換器4の適当な入力範囲に入るように電気制御部5により差動増幅器3のゲインを小さく設定し、電気制御部5から信号ライン8を通して粗調整のための信号を送ってマルチプレクサ7の設定を切換える。時間経過と共にベースラインがドリフトするが、ドリフト量がある程度大きくなれば、さらに粗調整の機能が働いて、ベースラインが適当な入力範囲内に入るように自動調整する。ゼロ点の粗調整は段階的に行われ、連続的にゼロ点に引き戻すわけではないから、粗調整機能が働いている間でも、ベースラインのドリフトする様子を観察することが可能である。こうしてドリフトの状況を観察し、ベースラインが安定すれば粗調整を停止し(マルチプレクサ7の設定を固定し)、差動増幅器3のゲインを大きく(例えば10倍に)し、続いてゼロ点の微調整を行ってから分析を開始する。微調整は、前述の通り、電気制御部5の内部でディジタル的に行われる。
【0014】
ゼロ点の粗調整、及び微調整は、自動分析の場合は電気制御部5内のプログラム機能部分、または図示しない別のプログラム装置からの信号で自動的に行われるが、手動分析の場合は、これも図示しない押しボタンスイッチ等によって極めて容易に行うことができる。この操作は、手動で直接的にゼロ調整を行うのでなく、電気制御部5内のコンピュータに対して自動ゼロ調整を指令するだけであるから、操作に当たって煩わしさを感じることはない。
【0015】
なお、図1におけるフィラメントR11〜R14のうち、R12、R13(またはR11、R12)を固定抵抗に置き換えた2素子形の熱伝導度検出器もあり、さらには参照側流路を持たないガスクロマトグラフでは、ブリッジの3辺が固定抵抗で構成されることもあり得る。また、フィラメントの代わりにサーミスタ等の半導体感熱素子を用いる場合もある。本発明は、このような変形的な熱伝導度検出器の場合にも適用することができる。
また、上記説明中の差動増幅器3は本発明構成上の必要条件ではなく、感度が許容されるならば、これを省いてブリッジ1の不平衡信号を直接AD変換器4に入力するように構成することもできる。
【0016】
【発明の効果】
本発明は上述のように構成されているので、熱伝導度検出器の手動によるゼロ点調整が粗調整、微調整共に不要で、広い入力範囲に対応できるので、煩わしさがない。また、本発明になる自動調整機構は、マルチプレクサ等の回路要素のみで構成され、プリント基板上に組み立てることができるので、組立調整のコストが削減でき、また極く小形に作ることができる。
その上、自動的に粗調整を行っている状態でも、ベースラインのドリフトの状況を観察することができるので、ドリフトの程度から分析を開始してよいかどうかを判定するのに好都合であり、この点は、従来技術による自動化では得られない利点である。
【図面の簡単な説明】
【図1】本発明の一実施例を示す図である。
【図2】従来の熱伝導度検出器回路の一例を示す図である。
【図3】従来の熱伝導度検出器回路の他の例を示す図である。
【符号の説明】
1…ブリッジ
2…定電流電源
3…差動増幅器
4…AD変換器
5…電気制御部
7…マルチプレクサ
R1〜Rn…固定抵抗器
R11〜R14…フィラメント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas chromatograph, and more particularly to a gas chromatograph having a thermal conductivity detector.
[0002]
[Prior art]
The most widely used detector in a gas chromatograph is a thermal conductivity detector.
FIG. 2 shows a measurement circuit of a conventional thermal conductivity detector.
In the figure, R11 to R14 are filaments made of tungsten or an alloy thereof, which forms a resistance bridge 1 and is heated by a current supplied from a constant current power source 2 (which may be a constant voltage power source). . A pair of filaments, for example R11 and R13, placed on the opposite side of the bridge 1 are installed in the measurement side channel of the gas chromatograph (the channel connected to the outlet of the analytical column), and the remaining pair of filaments contains the measurement components. It is provided in the reference-side flow path not included.
[0003]
The potentiometer R15 for adjusting the balance of the bridge 1 is adjusted so that the potentials of the two input terminals of the differential amplifier 3 become the same in a steady state, in other words, the output of the differential amplifier 3 becomes zero. ing. When the component gas to be measured flows into the measurement side flow path, the temperature of R11 and R13 changes and the resistance value changes due to the difference in thermal conductivity, the balance of the bridge 1 is lost, and the differential amplifier 3 A potential difference is generated between the two inputs, which is amplified and further digitized by the AD converter 4, and processing such as integration, identification, and sensitivity correction is performed by an electric control unit 5 including a computer. It is output to an output device such as a display.
[0004]
As described above, R15 adjusts the balance of the bridge 1. From the viewpoint of measurement operation, this is zero point adjustment. The zero adjustment performed here is a coarse adjustment with a wide adjustment range, and is manually adjusted roughly so that the baseline falls within the input range of the differential amplifier 3, and the fine adjustment is performed separately in the electric control unit 5. It is common today to do it digitally and automatically.
[0005]
The analysis is started with the conventional apparatus shown in FIG. 2 according to the following procedure.
Immediately after the power is turned on, the temperature of the filament is not stable, so that the bridge 1 is not balanced, and the output of the amplifier 3 is shaken off. After waiting for the passage of time, the state of drift in the baseline is observed while performing zero adjustment roughly with the potentiometer R15. When the drift is settled and the baseline becomes a straight line, the above-described fine adjustment of the zero point is performed digitally and then the analysis is started.
[0006]
FIG. 3 shows another conventional example. As shown in FIG. 3, there is an example in which a potentiometer R15 for balance adjustment is connected in series to a resistor (filament) constituting a bridge. The zero point adjustment function is not much different from the example of FIG. 2, but there is an advantage that the current flowing through the filament does not change by performing the zero point adjustment.
[0007]
[Problems to be solved by the invention]
In a conventional gas chromatograph with a thermal conductivity detector configured as described above, the zero point is roughly adjusted manually only at the start of operation or when the analysis conditions are changed, and only fine adjustment is automatically performed during operation. It was supposed to be sufficient for use. However, in practice, even after adjustments are made, it is necessary to readjust each time the drift due to changes in ambient temperature or changes in analysis conditions. troublesome. For this reason, it has been required to automate coarse adjustment.
As a means of automating zero adjustment with a potentiometer, there are many examples of automatic balancing servo mechanisms that combine a potentiometer with a servo motor or a stepping motor for a long time, but such means have many mechanical elements, so the cost of assembly adjustment is high, The large size of the device was a problem in automation. The present invention has been made in view of such circumstances, and an automatic zero-point rough adjustment in a thermal conductivity detector can be realized at a low cost with a small and simple configuration that can be assembled on a printed circuit board. An object is to provide an adjusting device.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a resistance for adjusting the balance of a bridge in which a thermal resistance element installed in a flow path of a gas to be measured is incorporated on at least one side thereof , adjacent to the bridge. was inserted between the two sides, as well as a series of a plurality of fixed resistors connected in series, a multiplexer that incorporates a plurality of opening and closing elements connected to the connection points of the fixed resistor, of the bridge not The balance of the bridge is automatically adjusted by controlling so that one of the switching elements of the multiplexer is selectively closed by an electric control unit that digitally processes the balanced signal.
[0009]
By using a multiplexer as described above, zero adjustment can be automated in a small size and at a low cost, and a new advantage is that the baseline situation can be observed during automatic adjustment. Arise.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. In this figure, the same components as those in FIG. 2 or FIG.
In FIG. 1, R1, R2,... Rn are n fixed resistors having the same resistance value, which are connected in series and inserted between two adjacent sides of the bridge 1. Connected with. Connection points P0, P1,... Pn of the resistors are connected to n + 1 switching elements S0, S1,. In general, a multiplexer (also called an analog switch) is a circuit element containing a plurality of switching elements, and can control the switching elements by an electrical signal. The actual switching element is not a mechanical contact but is often an equivalent semiconductor switch, but in FIG. 1, it is shown as if it is a mechanical contact for convenience. The other end of each switching element is connected to the common terminal C in the multiplexer.
A signal for controlling the multiplexer 7 is given from the electric control unit 5 via the signal line 8 and selectively closes one of the switching elements.
[0011]
Since the n fixed resistors R1, R2,... Rn and the multiplexer 7 combined in this way function in the same manner as a potentiometer that changes in stages, it is possible to perform coarse adjustment of the zero point. It becomes. That is, the unbalanced signal of the bridge is a potential difference between the two inputs of the differential amplifier 3, which is digitized by the AD converter 4 through the amplifier and processed by the computer in the electric control unit 5 to the signal line 8. A control signal is output, one of the switching elements of the multiplexer 7 is selected, and the magnitude of the unbalanced signal entering the differential amplifier 3 changes. By repeating this process, the open / close element in which the unbalanced signal is minimized is closed, and the zero point coarse adjustment is completed.
[0012]
In the above coarse adjustment, if the gain of the differential amplifier 3 is too high, the control loop may cause hunting, and the set point of the multiplexer 7 may not be determined. A control signal for setting the gain of the dynamic amplifier 3 low is sent.
[0013]
The gas chromatograph having the thermal conductivity detector configured as described above is operated as follows.
First, at the start of the apparatus, the gain of the differential amplifier 3 is set small by the electric control unit 5 so that the output of the differential amplifier 3 falls within an appropriate input range of the AD converter 4. A signal for coarse adjustment is sent through the signal line 8 to switch the setting of the multiplexer 7. The baseline drifts over time, but if the drift amount increases to some extent, the coarse adjustment function works to automatically adjust the baseline so that it falls within an appropriate input range. The coarse adjustment of the zero point is performed in steps, and is not continuously returned to the zero point. Therefore, it is possible to observe the drift of the baseline even while the coarse adjustment function is working. In this way, the state of drift is observed, and if the baseline is stable, coarse adjustment is stopped (the setting of the multiplexer 7 is fixed), the gain of the differential amplifier 3 is increased (for example, 10 times), and then the zero point is set. Start the analysis after fine-tuning. As described above, the fine adjustment is performed digitally inside the electric control unit 5.
[0014]
In the case of automatic analysis, coarse adjustment and fine adjustment of the zero point are automatically performed by a program function part in the electric control unit 5 or a signal from another program device (not shown). In the case of manual analysis, This can also be done very easily by a push button switch or the like (not shown). Since this operation does not directly perform the zero adjustment directly, but only instructs the computer in the electric control unit 5 to perform the automatic zero adjustment, there is no inconvenience in the operation.
[0015]
In addition, among the filaments R11 to R14 in FIG. 1, there is also a two-element type thermal conductivity detector in which R12, R13 (or R11, R12) are replaced with fixed resistors, and further a gas chromatograph without a reference side channel. Then, the three sides of the bridge may be configured with fixed resistors. Further, a semiconductor thermosensitive element such as a thermistor may be used instead of the filament. The present invention can also be applied to such a deformable thermal conductivity detector.
Further, the differential amplifier 3 in the above description is not a necessary condition for the configuration of the present invention. If the sensitivity is acceptable, the differential amplifier 3 is omitted and the unbalanced signal of the bridge 1 is directly input to the AD converter 4. It can also be configured.
[0016]
【The invention's effect】
Since the present invention is configured as described above, manual adjustment of the zero point of the thermal conductivity detector is not required for both coarse adjustment and fine adjustment, and it can cope with a wide input range, so there is no trouble. In addition, the automatic adjustment mechanism according to the present invention is composed of only circuit elements such as a multiplexer and can be assembled on a printed circuit board, so that the cost of assembly adjustment can be reduced and can be made extremely small.
In addition, since the baseline drift situation can be observed even when the coarse adjustment is automatically performed, it is convenient to determine whether the analysis can be started from the degree of drift, This is an advantage that cannot be obtained by automation according to the prior art.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing an example of a conventional thermal conductivity detector circuit.
FIG. 3 is a diagram showing another example of a conventional thermal conductivity detector circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bridge 2 ... Constant current power supply 3 ... Differential amplifier 4 ... AD converter 5 ... Electric control part 7 ... Multiplexer R1-Rn ... Fixed resistor R11-R14 ... Filament

Claims (1)

測定対象となるガス流路中に設置した感熱抵抗素子が少なくともその1辺に組み込まれたブリッジと、そのブリッジに電流を供給する電源回路と、そのブリッジの不平衡信号をディジタル化するAD変換器と、ディジタル化された信号を処理するコンピュータ回路を含む電気制御部とから成る熱伝導度検出器において、前記ブリッジの平衡調整のための抵抗をブリッジの隣り合う2辺の間に挿入し、直列に接続された一連の複数の固定抵抗で構成すると共に、その固定抵抗の各接続点に接続される複数の開閉素子を内蔵するマルチプレクサを備え、前記電気制御部によって制御されて前記マルチプレクサの開閉素子の1を選択的に閉じることによって自動的に前記ブリッジの平衡を調整することを特徴とする熱伝導度検出器を備えたガスクロマトグラフ装置。A bridge in which a thermal resistance element installed in a gas flow path to be measured is incorporated at least on one side thereof, a power supply circuit for supplying current to the bridge, and an AD converter for digitizing the unbalanced signal of the bridge And an electrical control unit including a computer circuit for processing a digitized signal, a resistance for balancing the bridge is inserted between two adjacent sides of the bridge, and connected in series. And a multiplexer having a plurality of open / close elements connected to each connection point of the fixed resistor, and controlled by the electric control unit, the open / close element of the multiplexer A gas chromatograph with a thermal conductivity detector, wherein the bridge balance is automatically adjusted by selectively closing one of the Chromatograph apparatus.
JP32827598A 1998-11-18 1998-11-18 Gas chromatograph apparatus having a thermal conductivity detector Expired - Fee Related JP3893781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32827598A JP3893781B2 (en) 1998-11-18 1998-11-18 Gas chromatograph apparatus having a thermal conductivity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32827598A JP3893781B2 (en) 1998-11-18 1998-11-18 Gas chromatograph apparatus having a thermal conductivity detector

