JP3892184B2 - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP3892184B2
JP3892184B2 JP29908499A JP29908499A JP3892184B2 JP 3892184 B2 JP3892184 B2 JP 3892184B2 JP 29908499 A JP29908499 A JP 29908499A JP 29908499 A JP29908499 A JP 29908499A JP 3892184 B2 JP3892184 B2 JP 3892184B2
Authority
JP
Japan
Prior art keywords
fine movement
movement mechanism
scanning
cantilever
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29908499A
Other languages
Japanese (ja)
Other versions
JP2001116677A (en
Inventor
誠人 伊與木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP29908499A priority Critical patent/JP3892184B2/en
Publication of JP2001116677A publication Critical patent/JP2001116677A/en
Application granted granted Critical
Publication of JP3892184B2 publication Critical patent/JP3892184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、サンプルの表面の凹凸情報や物理特性を測定するための走査型プローブ顕微鏡に関する。ここで、走査型プローブ顕微鏡とは、サンプル表面上をプローブで走査して、プローブとサンプル相互間に働く物理情報を検出する装置の総称であり、代表的な走査型プローブ顕微鏡としては原子間力顕微鏡、走査型トンネル顕微鏡、走査型磁気力顕微鏡、走査型近接場顕微鏡などがある。
【0002】
【従来の技術】
図6に基づき、走査型プローブ顕微鏡の一種であるコンタクト型の原子間力顕微鏡の従来の構造と動作原理を説明する。尚、以降の説明ではサンプル表面の2 次元平面内の互いに直交する方向にX軸、Y軸を取り、XY平面と直交する方向にZ 軸を取る。
【0003】
先端に微小な探針101aを有するカンチレバー101をカンチレバーホルダ102に設置し、カンチレバーホルダ102を円筒型圧電素子から構成される3軸微動機構103 の先端部に取付け、該3軸微動機構を中心軸方向に駆動させるZ粗動機構104に取 付け、カンチレバー101と対向する側に測定箇所の位置決め用のXY粗動ステージ105を設け、該ステージ上設けられたサンプルホルダ部106にサンプル107を載置し、カンチレバー101をサンプル107に近接させて、XY微動機構103aによりXY平面内で走査しながら、探針101aとサンプル107の表面間に働く原子間力によるカンチ レバー101の撓み量を、光てこなどを用いた変位検出手段108により検出し、撓み量が常に一定になるようにサンプル表面と探針間の距離をZ微動機構103bにより 制御を行い、Z微動機構103bへの電圧の印加量からサンプルの凹凸情報を得て、 サンプル表面の凹凸像の測定を行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の走査型プローブ顕微鏡では、カンチレバーの走査速度が遅く測定に時間がかかるという問題点があった。
走査速度を支配する要因は機械的な要因と電気的な制御系に関するものが考えられる。
【0005】
このうち機械的要因を考えると、カンチレバーの走査中にはXY微動機構とZ微 動機構およびカンチレバーの間で相対運動が行われるため、これらの要素の剛性が走査速度に大きく影響を与える。
一般的な走査型プローブ顕微鏡において、カンチレバーの共振周波数は数百kHz程度であり、また最も一般的に用いられている数μmオーダの移動距離を持つ円筒型圧電素子から構成されるZ微動機構の共振周波数は数十kHzと比較的高いが、XY微動機構は円筒型圧電素子を用いた数十μmの変位量のアクチュエータでさえ も、数百Hzからせいぜい数kHzのオーダであり、他の2つの要素に比べて剛性が 低く、走査速度低下の要因となる。
【0006】
現在の走査型プローブ顕微鏡の走査領域は一般には数十μm程度であるが、大 型サンプルの測定などを目的として走査領域を大きくしたいという要求が多い。しかしながら走査領域を増加することにより更にXY微動機構の共振周波数が低下するため、ますます走査速度が遅くなってしまう。
また、走査領域を大きくすると一般にXY微動機構が大型化して、要求されるスペースに収まりきれない場合が多く装置が大型化する傾向にある。
【0007】
したがって、本発明では、走査領域を狭めることなく、XY微動機構の剛性を高め、走査速度の向上と装置の小型化をはかることを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の走査型プローブ顕微鏡では、先端に微小な探針を有するカンチレバーと、カンチレバーを保持するカンチレバーホルダと、カンチレバーの変位量を検出するための変位検出手段と、サンプルを載置するためのサンプルホルダ部と、探針とサンプル間の相対的な距離を変化させるZ微 動機構と、サンプルとカンチレバーを相対的に2次元平面内で走査を行うXY微動 機構から装置を構成し、XY微動機構をサンプル側とカンチレバー側の双方に設けた。これら2つのXY微動機構において、双方のXY微動機構を独立に動作させて、探針とサンプルを相対的に走査させた。
【0009】
さらに、カンチレバーとサンプルの相対位置をより高精度に検出するために、サンプル側とカンチレバー側の双方に設けたXY微動機構の少なくとも一方のXY微動機構に2軸以上の変位検出器を設け、変位量をモニタし、微動機構の駆動信号 に対して変位量が線形性を維持するように制御を行う制御装置を設けた。
【0010】
【発明の実施の形態】
上記のように構成された走査型プローブ顕微鏡において、図7に基づき走査の動作を説明する。図7においてサンプル71の表面を含む平面内の互いに直交する方向にX軸、Y軸をとり、XY平面と直交する方向にZ軸をとる。走査領域の中心に 原点0をとり、サンプル表面上のA点から矢印のように一辺の長さがaの領域を走 査する場合を考える。なお、XYZ座標は空間中に設定された絶対座標であり、サ ンプルやカンチレバーを走査させた場合にも座標原点は変わらないものとする。
【0011】
まず、走査開始時にはカンチレバー72側のXY微動機構73により探針72aをX=-a/2、Y=a/2に移動させ、サンプル71側のXY微動機構74によりサンプル71をX=a/2、Y=-a/2に移動させる。
1ライン目の走査は、カンチレバー側のX座標を-a/2〜0まで連続的に移動させ、サンプル側のX座標をa/2〜0までカンチレバー側と反対方向に連続的に移動さ せる。この走査によりサンプル表面上の長さaのラインが走査される。X方向の1 ラインの走査が終了すると、次にカンチレバー72側のXY微動機構73を-Y方向に、サンプル71側のXY微動機構74を+Y方向にそれぞれ移動させ、次のラインのスキャンを行う。このような動作を繰り返し、カンチレバー側のY座標が0、サンプル側のY座標が0まで走査を繰り返すことにより、サンプル表面上のa×aの領域が走査される。
【0012】
図8を用いてY軸方向の動作をさらに詳細に説明する。図8中の番号は走査ライ ンの順番を示し、実線上の黒丸はサンプルのY軸断面における走査済のラインを 、白丸は走査中のラインを示す。従来のXY微動機構を1つしか備えてない場合に は、破線で示した探針まで走査を行わないと所定の走査領域aは走査できなかっ たが、サンプル側とカンチレバー側を図の矢印で示したように反対方向に移動させることで、各々の微動機構をa/2変位させることによりサンプル表面上の領域aが走査されることになる。ただし、Y軸方向のスキャンに関して、従来行われて いたようにXY微動機構をカンチレバー側またはサンプル側どちらか一方のみに取り付けてスキャンさせる場合と同一のピッチ間隔で走査させた場合、解像度すなわち走査ライン数は1/2となるため、従来と同様の解像度を得るためにはピッチ を半分にする必要がある。したがって、Y軸方向の、微動機構に要求される移動 量は従来の半分でよいが、従来と同一の解像度を得るためには倍のライン走査が必要となるためY軸方向の走査時間は従来と同じである。
【0013】
このような走査方式を用いて、カンチレバーの変位をモニターし、変位が一定になるようにZ微動機構をZ方向にサーボ動作させながら、各々のXY微動機構をラスタスキャンすることによりサンプル表面の凹凸像得られる。
本発明では、以上のような方式により以下のような効果が得られる。
▲1▼各々の微動機構に要求される移動量が従来の半分となり、XY微動機構が小型化され、剛性が高くなる。
【0014】
▲2▼剛性が高くなったことにより、X方向の走査速度を速めることが可能となり走 査時間が短縮される。
▲3▼各々の微動機構のX方向の走査距離が1/2となるため、走査時間が1/2になる。
【0015】
【実施例】
以下に、この発明の実施例を図面に基づいて説明する。
(1)第一実施例
図1は、本発明の走査型プローブ顕微鏡の第一の実施例の概略図であり、図2は図1の走査型プローブ顕微鏡の動作方法を示したブロック図である。本実施例は走査型プローブ顕微鏡の一種であるコンタクト型の原子間力顕微鏡に関するものである。
【0016】
図1において、探針1aとサンプル2を近接させる方向にZ軸を、サンプル表面の面内で互いに直交する方向にX軸、Y軸をとる。ボールネジ3とステッピングモー タ4より構成されたZ粗動ステージ5上に円筒型圧電素子によりXY微動機構6とZ微 動機構7が一体成形されたXYZ微動機構8を固定する。XYZ微動機構8の先端に、カ ンチレバーホルダ9を取り付け、カンチレバーホルダ9にカンチレバー1を固定す る。カンチレバー1の変位は、カンチレバーホルダ9に内蔵した小型の光てこ光学系10により検出する。光てこ光学系は半導体レーザ10aからのレーザ光をビーム スプリッター10bにより曲げてカンチレバー1の背面に当て、反射光をミラー10c を経由してディテクタ10dにより変位が検出される方式である。
【0017】
一方、カンチレバー1と対向する側に、サンプル位置の粗動用のXYステージ11 を配置し、XYステージ11上にXY微動機構12を固定し、XY微動機構12上に設けたサンプルホルダ13にサンプル2を載置した。XY微動機構12は、ステンレス板を加工 して弾性ヒンジによる変位拡大機構を構成し、該変位拡大機構を積層型圧電素子により駆動する方式とした。
【0018】
以上のように構成された走査型プローブ顕微鏡において、Z粗動ステージ5によりカンチレバー1を原子間力が作用する領域までサンプル2に近接させる。次に、X軸方向において、2つのX微動機構6a,12aを互いに反対方向にスキャンさせ、1 ラインの測定が終わった後、Y軸方向において、Y微動機構6b,12bを互いに反対方向に移動させ隣のラインに移した後、再びX軸方向に対して、2つのX微動機構6a.12aを互いに反対方向にスキャンさせる動作を繰り返しながら、探針1aをサンプ ル表面上でラスタスキャンさせる。このとき、光てこ光学系10によりカンチレバー1の変位を検出し、変位量が一定となるようにZ微動機構7に電圧を印加して制 御を行う。カンチレバー1の変位量は探針1aとサンプル2間に働く原子間力に依存し、この原子間力は探針とサンプル表面間の距離に依存するため、Z微動機構7に印加する電圧から、サンプル表面の凹凸情報が得られる。
【0019】
一方、XY微動機構6,12は、各々の微動機構に印加される電圧信号より絶対座標に対する変位量が求められる。この変位量をコンピュータに入力しサンプル2と 探針1aとの相対的な座標が求められる。
この相対座標と、Z微動機構7へ印加される電圧信号をコンピュータに記憶させ、3次元の座標上にマッピングすることによりサンプル表面の凹凸情報が得られ る。
【0020】
ここで、XY微動機構6,12の変位量とZ微動機構7の変位量は測定に先立ち、各々のアクチュエータに印加される電圧信号と変位との関係を求め較正を行った。したがって、各々の微動機構の変位量はアクチュエータに印加する電圧信号から求めることができる。
この走査型プローブ顕微鏡において、必要とする走査領域に対して、各々のXY微動機構6,12に要求される走査領域は半分でよいため、XY微動機構6,12が小型化され、剛性が向上した。その結果、走査速度を高めることが可能となった。また、X方向に1ラインスキャンする場合の各々のXY微動機構の変位量が1/2となるた め、走査に要する時間も短縮された。
(2)第二実施例
図3は、本発明の走査型プローブ顕微鏡の第二の実施例の概略図であり、図4は図3の走査型プローブ顕微鏡の動作方法を示したブロック図である。
【0021】
本実施例では第一の実施例において、カンチレバー1側のXY微動機構6の2軸と 、サンプル2側のXY微動機構12の2軸に、静電容量方式による変位センサ14,15 (サンプル側、カンチレバー側ともY軸方向の変位センサは図示せず)を組み込 み、各々のXY微動機構の変位を検出して、コンピュータにより指示された変位量に対してクローズドループで制御を掛けた。そのときの各々の変位量からコンピュータにより探針1とサンプル2の相対的な位置関係を計算し、サンプルの凹凸形状を測定する方式とした。さらにカンチレバー側のZ軸についても静電容量式の 変位センサ16を組み込み実測された変位量をコンピュータに入力した。これらの位置情報からサンプル表面の凹凸像を求めることができる。
【0022】
一般に圧電素子を用いた微動機構はヒステリシスやクリープなどに起因する誤差が生じるが、以上のように構成した走査型プローブ顕微鏡により、第一の実施例の場合よりもXYZのリニアリティが向上した。
(3)第三実施例
図5は、本発明の走査型プローブ顕微鏡の第三の実施例の概略図である。
【0023】
本実施例では、市販の倒立顕微鏡51のステージ52上にサンプル53用のXY微動機構54を配置し、さらにその上にスタンドアロンタイプの走査型プローブ顕微鏡55を載せ、倒立顕微鏡一体型の走査型プローブ顕微鏡を構成した。
サンプル用のXY微動機構54は第一の実施例と同様に弾性ヒンジ機構と積層型圧電素子により構成される。
【0024】
また、スタンドアロンタイプの走査型プローブ顕微鏡は、ベースプレート56 に円筒型圧電素子より構成された3軸微動機構57を設置し、3軸微動機構57の先端部にカンチレバーホルダ58を取付けベースプレート56を3本の支柱59で支え、そのうち1本の支柱59aをステッピングモータ60により伸縮させ、テコ運動により カンチレバー61をサンプル53に近づける。カンチレバー61の変位は第一実施例と同じく、光てこ系を利用した小形の光学ヘッド62を3軸微動機構57の先端に取り 付けた。3軸微動機構は内部が中空で、照明63の光をサンプルに照射することが可能であり、光学顕微鏡像の観察が可能な構成となっている。
【0025】
本実施例の走査型プローブ顕微鏡は主として、細胞などの生体サンプル観察用に用いられ、一般的な蛍光顕微鏡像と、蛍光顕微鏡像よりも更に分解能が高い原子間力顕微鏡像が同一の装置で観察可能な装置である。生体サンプル用の走査型プローブ顕微鏡は、他の用途に比べて広い領域の走査が要求されるため、XY微動機構が大型化し、剛性が低く、走査速度が遅くなりがちであった。また、倒立顕微鏡のステージ上という限られた領域に走査型プローブ顕微鏡を構成するため、XY微動機構の大きさに制限が生じ、できるだけ小型にする必要があった。
【0026】
前記のように倒立顕微鏡上に走査型プローブ顕微鏡を構成することにより、これらの問題が改善された。
(4)その他の実施例
以上述べてきたような実施例のほかにも、カンチレバーを共振周波数近傍で加振しながら、探針をサンプル表面に近づけ、探針とサンプル表面との相互作用による振幅の減衰量をモニターし、常に一定の振幅を保つようにサンプルと探針間の距離の制御を行い、サンプル表面の凹凸像やその他の物理特性を測定する方式の振動モード原子間力顕微鏡や、導電性の探針を利用してサンプルと探針間にバイアス電圧を掛け、探針をサンプルに近接させた際のトンネル電流をモニターしてサンプルと探針間の距離制御を行い、サンプル表面の凹凸像やその他の物理特性を測定する走査型トンネル顕微鏡、あるいは、光ファイバーの先端を探針状に加工し、先端に波長以下の径を持つ開口を形成したプローブを用いた走査型近接場顕微鏡など、一般に走査型プローブ顕微鏡と総称されるすべての顕微鏡に本発明は適用できる。
【0027】
また、微動機構の構造は、前記の実施例で説明した円筒型圧電素子や、弾性ヒンジ機構と積層型圧電素子を組み合わせた方式の他にも、ボイスコイルを用いた微動機構や、電動モータ駆動のメカニカルステージなど、XY平面内での微動という目的に使用される微動機構はすべて含まれ、また、これらの組み合わせも任意である。
【0028】
更に、微動機構に組み込まれる変位センサも歪ゲージやレーザ変位計など任意の変位計が使用可能である。
更に、カンチレバーあるいはプローブの変位検出方式としては、前記実施例で述べた光てこ方式に限定されず、レーザ光をカンチレバーやプローブに照射し入射光とその戻り光との干渉波形から変位の検出を行う光干渉方式や、カンチレバーやプローブに圧電体を張り付け、物理的な特性によりカンチレバーまたはプローブに撓みを生じさせ、圧電体からの電荷量に変換して電気的に変位を検出する圧電方式なども本発明に含まれる。
【0029】
また、本発明のスキャン方法はラスタスキャンに限定されず、カンチレバー側のXY微動機構とサンプル側のXY微動機構を各々任意の速度で任意の軌跡を独立に動作させることも可能である。このような任意動作をさせる場合には、あらかじめ与えられたサンプルと探針の相対的な軌跡から、最適な動作方法をコンピュータに計算させて各々のXY微動機構が制御される。
【0030】
【発明の効果】
以上説明したように、本発明では、先端に微小な探針を有するカンチレバー と、カンチレバーを保持するカンチレバーホルダと、カンチレバーの変位量を検出するための変位検出手段と、サンプルを載置するためのサンプルホルダ部と、探針とサンプル間の相対的な距離を変化させるZ微動機構と、サンプルとカンチ レバーを相対的に2次元平面内で走査を行うXY微動機構から構成される走査型プ ローブ顕微鏡において、XY微動機構をサンプル側とカンチレバー側の双方に設けた。これら2つのXY微動機構において、双方のXY微動機構を独立に動作させて、探針とサンプルを相対的に走査させた。
【0031】
このように走査型プローブ顕微鏡を構成することにより、各々のXY微動機構に要求される移動量が従来の半分となり、XY微動機構が小型化され、剛性を高くすることが可能となった。 この結果、走査速度を速めることが可能となり走査時 間が短縮された。
さらに、各々のXY微動機構の移動量は2つのXY微動機構の走査速度が等しい場 合には必要とする移動量の1/2であり、また速度が異なる場合でも、2つのXY微 動機構を同時に走査するため、1つXY微動機構の場合よりも移動量が小さくなり、その結果、走査時間が短縮された。
【0032】
また、要求される移動量が1つの微動機構の場合よりも少なくなるためXY微動機構が小型化され、限られた空間でも走査型プローブ顕微鏡が設置可能となった。
【図面の簡単な説明】
【図1】本発明の走査型プローブ顕微鏡の第一実施例の概略図である。
【図2】図1の走査型プローブ顕微鏡の動作方法を示すブロック図である。
【図3】本発明の走査型プローブ顕微鏡の第二実施例の概略図である。
【図4】図3の走査型プローブ顕微鏡の動作方法を示すブロック図である。
【図5】本発明の走査型プローブ顕微鏡の第三実施例の概略図である。
【図6】従来型の走査型プローブ顕微鏡の概略図である。
【図7】本発明の走査型プローブ顕微鏡の走査方法を説明する説明図である。
【図8】 Y軸方向の走査方法を説明する説明図である。
【符号の説明】
1 カンチレバー
2 サンプル
5 Z粗動ステージ
6 XY微動機構
7 Z微動機構
9 カンチレバーホルダ
10 光てこ光学系
12 XY微動機構
13 サンプルホルダ
14 X軸変位センサ
15 X軸変位センサ
16 Z軸変位センサ
53 サンプル
54 XY微動機構
57 XYZ微動機構
58 カンチレバーホルダ
61 カンチレバー
62 光てこ光学系
64 サンプルホルダ
71 サンプル
72 カンチレバー
73 XY微動機構
74 XY微動機構
75 サンプルホルダ
101 カンチレバー
102 カンチレバーホルダ
103a XY微動機構
103b Z微動機構
104 Z粗動ステージ
106 サンプルホルダ
107 サンプル
108 光てこ光学系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning probe microscope for measuring unevenness information and physical properties of a surface of a sample. Here, the scanning probe microscope is a general term for a device that scans the surface of a sample with a probe and detects physical information acting between the probe and the sample. As a typical scanning probe microscope, an atomic force is used. There are microscopes, scanning tunneling microscopes, scanning magnetic force microscopes, scanning near-field microscopes, and the like.
[0002]
[Prior art]
Based on FIG. 6, the conventional structure and operation principle of a contact-type atomic force microscope, which is a kind of scanning probe microscope, will be described. In the following description, the X axis and Y axis are taken in the directions orthogonal to each other in the two-dimensional plane of the sample surface, and the Z axis is taken in the direction perpendicular to the XY plane.
[0003]
A cantilever 101 having a minute probe 101a at the tip is installed in a cantilever holder 102, and the cantilever holder 102 is attached to the tip of a three-axis fine movement mechanism 103 composed of a cylindrical piezoelectric element. The XY coarse movement stage 105 for positioning the measurement location is provided on the side facing the cantilever 101, and the sample 107 is placed on the sample holder 106 provided on the stage. Then, the cantilever 101 is brought close to the sample 107, and the amount of bending of the cantilever 101 due to the atomic force acting between the probe 101a and the surface of the sample 107 is scanned while the XY fine movement mechanism 103a scans in the XY plane. The distance between the sample surface and the probe is controlled by the Z fine movement mechanism 103b so that the amount of deflection is always constant, and is detected from the amount of voltage applied to the Z fine movement mechanism 103b. To obtain unevenness information of sample, and measured the topographic image of the sample surface.
[0004]
[Problems to be solved by the invention]
However, the conventional scanning probe microscope has a problem that the scanning speed of the cantilever is slow and it takes time to measure.
Factors governing the scanning speed can be related to mechanical factors and electrical control systems.
[0005]
Considering the mechanical factors, the relative movement between the XY fine movement mechanism, the Z fine movement mechanism, and the cantilever is performed during scanning of the cantilever, and the rigidity of these elements greatly affects the scanning speed.
In a general scanning probe microscope, the resonance frequency of the cantilever is about several hundred kHz, and the Z fine movement mechanism composed of a cylindrical piezoelectric element having a moving distance on the order of several μm, which is most commonly used. Although the resonance frequency is relatively high at several tens of kHz, the XY fine movement mechanism is on the order of several hundred Hz to several kHz at most, even with an actuator with displacement of several tens of μm using a cylindrical piezoelectric element. Rigidity is lower than that of the other elements, causing a reduction in scanning speed.
[0006]
The scanning area of current scanning probe microscopes is generally several tens of μm, but there are many demands for increasing the scanning area for the purpose of measuring large samples. However, since the resonance frequency of the XY fine movement mechanism is further reduced by increasing the scanning region, the scanning speed is further decreased.
In addition, when the scanning area is increased, the XY fine movement mechanism generally increases in size and often cannot fit in the required space, and the apparatus tends to increase in size.
[0007]
Accordingly, an object of the present invention is to increase the rigidity of the XY fine movement mechanism without narrowing the scanning area, thereby improving the scanning speed and reducing the size of the apparatus.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the scanning probe microscope of the present invention, a cantilever having a microprobe at the tip, a cantilever holder for holding the cantilever, a displacement detection means for detecting the amount of displacement of the cantilever, From the sample holder for placing the sample, the Z fine adjustment mechanism that changes the relative distance between the probe and the sample, and the XY fine adjustment mechanism that scans the sample and the cantilever relatively in a two-dimensional plane. An apparatus was constructed, and XY fine movement mechanisms were provided on both the sample side and the cantilever side. In these two XY fine movement mechanisms, both the XY fine movement mechanisms were operated independently, and the probe and the sample were scanned relatively.
[0009]
Furthermore, in order to detect the relative position between the cantilever and the sample with higher accuracy, at least one of the XY fine movement mechanisms provided on both the sample side and the cantilever side is equipped with a displacement detector with two or more axes. A control device that monitors the amount and controls the displacement so as to maintain linearity with respect to the drive signal of the fine movement mechanism is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the scanning probe microscope configured as described above, the scanning operation will be described with reference to FIG. In FIG. 7, the X axis and the Y axis are taken in the directions orthogonal to each other in the plane including the surface of the sample 71, and the Z axis is taken in the direction perpendicular to the XY plane. Consider the case where the origin is 0 at the center of the scanning area, and the area with a side of a is scanned from point A on the sample surface as shown by the arrow. Note that the XYZ coordinates are absolute coordinates set in the space, and the coordinate origin does not change even when the sample or cantilever is scanned.
[0011]
First, at the start of scanning, the probe 72a is moved to X = −a / 2 and Y = a / 2 by the XY fine movement mechanism 73 on the cantilever 72 side, and the sample 71 is moved to X = a / by the XY fine movement mechanism 74 on the sample 71 side. 2. Move to Y = -a / 2.
For the first line scan, the X coordinate on the cantilever side is continuously moved from -a / 2 to 0, and the X coordinate on the sample side is continuously moved from a / 2 to 0 in the opposite direction to the cantilever side. . By this scanning, a line of length a on the sample surface is scanned. When the scanning of one line in the X direction is completed, the XY fine moving mechanism 73 on the cantilever 72 side is moved in the -Y direction, and the XY fine moving mechanism 74 on the sample 71 side is moved in the + Y direction. Do. By repeating such an operation and repeating scanning until the Y coordinate on the cantilever side is 0 and the Y coordinate on the sample side is 0, the a × a region on the sample surface is scanned.
[0012]
The operation in the Y-axis direction will be described in more detail with reference to FIG. The numbers in FIG. 8 indicate the order of the scanning lines, the black circle on the solid line indicates the scanned line in the Y-axis section of the sample, and the white circle indicates the line being scanned. In the case where only one conventional XY fine movement mechanism is provided, the predetermined scanning area a cannot be scanned unless the probe indicated by the broken line is scanned, but the sample side and the cantilever side are indicated by arrows in the figure. By moving in the opposite direction as shown, the region a on the sample surface is scanned by displacing each fine movement mechanism by a / 2. However, with regard to scanning in the Y-axis direction, when scanning is performed at the same pitch interval as when scanning is performed with the XY fine movement mechanism attached to only one of the cantilever side or the sample side as conventionally performed, the resolution, that is, the scanning line Since the number is halved, the pitch must be halved to obtain the same resolution as before. Therefore, the amount of movement required for the fine movement mechanism in the Y-axis direction may be half that of the conventional method. However, in order to obtain the same resolution as the conventional method, double line scanning is required. Is the same.
[0013]
Using such a scanning method, the displacement of the cantilever is monitored, and each XY fine movement mechanism is raster-scanned while the Z fine movement mechanism is servo-operated in the Z direction so that the displacement is constant. An image is obtained.
In the present invention, the following effects can be obtained by the above method.
{Circle around (1)} The amount of movement required for each fine movement mechanism is half that of the prior art, and the XY fine movement mechanism is reduced in size and rigidity is increased.
[0014]
(2) The increased rigidity makes it possible to increase the scanning speed in the X direction and shorten the scanning time.
(3) Since the scanning distance in the X direction of each fine movement mechanism is halved, the scanning time is halved.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
(1) First Embodiment FIG. 1 is a schematic diagram of a first embodiment of the scanning probe microscope of the present invention, and FIG. 2 is a block diagram showing an operation method of the scanning probe microscope of FIG. . This embodiment relates to a contact-type atomic force microscope which is a kind of scanning probe microscope.
[0016]
In FIG. 1, the Z axis is taken in the direction in which the probe 1a and the sample 2 are brought close to each other, and the X axis and the Y axis are taken in directions perpendicular to each other in the plane of the sample surface. An XYZ fine movement mechanism 8 in which an XY fine movement mechanism 6 and a Z fine movement mechanism 7 are integrally formed by a cylindrical piezoelectric element is fixed on a Z coarse movement stage 5 constituted by a ball screw 3 and a stepping motor 4. A cantilever holder 9 is attached to the tip of the XYZ fine movement mechanism 8, and the cantilever 1 is fixed to the cantilever holder 9. The displacement of the cantilever 1 is detected by a small optical lever optical system 10 built in the cantilever holder 9. The optical lever optical system is a system in which laser light from a semiconductor laser 10a is bent by a beam splitter 10b and applied to the back surface of the cantilever 1, and reflected light is detected by a detector 10d via a mirror 10c.
[0017]
On the other hand, an XY stage 11 for coarse movement of the sample position is arranged on the side facing the cantilever 1, and an XY fine movement mechanism 12 is fixed on the XY stage 11, and a sample 2 is placed on a sample holder 13 provided on the XY fine movement mechanism 12. Was placed. The XY fine movement mechanism 12 is a system in which a stainless steel plate is processed to form a displacement expansion mechanism using an elastic hinge, and the displacement expansion mechanism is driven by a laminated piezoelectric element.
[0018]
In the scanning probe microscope configured as described above, the cantilever 1 is brought close to the sample 2 to the region where the atomic force acts by the Z coarse movement stage 5. Next, in the X-axis direction, the two X-fine movement mechanisms 6a and 12a are scanned in opposite directions, and after one line measurement is completed, the Y-fine movement mechanisms 6b and 12b are moved in opposite directions in the Y-axis direction. Then, after moving to the adjacent line, the probe 1a is raster scanned on the sample surface while repeating the operation of scanning the two X fine movement mechanisms 6a.12a in opposite directions with respect to the X-axis direction again. At this time, the optical lever optical system 10 detects the displacement of the cantilever 1, and controls the Z fine movement mechanism 7 by applying a voltage so that the displacement amount becomes constant. The amount of displacement of the cantilever 1 depends on the interatomic force acting between the probe 1a and the sample 2, and this interatomic force depends on the distance between the probe and the sample surface, so from the voltage applied to the Z fine movement mechanism 7, Uneven information on the sample surface can be obtained.
[0019]
On the other hand, in the XY fine movement mechanisms 6 and 12, the displacement amount with respect to the absolute coordinate is obtained from the voltage signal applied to each fine movement mechanism. This displacement amount is input to the computer, and the relative coordinates between the sample 2 and the probe 1a are obtained.
The relative coordinates and the voltage signal applied to the Z fine movement mechanism 7 are stored in a computer and mapped on the three-dimensional coordinates to obtain unevenness information on the sample surface.
[0020]
Here, the displacement amounts of the XY fine movement mechanisms 6 and 12 and the displacement amount of the Z fine movement mechanism 7 were calibrated by obtaining the relationship between the voltage signal applied to each actuator and the displacement prior to measurement. Therefore, the amount of displacement of each fine movement mechanism can be obtained from the voltage signal applied to the actuator.
In this scanning probe microscope, the scanning area required for each XY fine movement mechanism 6 and 12 is half the required scanning area, so the XY fine movement mechanisms 6 and 12 are downsized and the rigidity is improved. did. As a result, the scanning speed can be increased. In addition, since the amount of displacement of each XY fine movement mechanism when scanning one line in the X direction is halved, the time required for scanning is shortened.
(2) Second Embodiment FIG. 3 is a schematic view of a second embodiment of the scanning probe microscope of the present invention, and FIG. 4 is a block diagram showing an operation method of the scanning probe microscope of FIG. .
[0021]
In this embodiment, in the first embodiment, displacement sensors 14 and 15 (sample side) of the electrostatic capacity method are provided on the two axes of the XY fine movement mechanism 6 on the cantilever 1 side and the two axes of the XY fine movement mechanism 12 on the sample 2 side. On the cantilever side, a displacement sensor in the Y-axis direction (not shown) was incorporated, and the displacement of each XY fine movement mechanism was detected, and the displacement instructed by the computer was controlled in a closed loop. The relative positional relationship between the probe 1 and the sample 2 was calculated from the respective displacements at that time by a computer, and the uneven shape of the sample was measured. In addition, a capacitance displacement sensor 16 was incorporated for the Z-axis on the cantilever side, and the measured displacement was input to the computer. An uneven image on the sample surface can be obtained from the position information.
[0022]
In general, a fine movement mechanism using a piezoelectric element causes errors due to hysteresis, creep, and the like, but the linearity of XYZ is improved by the scanning probe microscope configured as described above than in the first embodiment.
(3) Third Embodiment FIG. 5 is a schematic view of a third embodiment of the scanning probe microscope of the present invention.
[0023]
In this embodiment, an XY fine movement mechanism 54 for a sample 53 is arranged on a stage 52 of a commercially available inverted microscope 51, and a stand-alone type scanning probe microscope 55 is mounted thereon, and an inverted microscope integrated scanning probe. A microscope was constructed.
Similar to the first embodiment, the sample XY fine movement mechanism 54 includes an elastic hinge mechanism and a laminated piezoelectric element.
[0024]
In the stand-alone scanning probe microscope, a three-axis fine movement mechanism 57 composed of a cylindrical piezoelectric element is installed on a base plate 56, a cantilever holder 58 is attached to the tip of the three-axis fine movement mechanism 57, and three base plates 56 are attached. One of the columns 59a is expanded and contracted by the stepping motor 60, and the cantilever 61 is brought closer to the sample 53 by lever movement. As in the first embodiment, the cantilever 61 is displaced by attaching a small optical head 62 using an optical lever system to the tip of the three-axis fine movement mechanism 57. The three-axis fine movement mechanism has a hollow inside, can irradiate the sample with light from the illumination 63, and can observe an optical microscope image.
[0025]
The scanning probe microscope of this example is mainly used for observing biological samples such as cells, and a general fluorescence microscope image and an atomic force microscope image with higher resolution than the fluorescence microscope image are observed with the same device. It is a possible device. A scanning probe microscope for a biological sample is required to scan a wide area as compared with other applications, so that the XY fine movement mechanism is large, has low rigidity, and tends to be slow in scanning speed. Further, because the that make up the scanning probe microscope in an area limited in that on the stage of an inverted microscope, limiting the size of the XY fine movement mechanism occurs, it is necessary to as small as possible.
[0026]
By configuring the scanning probe microscope on the inverted microscope as described above, these problems were improved.
(4) Other Embodiments In addition to the embodiments described above, the amplitude caused by the interaction between the probe and the sample surface while bringing the probe close to the sample surface while vibrating the cantilever near the resonance frequency. The vibration mode atomic force microscope with a method of measuring the unevenness image of the sample surface and other physical properties, controlling the distance between the sample and the probe so as to always maintain a constant amplitude, Using a conductive probe, a bias voltage is applied between the sample and the probe, and the tunnel current when the probe is brought close to the sample is monitored to control the distance between the sample and the probe. Scanning tunnel microscope that measures uneven images and other physical characteristics, or scanning proximity using a probe with a tip of an optical fiber processed into a probe shape and an opening with a diameter less than the wavelength at the tip Microscopes, generally present invention in all of the microscope which are generically referred to as scanning probe microscopy can be applied.
[0027]
The structure of the fine movement mechanism is not limited to the cylindrical piezoelectric element described in the above embodiment, the combination of the elastic hinge mechanism and the laminated piezoelectric element, the fine movement mechanism using a voice coil, and the electric motor drive. All of the fine movement mechanisms used for the purpose of fine movement in the XY plane, such as the mechanical stage, are included, and combinations thereof are also arbitrary.
[0028]
Further, any displacement sensor such as a strain gauge or a laser displacement meter can be used as the displacement sensor incorporated in the fine movement mechanism.
Further, the displacement detection method of the cantilever or probe is not limited to the optical lever method described in the above embodiment, and the displacement is detected from the interference waveform between the incident light and its return light by irradiating the cantilever or probe with laser light. There are also optical interference methods that are used, piezoelectric methods such as attaching a piezoelectric body to a cantilever or probe, causing the cantilever or probe to bend due to physical characteristics, and converting the amount of charge from the piezoelectric body to electrically detect displacement It is included in the present invention.
[0029]
The scanning method of the present invention is not limited to raster scanning, and the cantilever-side XY fine movement mechanism and the sample-side XY fine movement mechanism can be operated independently at arbitrary speeds at arbitrary speeds. When such an arbitrary operation is performed, each XY fine movement mechanism is controlled by causing a computer to calculate an optimal operation method from a relative trajectory of a sample and a probe given in advance.
[0030]
【The invention's effect】
As described above, in the present invention, a cantilever having a microprobe at the tip, a cantilever holder for holding the cantilever, a displacement detecting means for detecting the amount of displacement of the cantilever, and a sample for mounting A scanning probe consisting of a sample holder, a Z fine movement mechanism that changes the relative distance between the probe and the sample, and an XY fine movement mechanism that scans the sample and cantilever relatively in a two-dimensional plane. In the microscope, XY fine movement mechanisms were provided on both the sample side and the cantilever side. In these two XY fine movement mechanisms, both the XY fine movement mechanisms were operated independently, and the probe and the sample were scanned relatively.
[0031]
By configuring the scanning probe microscope in this manner, the amount of movement required for each XY fine movement mechanism is halved compared to the conventional one, and the XY fine movement mechanism can be miniaturized and increased in rigidity. As a result, the scanning speed can be increased and the scanning time is shortened.
Furthermore, the movement amount of each XY fine movement mechanism is half of the required movement amount when the scanning speeds of the two XY fine movement mechanisms are equal. Are simultaneously scanned, the amount of movement is smaller than in the case of one XY fine movement mechanism, and as a result, the scanning time is shortened.
[0032]
In addition, since the required amount of movement is smaller than in the case of one fine movement mechanism, the XY fine movement mechanism is miniaturized, and a scanning probe microscope can be installed even in a limited space.
[Brief description of the drawings]
FIG. 1 is a schematic view of a first embodiment of a scanning probe microscope of the present invention.
2 is a block diagram showing an operation method of the scanning probe microscope of FIG.
FIG. 3 is a schematic view of a second embodiment of the scanning probe microscope of the present invention.
4 is a block diagram showing an operation method of the scanning probe microscope of FIG. 3. FIG.
FIG. 5 is a schematic view of a third embodiment of the scanning probe microscope of the present invention.
FIG. 6 is a schematic view of a conventional scanning probe microscope.
FIG. 7 is an explanatory diagram for explaining a scanning method of the scanning probe microscope of the present invention.
FIG. 8 is an explanatory diagram illustrating a scanning method in the Y-axis direction.
[Explanation of symbols]
1 Cantilever 2 Sample 5 Z coarse movement stage 6 XY fine movement mechanism 7 Z fine movement mechanism 9 Cantilever holder 10 Optical lever optical system 12 XY fine movement mechanism 13 Sample holder 14 X-axis displacement sensor 15 X-axis displacement sensor 16 Z-axis displacement sensor 53 Sample 54 XY fine movement mechanism 57 XYZ fine movement mechanism 58 Cantilever holder 61 Cantilever 62 Optical lever optical system 64 Sample holder 71 Sample 72 Cantilever 73 XY fine movement mechanism 74 XY fine movement mechanism 75 Sample holder 101 Cantilever 102 Cantilever holder 103a XY fine movement mechanism 103b Z fine movement mechanism 104 Z Coarse stage 106 Sample holder 107 Sample 108 Optical lever optical system

Claims (4)

先端に探針を有するカンチレバーと、A cantilever with a tip at the tip;
サンプルが載置されるサンプルホルダーと、A sample holder on which the sample is placed;
前記カンチレバーを、サンプル表面が略存在する平面と略並行な平面方向に2次元移動させる第1XY微動機構と、A first XY fine movement mechanism for two-dimensionally moving the cantilever in a plane direction substantially parallel to a plane on which the sample surface substantially exists;
前記サンプルホルダーを、サンプル表面が略存在する平面と略並行な平面方向に2次元移動させる第2XY微動機構と、を備え、A second XY fine movement mechanism for two-dimensionally moving the sample holder in a plane direction substantially parallel to a plane in which the sample surface is substantially present;
前記2次元移動させる平面内に互いに直交する方向にX軸、Y軸を設定し、Set the X axis and the Y axis in directions orthogonal to each other in the plane to be two-dimensionally moved,
前記X軸方向に前記第1XY微動機構と前記第2XY微動機構を互いに反対方向に走査させ、前記X軸方向の1ラインの測定が完了後、Y軸方向に前記第1XY微動機構と前記第2XY微動機構を互いに反対方向に隣接する前記X軸方向のラインに移動させた後に、再びX軸方向に対して、前記第1XY微動機構と前記第2XY微動機構を互いに反対方向に走査させる動作を繰り返しながら、サンプル表面上で探針をラスタスキャンさせることを特徴とする走査型プローブ顕微鏡。The first XY fine movement mechanism and the second XY fine movement mechanism are scanned in opposite directions to each other in the X axis direction, and after the measurement of one line in the X axis direction is completed, the first XY fine movement mechanism and the second XY in the Y axis direction are completed. After the fine movement mechanism is moved to the X-axis direction line adjacent to each other in the opposite direction, the operation of scanning the first XY fine movement mechanism and the second XY fine movement mechanism in the opposite directions with respect to the X-axis direction again is repeated. A scanning probe microscope characterized in that the probe is raster-scanned on the sample surface.
前記第1XY微動機構と前記第2XY微動機構の少なくとも1方のXY微動機構に2軸以上の変位検出器を設け、変位量をモニタし、XY微動機構の駆動信号に対して変位量が線形性を維持するように制御を行う制御装置を設けたことを特徴とする請求項1に記載の走査型プローブ顕微鏡。 The XY fine movement mechanism of at least one of the first XY fine movement mechanism and the second XY fine movement mechanism is provided with a displacement detector having two or more axes, monitors the displacement amount, and the displacement amount is linear with respect to the drive signal of the XY fine movement mechanism. The scanning probe microscope according to claim 1, further comprising a control device that performs control so as to maintain the above. 前記カンチレバーの代わりに、金属性探針を用いて走査型トンネル顕微鏡として動作させる請求項1または2に記載の走査型プローブ顕微鏡。The scanning probe microscope according to claim 1 or 2 , wherein a metal probe is used instead of the cantilever to operate as a scanning tunnel microscope. 前記カンチレバーの代わりに、金属性探針または光ファイバーを用いた導波路付プローブ、及び導波路付カンチレバーのいずれかを用いて、走査型近接場顕微鏡として動作させる請求項1または2に記載の走査型プローブ顕微鏡。The scanning type according to claim 1 or 2 , wherein instead of the cantilever, any one of a probe with a waveguide using a metallic probe or an optical fiber and a cantilever with a waveguide is operated as a scanning near-field microscope. Probe microscope.
JP29908499A 1999-10-21 1999-10-21 Scanning probe microscope Expired - Fee Related JP3892184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29908499A JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29908499A JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006304678A Division JP4448508B2 (en) 2006-11-10 2006-11-10 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2001116677A JP2001116677A (en) 2001-04-27
JP3892184B2 true JP3892184B2 (en) 2007-03-14

Family

ID=17867979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29908499A Expired - Fee Related JP3892184B2 (en) 1999-10-21 1999-10-21 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3892184B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406829B (en) * 2017-08-17 2021-02-19 中国科学院物理研究所 Scanning head of scanning probe microscope
CN108089030A (en) * 2017-11-14 2018-05-29 合肥中科微力科技有限公司 Double piezo tube nesting mechanical parallel high stable scanners and scanning probe microscopy

Also Published As

Publication number Publication date
JP2001116677A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
US6861649B2 (en) Balanced momentum probe holder
JP5248515B2 (en) Probe assembly for scanning probe microscope
US8732861B2 (en) Control system for a scanning probe microscope
US7631547B2 (en) Scanning probe apparatus and drive stage therefor
JP2004523748A5 (en)
JPH0774735B2 (en) Apparatus and method for measuring dimensions of surface structure of sample
JP2005069972A (en) Method for controlling travel in probe in scanning probe microscope
WO2015140996A1 (en) Scanning probe microscope
JP3892184B2 (en) Scanning probe microscope
US20090032705A1 (en) Fast Tip Scanning For Scanning Probe Microscope
JP4448508B2 (en) Scanning probe microscope
JPH1062158A (en) Atomic force microscope-type surface roughness gage
JP2006220597A (en) Surface information measurement device
EP1436636B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
US8028343B2 (en) Scanning probe microscope with independent force control and displacement measurements
EP3570045B1 (en) Scanner and scanning probe microscope
JP3512259B2 (en) Scanning probe microscope
JP3597613B2 (en) Scanning probe microscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP2001183283A (en) Information detector having scanning probe and information detecting method
JP2001033374A (en) Scanning probe microscope and its scanning method
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JP2004004026A (en) Correction method for probe position
JP2006300592A (en) Scanning mechanism and scanning probe microscope
JP2002331500A (en) Alignment marker and alignment method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Ref document number: 3892184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees