JP3893475B2 - Thermoelectric element figure of merit measuring apparatus and measuring method - Google Patents

Thermoelectric element figure of merit measuring apparatus and measuring method Download PDF

Info

Publication number
JP3893475B2
JP3893475B2 JP2001196416A JP2001196416A JP3893475B2 JP 3893475 B2 JP3893475 B2 JP 3893475B2 JP 2001196416 A JP2001196416 A JP 2001196416A JP 2001196416 A JP2001196416 A JP 2001196416A JP 3893475 B2 JP3893475 B2 JP 3893475B2
Authority
JP
Japan
Prior art keywords
thermoelectric element
merit
component
measuring
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001196416A
Other languages
Japanese (ja)
Other versions
JP2003014804A (en
Inventor
幹夫 小矢野
秀夫 岩崎
秀信 堀
精二郎 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2001196416A priority Critical patent/JP3893475B2/en
Publication of JP2003014804A publication Critical patent/JP2003014804A/en
Application granted granted Critical
Publication of JP3893475B2 publication Critical patent/JP3893475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電素子の性能指数を測定する測定装置及び測定方法に関する。
【0002】
【従来の技術】
従来から、熱電素子の性能指数を測定する方法が知られており、例えば特開平1−161140号公報に示されている。図4は、同公報に開示された測定方法の説明図を表しており、以下図4に基づいて従来技術を説明する。
図4において、被測定物である熱電素子2の両端には、良導体からなる電極3,3が、熱電素子2の端面全体を覆うように接合されている。それぞれの電極3,3には、電圧を測定するためのリード線4A及び電流を測定するためのリード線4Bが接続されている。
熱電素子2両端部の電極3,3には、それぞれ熱電対5が接触している。これにより、熱電素子2両端部の温度を測定している。熱電素子2は、10-2Pa以下の高真空中に置かれる。
【0003】
前記公報に記載された測定手順は、次の通りである。
1)電極3,3間に直流電流を流し、定常状態になった後、電極3,3間の電圧、電流、及び温度を測定する。
2)電極3,3間に、実効値が、1)で流した直流電流値にほぼ等しい交流電流を流し、定常状態になった後、電極3,3間の電圧、電流、及び温度を測定する。
こうして得られた測定値を、所定の式に代入して、熱電素子2の性能指数Zを求めている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来技術には、次に述べるような問題がある。
即ち従来技術によれば、まず熱電素子2に直流電流を流して電圧など所定のパラメータの測定を行ない、その後、交流電流を流して、さらにパラメータの測定を行なっている。そのため、測定に時間がかかる。
これに加え、交流電流を熱電素子2に流した場合にはジュール熱が発生するが、熱電素子2内部の温度は均一になる。ところが、直流電流を熱電素子2に流した場合には、ペルチェ効果によって、熱電素子2内部の温度に不均一が生じる。
その結果、直流電流を流した場合と、交流電流を流した場合とでは、熱電素子2が熱平衡に達した時点での内部の熱分布が異なることになる。熱電素子2の性能指数Zを求める関係式は、交流電流を流したときと直流電流を流したときとで、熱電素子2内部の温度分布が同じである場合に成り立つ。その結果、温度分布の変動によって、計測結果に誤差が生じ、性能指数Zが不正確となる。
このような不正確さを補正するためには、例えば、被測定物である熱電素子2の形状を、熱分布の相違が生じにくいものにする必要があり、測定方法を任意の形状の熱電素子2に応用するのが困難となる。
【0005】
本発明は、上記の問題に着目してなされたものであり、短い測定時間で熱電素子の性能指数を正確に測定可能な、熱電素子の性能指数測定装置及び測定方法を提供することを目的としている。
【0006】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、本発明は、
熱電素子の両端部間に電流を流し、その両端部間の電圧を測定して無次元性能指数を測定する熱電素子の性能指数測定装置において、
熱電素子に交流電流を流す交流電流源と、
熱電素子に交流電流と同時に直流電流を流す直流電流源と、
熱電素子の両端部にかかる電圧の、交流成分の振幅を測定する交流電圧計と、
熱電素子の両端部にかかる電圧の、直流成分を測定する直流電圧計とを備え、
同時に測定した前記電圧の交流成分の振幅及び直流成分に基づいて、性能指数を求めている。
かかる構成によれば、交流電流と直流電流とを同時に流すことにより、電圧の交流成分測定時と直流成分測定時とで、被測定物である熱電素子の温度分布が同一になる。従って、性能指数の測定が正確になる。
【0007】
また本発明によれば、
交流電流の振幅と、
直流電流の電流値とを略同一にしている。
かかる構成によれば、熱電素子の電圧の交流成分の振幅及び直流成分のみを計測するだけで、無次元性能指数を求めることが可能となり、計測が簡略化される。
【0008】
また、本発明によれば、
熱電素子を略一定の温度に保つ、恒温装置を備えている。
かかる構成によれば、熱電素子の熱リークがほぼ0になることから、計測時に熱リークの影響を排除でき、計測が正確になる。
【0009】
また、本発明によれば、
熱電素子の温度を測定する温度センサを備え、
熱電素子内部の温度が平衡に達したことを検知し、
温度平衡時の熱電素子の温度を測定し、
前記交流電圧、直流電圧、及び温度に基づいて、性能指数を求めている。
かかる構成によれば、無次元性能指数と同様に、性能指数を正確に求めることも可能である。
【0010】
【発明の実施の形態】
以下、図を参照しながら、本発明に係る実施形態を詳細に説明する。
図1は、本実施形態に係る性能指数測定装置1のブロック図を示している。図1において、熱電素子2の両端部には、良導体の電極3,3が接合されている。電極3,3の材質としては、銀、銅、ニッケル等が好適である。
性能指数測定装置1は、被測定物である熱電素子2に、交流電流IACを流す交流電流源7と、直流電流IDCを流す直流電流源8とを備えている。交流電流源7及び直流電流源8は、出力側がいずれも電極3,3の一側に接続されている。また、電極3,3の他側は、アース電位に接地されており、熱電素子2には、(IAC+IDC)なる電流が流れるようになっている。
【0011】
また、性能指数測定装置1は、熱電素子2の両端部の電極3,3に密に接触した、例えば熱電対5等の温度センサを備えている。熱電対5は、熱伝導率の良い電極3,3に貼りつけられ、熱電素子2の両端部近傍の温度を精密に測定することが可能である。
さらに性能指数測定装置1は、熱電素子2の両端部の電圧の交流成分VACを測定する交流電圧計9と、電圧の直流成分VDCを測定する直流電圧計10とを備えている。
交流電圧計9は、電圧の微少な交流成分を測定する必要があり、例えばロックインアンプが好適である。交流電圧計9と交流電流源7との間は、電気的に接続されており、同期を取るために、交流電圧計9から交流電流源7に対して、リファレンス信号Sが送られる。
交流電流源7、直流電流源8、交流電圧計9、直流電圧計10、及び熱電対5は、いずれもコントローラ20に電気的に接続されている。コントローラ20は、性能指数測定装置1を制御し、性能指数Zの測定を行なう。
【0012】
図2に、性能指数測定装置1の詳細な構成図を示す。
図2において、性能指数測定装置1は、被測定物である熱電素子2の温度を一定に保ち、熱電素子2から熱のリークが無いようにする恒温装置6を備えている。恒温装置6は、熱電素子2を内部に入れる内室11と、内室11を囲繞する外室12とを備えている。外室12及び内室11は、熱伝導率のなるべく良い材料で構成されていることが望ましく、例えば銅などの金属が好適である。
外室12は、液体寒剤15に浸漬されている。液体寒剤15としては、温度(4.2K)の低い液体Heが最も好ましいが、液体窒素(温度77.3K)でもよい。外室12の周囲には外側ヒータ14が、内室11の周囲には内側ヒータ13が、それぞれ巻かれている。
外室12の外側が、液体寒剤15の温度と略同一になっているのに対し、内室11の内部は、ヒータ13,14によって室温程度に保たれている。
内室11の内部及び外室12の内部は、真空ポンプ16により、約10-3Pa以下の高真空に排気されている。これにより、対流による熱損失を少なくし、内室11の内部及び熱電対5の温度が変動しないようにしている。
【0013】
図2に示すように熱電素子2は、絶縁性の糸17により、内室11の内部に吊るされている。この絶縁性の糸17は、低温になっても収縮しない材質が好ましく、例えば木綿糸17が好適である。
熱電素子2の両端部の電極3,3には、電流源7,8及び電圧計9,10に電気的に接続するためのリード線18とが、接続されている。リード線18としては、外室12外部からの熱の侵入を防止するため、なるべく細いものが望ましく、直径50μm程度の、リン青銅線が好適である。
リード線18は、内室11の内壁に付設されたサーマルアンカ19に何重にか巻かれた後、真空を封止する図示しない電流導入端子を介して、外部と電気的に接続されている。サーマルアンカ19は、例えば銅などの円柱であり、一端部が内室11の内壁に接触している。これにより、リード線18を伝わって外部から侵入した熱が、サーマルアンカ19を介して内室11内壁へと拡散し、熱電素子2に熱が伝わることが非常に少なくなる。
【0014】
次に、このような性能指数測定装置1を用いて、無次元化された性能指数ZTを測定する手順について、説明する。
まず、交流電流源7及び直流電流源8から、熱電素子2の両端部間に、それぞれ交流電流IAC及び直流電流IDCを流す。このとき、交流電流IACがbcosωtで、直流電流IDCがaでそれぞれ表されるとすると、a=bとなるように電流を流す。これにより、熱電素子5を流れる電流は、交流電流IACと直流電流IDCとの和IAC+IDCとなり、図3のようにa+bcosωtで表される。このとき、横軸が時間であり、縦軸が電流値である。
尚、ωは、交流電流IACの周波数であり、交流電流IACを熱電素子2に流した際にペルチェ効果による熱の発生を妨げるため、充分大きな値であることが必要であり、例えば10Hzよりも大きいことが好ましい。
【0015】
温度変動が殆んどなくなった状態の熱電素子2においては、a=bの条件下で次の数式1が成り立つ。
ZT=(1/x){(VDC/VAC0)−1} ………… (1)
このとき、xは熱リークを示す定数であり、外部への熱リークがまったくないと仮定すると、x=1となる。また、VAC0は、熱電素子2の電気抵抗をRとした場合のb・Rに相当し、電圧の交流成分の振幅を示している。
即ち、電圧の交流成分の振幅VAC0と直流成分VDCとを測定することにより、無次元性能指数ZTが求められる。但し、この数式1は、電圧の直流成分VDCの測定時と、交流成分の振幅VAC0の測定時とで、熱電素子2において温度Tの変化があると成り立たないことも知られている。
【0016】
従ってコントローラ20は、熱電対5の出力に基づき、熱電素子2の温度Tの変動が殆んどなくなったことを検知する。そして、交流電圧計9及び直流電圧計10によって、熱電素子2の両端部間の電圧の交流成分の振幅VAC0及び直流成分VDCを、それぞれ測定する。そして、これらの値VAC0,VDCを、数式1に代入することにより、無次元性能指数ZTを求めている。
また、コントローラ20は、熱電対5によって熱電素子2の平均温度T0を精密に測定し、数式1に平均温度T0を代入して、性能指数Zを求めることも可能である。
【0017】
以上説明したように、本実施形態によれば、熱電素子2に交流電流IACと直流電流IDCとを同時に流している。そして、熱電素子2の温度Tが定常状態に達したときの電圧の交流成分の振幅VAC0及び直流電圧VDCに基づいて、熱電素子2の性能指数ZTを検出している。このように、交流電流IACと直流電流IDCとを熱電素子2に同時に流すことにより、従来技術のように、交流電流を流したときと直流電流とを流したときで、熱電素子2の内部の熱分布が変化しない。
上述したように数式1は、電圧の交流成分の振幅VAC0測定時と直流成分VDCの測定時とで、温度変化がない場合にのみ成り立つ。従って、本実施形態のように、交流電流IACと直流電流IDCとを同時に流すことにより、精密な測定が可能である。
【0018】
また、交流電流IAC(=bcosωt)と直流電流IDC(=a)とを同時に流すことにより、交流電流IACの振幅bと、直流電流IDCの値aとを厳密に一致させることが可能である。数式1は、a=bの時にのみ成り立つので、これを厳密に一致させることにより、より正確な性能指数の測定が可能である。
【0019】
また、本実施形態の性能指数測定装置1によれば、液体寒剤15を用い、内部を真空にした恒温装置6の中に、熱電素子2を入れて計測を行なっている。これにより、熱電素子2が外部の温度変化の影響を受けず、熱的に安定した状態になるので、精密な測定が可能である。さらに、クライオポンプ効果により、熱リークが殆んどなくなるので、定数xがほぼ1となり、交流電流IAC及び直流電流IDCを測定するだけで、性能指数を正確に求めることができる。
【0020】
尚、図2に示した恒温装置6は、内室11と外室12とを備えるように説明したが、その間に中間室を設け、3重又はそれ以上にしてもよい。これにより、さらに熱電素子の温度が安定になり、計測が正確になる。
【図面の簡単な説明】
【図1】実施形態に係る性能指数測定装置のブロック図。
【図2】性能指数測定装置の詳細な構成図
【図3】熱電素子を流れる電流を示すグラフ。
【図4】従来技術に係る性能指数測定装置のブロック図。
【符号の説明】
1:性能指数測定装置、2:熱電素子、3:電極、4:リード線1、5:熱電対、6:恒温装置、7:交流電流源、8:直流電流源、9:交流電圧計、10:直流電圧計、11:内室、12:外室、13:内側ヒータ、14:外側ヒータ、15:液体寒剤、16:真空ポンプ、17:糸、18:リード線、19:サーマルアンカ、20:コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measuring apparatus and a measuring method for measuring a figure of merit of a thermoelectric element.
[0002]
[Prior art]
Conventionally, a method for measuring a figure of merit of a thermoelectric element is known, and for example, disclosed in Japanese Patent Application Laid-Open No. 1-161140. FIG. 4 is an explanatory diagram of the measurement method disclosed in the publication, and the prior art will be described based on FIG.
In FIG. 4, electrodes 3 and 3 made of a good conductor are joined to both ends of a thermoelectric element 2 as an object to be measured so as to cover the entire end face of the thermoelectric element 2. Connected to each of the electrodes 3 and 3 is a lead wire 4A for measuring voltage and a lead wire 4B for measuring current.
The thermocouple 5 is in contact with the electrodes 3 and 3 at both ends of the thermoelectric element 2. Thereby, the temperature of the both ends of the thermoelectric element 2 is measured. The thermoelectric element 2 is placed in a high vacuum of 10 −2 Pa or less.
[0003]
The measurement procedure described in the publication is as follows.
1) A direct current is passed between the electrodes 3 and 3, and after a steady state is reached, the voltage, current and temperature between the electrodes 3 and 3 are measured.
2) An alternating current having an effective value approximately equal to the direct current value passed in 1) is passed between the electrodes 3 and 3, and after a steady state is reached, the voltage, current, and temperature between the electrodes 3 and 3 are measured. To do.
The performance index Z of the thermoelectric element 2 is obtained by substituting the measured value thus obtained into a predetermined equation.
[0004]
[Problems to be solved by the invention]
However, the prior art has the following problems.
That is, according to the prior art, first, a direct current is passed through the thermoelectric element 2 to measure a predetermined parameter such as a voltage, and then an alternating current is passed to further measure the parameter. Therefore, measurement takes time.
In addition, Joule heat is generated when an alternating current is passed through the thermoelectric element 2, but the temperature inside the thermoelectric element 2 becomes uniform. However, when a direct current is passed through the thermoelectric element 2, the temperature inside the thermoelectric element 2 becomes non-uniform due to the Peltier effect.
As a result, the internal heat distribution at the time when the thermoelectric element 2 reaches thermal equilibrium differs between when a direct current is passed and when an alternating current is passed. The relational expression for obtaining the figure of merit Z of the thermoelectric element 2 is established when the temperature distribution inside the thermoelectric element 2 is the same when an alternating current is passed and when a direct current is passed. As a result, a variation in temperature distribution causes an error in the measurement result, and the figure of merit Z becomes inaccurate.
In order to correct such inaccuracy, for example, it is necessary to make the shape of the thermoelectric element 2 that is the object to be measured difficult to cause a difference in heat distribution. 2 is difficult to apply.
[0005]
The present invention has been made paying attention to the above-mentioned problem, and aims to provide a thermoelectric element performance index measuring apparatus and a measurement method capable of accurately measuring the thermoelectric element performance index in a short measurement time. Yes.
[0006]
[Means, actions and effects for solving the problems]
In order to achieve the above object, the present invention provides:
In a performance index measuring device for a thermoelectric element that measures a dimensionless figure of merit by passing a current between both ends of the thermoelectric element and measuring a voltage between the both ends,
An alternating current source for passing an alternating current through the thermoelectric element;
A direct current source for supplying a direct current to the thermoelectric element simultaneously with an alternating current;
An AC voltmeter for measuring the amplitude of the AC component of the voltage applied to both ends of the thermoelectric element;
A DC voltmeter for measuring the DC component of the voltage applied to both ends of the thermoelectric element;
A figure of merit is obtained based on the amplitude and DC component of the AC component of the voltage measured simultaneously.
According to such a configuration, when the alternating current and the direct current are supplied simultaneously, the temperature distribution of the thermoelectric element that is the object to be measured becomes the same when measuring the alternating current component of the voltage and when measuring the direct current component. Thus, the figure of merit measurement is accurate.
[0007]
Also according to the invention,
The amplitude of the alternating current,
The current value of the direct current is substantially the same.
According to such a configuration, it is possible to obtain a dimensionless figure of merit simply by measuring the amplitude and direct current component of the alternating current component of the voltage of the thermoelectric element, and the measurement is simplified.
[0008]
Moreover, according to the present invention,
A thermostat is provided to keep the thermoelectric element at a substantially constant temperature.
According to such a configuration, since the heat leak of the thermoelectric element becomes almost zero, the influence of the heat leak can be eliminated at the time of measurement, and the measurement becomes accurate.
[0009]
Moreover, according to the present invention,
It has a temperature sensor that measures the temperature of the thermoelectric element,
Detects that the temperature inside the thermoelectric element has reached equilibrium,
Measure the temperature of the thermoelectric element at temperature equilibrium,
A figure of merit is determined based on the AC voltage, DC voltage, and temperature.
According to such a configuration, the performance index can be accurately obtained in the same manner as the dimensionless performance index.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a block diagram of a figure of merit measuring apparatus 1 according to the present embodiment. In FIG. 1, good conductor electrodes 3 and 3 are joined to both ends of a thermoelectric element 2. As a material of the electrodes 3 and 3, silver, copper, nickel or the like is preferable.
The figure of merit measurement device 1 includes an alternating current source 7 for supplying an alternating current IAC and a direct current source 8 for supplying a direct current IDC to a thermoelectric element 2 as a measurement object. The output sides of the AC current source 7 and the DC current source 8 are both connected to one side of the electrodes 3 and 3. The other sides of the electrodes 3 and 3 are grounded to the earth potential, and a current of (IAC + IDC) flows through the thermoelectric element 2.
[0011]
Further, the figure of merit measurement device 1 includes a temperature sensor such as a thermocouple 5 in close contact with the electrodes 3 and 3 at both ends of the thermoelectric element 2. The thermocouple 5 is attached to the electrodes 3 and 3 having good thermal conductivity, and the temperature in the vicinity of both end portions of the thermoelectric element 2 can be accurately measured.
Further, the figure of merit measurement device 1 includes an AC voltmeter 9 that measures the AC component VAC of the voltage at both ends of the thermoelectric element 2 and a DC voltmeter 10 that measures the DC component VDC of the voltage.
The AC voltmeter 9 needs to measure a minute AC component of voltage, and for example, a lock-in amplifier is suitable. The AC voltmeter 9 and the AC current source 7 are electrically connected, and a reference signal S is sent from the AC voltmeter 9 to the AC current source 7 for synchronization.
The AC current source 7, the DC current source 8, the AC voltmeter 9, the DC voltmeter 10, and the thermocouple 5 are all electrically connected to the controller 20. The controller 20 controls the performance index measuring apparatus 1 and measures the performance index Z.
[0012]
FIG. 2 shows a detailed configuration diagram of the performance index measuring apparatus 1.
In FIG. 2, the figure of merit measurement device 1 includes a thermostatic device 6 that keeps the temperature of the thermoelectric element 2 that is the object to be measured constant and does not leak heat from the thermoelectric element 2. The thermostatic device 6 includes an inner chamber 11 in which the thermoelectric element 2 is placed, and an outer chamber 12 that surrounds the inner chamber 11. The outer chamber 12 and the inner chamber 11 are preferably made of a material having as good a thermal conductivity as possible. For example, a metal such as copper is suitable.
The outer chamber 12 is immersed in the liquid cryogen 15. The liquid cryogen 15 is most preferably liquid He having a low temperature (4.2 K), but may be liquid nitrogen (temperature 77.3 K). An outer heater 14 is wound around the outer chamber 12, and an inner heater 13 is wound around the inner chamber 11.
The outside of the outer chamber 12 is substantially the same as the temperature of the liquid cryogen 15, while the inside of the inner chamber 11 is kept at about room temperature by the heaters 13 and 14.
The inside of the inner chamber 11 and the inside of the outer chamber 12 are evacuated to a high vacuum of about 10 −3 Pa or less by a vacuum pump 16. As a result, heat loss due to convection is reduced, and the temperature of the inside of the inner chamber 11 and the thermocouple 5 are prevented from fluctuating.
[0013]
As shown in FIG. 2, the thermoelectric element 2 is suspended inside the inner chamber 11 by an insulating thread 17. The insulating thread 17 is preferably made of a material that does not shrink even when the temperature is low, and for example, a cotton thread 17 is preferable.
The electrodes 3 and 3 at both ends of the thermoelectric element 2 are connected to current sources 7 and 8 and lead wires 18 for electrical connection to the voltmeters 9 and 10. The lead wire 18 is preferably as thin as possible in order to prevent heat from entering from the outside of the outer chamber 12, and a phosphor bronze wire having a diameter of about 50 μm is preferable.
The lead wire 18 is wound around a thermal anchor 19 attached to the inner wall of the inner chamber 11 several times, and then electrically connected to the outside through a current introduction terminal (not shown) that seals the vacuum. . The thermal anchor 19 is a cylinder such as copper, for example, and one end thereof is in contact with the inner wall of the inner chamber 11. As a result, heat that has entered through the lead wire 18 from the outside diffuses to the inner wall of the inner chamber 11 via the thermal anchor 19, and heat is hardly transmitted to the thermoelectric element 2.
[0014]
Next, a procedure for measuring the dimensionless figure of merit ZT using such a figure of merit measuring apparatus 1 will be described.
First, an alternating current IAC and a direct current IDC are passed between the both ends of the thermoelectric element 2 from the alternating current source 7 and the direct current source 8. At this time, if the alternating current IAC is represented by bcosωt and the direct current IDC is represented by a, the current is supplied so that a = b. As a result, the current flowing through the thermoelectric element 5 is the sum IAC + IDC of the alternating current IAC and the direct current IDC, and is represented by a + bcos ωt as shown in FIG. At this time, the horizontal axis is time, and the vertical axis is the current value.
Note that ω is the frequency of the alternating current IAC, and must be a sufficiently large value to prevent the generation of heat due to the Peltier effect when the alternating current IAC is passed through the thermoelectric element 2, for example, more than 10 Hz. Larger is preferred.
[0015]
In the thermoelectric element 2 with almost no temperature fluctuation, the following formula 1 is established under the condition of a = b.
ZT = (1 / x) {(VDC / VAC0) -1} (1)
At this time, x is a constant indicating a heat leak, and x = 1 assuming that there is no heat leak to the outside. VAC0 corresponds to b · R when the electric resistance of the thermoelectric element 2 is R, and indicates the amplitude of the AC component of the voltage.
That is, the dimensionless figure of merit ZT is obtained by measuring the amplitude VAC0 and the direct current component VDC of the alternating current component of the voltage. However, it is also known that Formula 1 does not hold when there is a change in the temperature T in the thermoelectric element 2 between the measurement of the DC component VDC of the voltage and the measurement of the amplitude VAC0 of the AC component.
[0016]
Therefore, the controller 20 detects based on the output of the thermocouple 5 that the temperature T of the thermoelectric element 2 has hardly changed. Then, the AC voltmeter 9 and the DC voltmeter 10 measure the AC component amplitude VAC0 and the DC component VDC of the voltage between both ends of the thermoelectric element 2, respectively. Then, the dimensionless figure of merit ZT is obtained by substituting these values VAC0 and VDC into Equation 1.
The controller 20 can also accurately measure the average temperature T0 of the thermoelectric element 2 with the thermocouple 5 and substitute the average temperature T0 into Equation 1 to obtain the figure of merit Z.
[0017]
As described above, according to the present embodiment, the alternating current IAC and the direct current IDC are simultaneously supplied to the thermoelectric element 2. The figure of merit ZT of the thermoelectric element 2 is detected based on the amplitude VAC0 and the DC voltage VDC of the AC component of the voltage when the temperature T of the thermoelectric element 2 reaches a steady state. As described above, when the alternating current IAC and the direct current IDC are simultaneously supplied to the thermoelectric element 2, the internal current of the thermoelectric element 2 can be increased when the alternating current is supplied and the direct current is supplied as in the conventional technique. The heat distribution does not change.
As described above, Equation 1 is valid only when there is no temperature change between the measurement of the amplitude VAC0 of the AC component of the voltage and the measurement of the DC component VDC. Therefore, as in the present embodiment, precise measurement is possible by simultaneously flowing alternating current IAC and direct current IDC.
[0018]
Further, the alternating current IAC (= b cos ωt) and the direct current IDC (= a) are allowed to flow at the same time, so that the amplitude b of the alternating current IAC and the value a of the direct current IDC can be exactly matched. Since Formula 1 is established only when a = b, it is possible to measure the performance index more accurately by making this coincide strictly.
[0019]
Further, according to the performance index measuring apparatus 1 of the present embodiment, measurement is performed by putting the thermoelectric element 2 in the thermostatic device 6 using the liquid cryogen 15 and evacuating the inside. As a result, the thermoelectric element 2 is not affected by an external temperature change and is in a thermally stable state, so that precise measurement is possible. Furthermore, because of the cryopump effect, there is almost no heat leak, so the constant x is almost 1, and the performance index can be accurately obtained by merely measuring the AC current IAC and the DC current IDC.
[0020]
2 has been described as including the inner chamber 11 and the outer chamber 12, an intermediate chamber may be provided between the inner chamber 11 and the outer chamber 12, and triple or more may be provided. This further stabilizes the temperature of the thermoelectric element and makes the measurement accurate.
[Brief description of the drawings]
FIG. 1 is a block diagram of a performance index measurement apparatus according to an embodiment.
FIG. 2 is a detailed configuration diagram of a figure of merit measurement apparatus. FIG. 3 is a graph showing a current flowing through a thermoelectric element.
FIG. 4 is a block diagram of a figure of merit measuring apparatus according to the prior art.
[Explanation of symbols]
1: performance index measuring device, 2: thermoelectric element, 3: electrode, 4: lead wire 1, 5: thermocouple, 6: thermostatic device, 7: AC current source, 8: DC current source, 9: AC voltmeter, 10: DC voltmeter, 11: inner chamber, 12: outer chamber, 13: inner heater, 14: outer heater, 15: liquid cryogen, 16: vacuum pump, 17: thread, 18: lead wire, 19: thermal anchor, 20 :controller.

Claims (6)

熱電素子(2)の両端部間に電流を流し、その両端部間の電圧を測定して無次元性能指数(ZT)を測定する熱電素子の性能指数測定装置において、
熱電素子(2)に交流電流(IAC)を流す交流電流源(7)と、
熱電素子(2)に交流電流(IAC)と同時に直流電流(IDC)を流す直流電流源(8)と、
熱電素子(2)の両端部にかかる電圧の、交流成分の振幅(VAC0)を測定する交流電圧計(9)と、
熱電素子(2)の両端部にかかる電圧の、直流成分(VDC)を測定する直流電圧計(10)とを備え、
同時に測定した前記電圧の交流成分の振幅(VAC0)及び直流成分(VDC)に基づいて、性能指数(ZT)を求めることを特徴とする熱電素子の性能指数測定装置。
In a performance index measuring device for a thermoelectric element that measures a dimensionless figure of merit (ZT) by passing a current between both ends of the thermoelectric element (2) and measuring a voltage between both ends,
An alternating current source (7) for passing an alternating current (IAC) through the thermoelectric element (2);
A direct current source (8) for passing a direct current (IDC) simultaneously with an alternating current (IAC) to the thermoelectric element (2);
An AC voltmeter (9) for measuring the amplitude (VAC0) of the AC component of the voltage applied to both ends of the thermoelectric element (2);
DC voltage voltmeter (10) for measuring the DC component (VDC) of the voltage applied to both ends of the thermoelectric element (2),
A performance index measuring device for a thermoelectric element, wherein the figure of merit (ZT) is obtained based on the amplitude (VAC0) and DC component (VDC) of the AC component of the voltage measured simultaneously.
請求項1記載の熱電素子の性能指数測定装置において、
前記交流電流(IAC)の振幅(b)と、
前記直流電流(IDC)の電流値(a)とを略同一にしたことを特徴とする熱電素子の性能指数測定装置。
In the thermoelectric element figure of merit measuring apparatus according to claim 1,
The amplitude (b) of the alternating current (IAC),
A thermoelectric element figure of merit measuring apparatus characterized in that the current value (a) of the direct current (IDC) is substantially the same.
請求項1又は2記載の熱電素子の性能指数測定装置において、
熱電素子(2)を略一定の温度に保って熱の移動を小さくする恒温装置(6)を備えたことを特徴とする熱電素子の性能指数測定装置。
In the performance index measuring apparatus for thermoelectric elements according to claim 1 or 2,
A thermoelectric element figure of merit measuring apparatus comprising a thermostatic device (6) that keeps the thermoelectric element (2) at a substantially constant temperature to reduce heat transfer.
請求項1〜3のいずれかに記載の熱電素子の性能指数測定装置において、
熱電素子(2)の温度(T)を測定する温度センサ(5)を備え、
熱電素子(2)内部が熱平衡に達したことを検知し、
前記交流電圧(VAC)、直流電圧(VDC)、及び温度センサ(5)によって測定した熱電素子(2)の平均温度(T0)に基づいて、性能指数(Z)を求めることを特徴とする熱電素子の性能指数測定装置。
In the performance index measuring apparatus for thermoelectric elements according to any one of claims 1 to 3,
A temperature sensor (5) for measuring the temperature (T) of the thermoelectric element (2) is provided,
Detecting that the thermoelectric element (2) has reached thermal equilibrium,
A figure of merit (Z) is obtained based on the AC voltage (VAC), the DC voltage (VDC), and the average temperature (T0) of the thermoelectric element (2) measured by the temperature sensor (5). Device figure of merit measurement device.
熱電素子(2)の無次元性能指数(ZT)を測定する性能指数測定方法において
熱電素子(2)の両端部間に、交流及び直流の電流を同時に流し、
熱電素子(2)の両端部間の電圧の、交流成分の振幅(VAC0)及び直流成分(VDC)を測定し、
この交流成分の振幅(VAC0)及び直流成分(VDC)に基づいて、無次元性能指数(ZT)を求めることを特徴とする性能指数測定方法。
In the figure of merit measurement method for measuring the dimensionless figure of merit (ZT) of the thermoelectric element (2), alternating current and direct current are passed simultaneously between both ends of the thermoelectric element (2),
Measure the AC component amplitude (VAC0) and DC component (VDC) of the voltage between both ends of the thermoelectric element (2),
A performance index measurement method characterized in that a dimensionless figure of merit (ZT) is obtained based on the amplitude (VAC0) and the DC component (VDC) of the AC component.
熱電素子(2)の性能指数を測定する性能指数測定方法において
熱電素子(2)の両端部間に、交流及び直流の電流を同時に流し、
温度センサ(5)によって、熱電素子(2)の熱分布が熱平衡に達したことを検知し、
熱電素子(2)の両端部間の電圧の、交流成分の振幅(VAC0)、及び直流成分(VDC)を測定し、
熱平衡時の熱電素子(2)の平均温度(T0)を測定し、
この交流成分の振幅(VAC0)、直流成分(VDC)、及び平均温度(T0)に基づいて、性能指数(Z)を求めることを特徴とする性能指数測定方法。
In the figure of merit measurement method for measuring the figure of merit of the thermoelectric element (2), an alternating current and a direct current are passed simultaneously between both ends of the thermoelectric element (2),
The temperature sensor (5) detects that the thermal distribution of the thermoelectric element (2) has reached thermal equilibrium,
Measure the AC component amplitude (VAC0) and DC component (VDC) of the voltage between both ends of the thermoelectric element (2),
Measure the average temperature (T0) of the thermoelectric element (2) at the time of thermal equilibrium,
A performance index measurement method characterized in that a figure of merit (Z) is obtained based on the amplitude (VAC0), DC component (VDC), and average temperature (T0) of the AC component.
JP2001196416A 2001-06-28 2001-06-28 Thermoelectric element figure of merit measuring apparatus and measuring method Expired - Lifetime JP3893475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196416A JP3893475B2 (en) 2001-06-28 2001-06-28 Thermoelectric element figure of merit measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196416A JP3893475B2 (en) 2001-06-28 2001-06-28 Thermoelectric element figure of merit measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2003014804A JP2003014804A (en) 2003-01-15
JP3893475B2 true JP3893475B2 (en) 2007-03-14

Family

ID=19034233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196416A Expired - Lifetime JP3893475B2 (en) 2001-06-28 2001-06-28 Thermoelectric element figure of merit measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP3893475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082353B1 (en) * 2010-03-30 2011-11-10 한국표준과학연구원 Apparatus for evaluating thermoelectric element and Thermoelectric element evaluation system using the same
KR101484956B1 (en) 2013-04-24 2015-01-22 (주)트리비스 Thermoelectric device's test apparatus and test method for it
JP6202580B2 (en) * 2013-08-22 2017-09-27 国立研究開発法人産業技術総合研究所 Thermophysical property measuring method and thermophysical property measuring device
JP7079471B2 (en) * 2017-12-28 2022-06-02 国立研究開発法人産業技術総合研究所 Thermophysical property measuring device and thermophysical property measuring method
CN108828297B (en) * 2018-08-27 2021-02-02 中国计量大学 High-precision voltage/ammeter based on resonant thin-film thermoelectric converter
WO2024116508A1 (en) * 2022-11-30 2024-06-06 国立研究開発法人産業技術総合研究所 Peltier coefficient calculation method, program, and measurement system

Also Published As

Publication number Publication date
JP2003014804A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR0183398B1 (en) Method and apparatus for the measurment of the thermal conductivity of gases
TWI789501B (en) Thermal conductivity gauge
JP3893475B2 (en) Thermoelectric element figure of merit measuring apparatus and measuring method
CN108061738A (en) The measuring device and method of a kind of sample thermal conductivity and thermoelectrical potential
US4918974A (en) Method and apparatus for the measurement of the thermal conductivity of gases
JP2976015B2 (en) Heat capacity measurement method
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
JPH0569635U (en) Liquid level sensor
Hermach AC-DC comparators for audio-frequency current and voltage measurements of high accuracy
KR100499351B1 (en) a measurement system for Seebeck coefficient and electrical conductivity
US6727709B2 (en) Vacuum gauge using peltier tip
WO1996018871A1 (en) Temperature sensor system using thin film of microcrystalline semiconductor
CN105785102B (en) Thermoelectrical potential measuring circuit, platform and the method for minute yardstick sample
US6338271B1 (en) Device and process for measuring the velocity of flow of a fluid
US4695793A (en) Resistive sensing thermal device for current measurement
JP3706911B2 (en) Apparatus and method for simultaneous measurement of heat capacity spectroscopy and dielectric constant
JP7033292B2 (en) Thermoelectric property measuring device and thermoelectric property measuring method
Nakano et al. Comparison system for the calibration of capsule-type standard platinum resistance thermometers at NMIJ/AIST
JPH03506076A (en) Method and apparatus for making accelerated decisions about aging of one or more devices having electromagnetic aging parameters
JPH10318953A (en) Method for measuring heat dispersion rate due to ac heating and structure of measuring sample used for it
Klonz et al. Multijunction thermal converter with adjustable output voltage/current characteristics
CN117553937A (en) Device and method for measuring self-heating value of resistance thermometer
JPH04105053A (en) Measuring method for thermal conductivity of molten resin
JPH0275983A (en) Method for measuring temperature characteristics of iron loss of magnetic substance
Kajastie et al. Loss measurements on superconducting Nb by a cryogenic dual compensated calorimeter for the implementation of the kilogram standard by the levitation mass method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060808

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3893475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

EXPY Cancellation because of completion of term