Publications (2)

Publication Number Publication Date
JP2000146886A JP2000146886A (en) 2000-05-26
JP3893781B2 true JP3893781B2 (en) 2007-03-14

Family

ID=18208413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32827598A Expired - Fee Related JP3893781B2 (en) 1998-11-18 1998-11-18 Gas chromatograph apparatus having a thermal conductivity detector

Country Status (1)

Country Link
JP (1) JP3893781B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853234B2 (en) * 2006-10-31 2012-01-11 横河電機株式会社 Magnetic oxygen meter
EP2064541A1 (en) 2007-08-22 2009-06-03 SLS Micro Technology GmbH Miniaturized gas chromatography module with pre-stage miniaturized unit
JP5981301B2 (en) * 2012-10-29 2016-08-31 日立オートモティブシステムズ株式会社 Thermal gas sensor
EP3093659B1 (en) 2015-05-11 2017-06-14 Siemens Aktiengesellschaft Thermal conductivity detector and method for operating the same
JP6701956B2 (en) * 2016-05-23 2020-05-27 株式会社島津製作所 Thermal conductivity detector and gas chromatograph
CN109374671B (en) * 2018-08-31 2023-05-16 中国核电工程有限公司 High-temperature hydrogen concentration measuring element

Also Published As

Publication number Publication date
JP2000146886A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US6028426A (en) Temperature compensated current measurement device
US4516865A (en) Resistance thermometer
US5587520A (en) Thermal conductivity detector
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US5394078A (en) Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature
JP3893781B2 (en) Gas chromatograph apparatus having a thermal conductivity detector
JPH0361843A (en) Method and apparatus for measuring heat conductivity of gas
US5181420A (en) Hot wire air flow meter
US8075178B2 (en) Circuit arrangement to adjust and calibrate a MEMS-sensor device for flow measurement of gases or liquids
US20050017760A1 (en) Current sense shunt resistor circuit
US6575027B1 (en) Mass flow sensor interface circuit
KR0138161B1 (en) Common mode error correction for differential amplifier
US7454959B2 (en) Method and device for providing defined fluid flow, especially for use in liquid chromatography
EP1227319B1 (en) Control circuit for thermal conductivity cell
JP4422365B2 (en) Programmable controller
JP3922593B2 (en) Temperature control method in gas analyzer
GB1291827A (en) Improvements in or relating to temperature measuring apparatus
JP6701956B2 (en) Thermal conductivity detector and gas chromatograph
EP0018221A1 (en) Method of and apparatus for measuring the amount of combustibles present in a gas
JP6737127B2 (en) Gas chromatograph and zero adjustment method
JPH0580843B2 (en)
JP3959828B2 (en) pressure sensor
JP2000065774A (en) Gas chromatograph
JPH11295354A (en) Current detector
JPH09236563A (en) Thermal conductivity detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees