JP3891071B2 - Power control device - Google Patents

Power control device Download PDF

Info

Publication number
JP3891071B2
JP3891071B2 JP2002242511A JP2002242511A JP3891071B2 JP 3891071 B2 JP3891071 B2 JP 3891071B2 JP 2002242511 A JP2002242511 A JP 2002242511A JP 2002242511 A JP2002242511 A JP 2002242511A JP 3891071 B2 JP3891071 B2 JP 3891071B2
Authority
JP
Japan
Prior art keywords
power supply
power
cooling time
control device
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242511A
Other languages
Japanese (ja)
Other versions
JP2004088821A (en
Inventor
靖 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002242511A priority Critical patent/JP3891071B2/en
Publication of JP2004088821A publication Critical patent/JP2004088821A/en
Application granted granted Critical
Publication of JP3891071B2 publication Critical patent/JP3891071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電源制御装置に関し、特に高出力電源を有する電源回路の電源制御装置に関する。
【0002】
【従来の技術】
電気自動車やハイブリッド自動車は、駆動源としてのモータおよびモータへ電力を供給するための高電圧バッテリを有しており、さらに高電圧バッテリとモータとの間には、電力の供給遮断のためのリレーが設けられている。そして電源制御装置がリレーを制御することで、電力の供給および遮断が実行される。高電圧バッテリは例えばDC200Vといった高電圧であり、従って高電圧バッテリをいきなりモータに接続すると瞬間的な大電流つまり突入電流が流れ、リレーを破壊するなどの恐れがある。この対策として突入制限抵抗が設けられており、高電圧バッテリからモータへの電力供給開始時点において、突入制限抵抗を通って電流が供給されている。つまり突入制限抵抗が突入電流のエネルギーを自ら発する熱エネルギーに変換することで、リレーなどの破壊を防止している。ところが、高電圧バッテリとモータの接続が繰り返し行われると、突入制限抵抗は放熱の機会が無いまま発熱を繰り返してしまう。このため突入制限抵抗の冷却時間を監視し突入制限抵抗の温度推定を行った上で、高電圧バッテリとモータの接続制御を行う必要がある。
【0003】
突入制限抵抗は、高電圧バッテリとモータが接続されていない場合、つまり車両が停止し、電源制御装置自身への電力供給が停止して制御動作が停止している場合にも放熱している。従って、電源制御装置の制御動作が停止している間の突入制限抵抗の冷却時間を監視するには、電源制御装置の制御動作が停止している場合にも利用可能な外部タイマーなどを、別途設けて監視する必要があった。
【0004】
【発明が解決しようとする課題】
上述したように、従来の電源制御装置は、電源制御装置の制御動作が停止している場合にも利用可能な外部タイマーを併用する必要があった。
【0005】
そこで本発明は、外部タイマーを必要としない電源制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る電源制御装置は、バッテリと負荷がリレーを介して接続され、バッテリから負荷への突入電流を制限する突入制限抵抗が設けられた電源回路を制御する電源制御装置であって、外部から入力される電源接続指示に応じてバッテリと負荷を電源接続し、外部から入力される電源切断指示に応じてバッテリと負荷を電源切断する、リレー制御手段と、前記電源接続の回数に対応したカウンタ値が所定値に達すると前記電源接続を禁止する接続制限手段と、前記電源切断指示が入力されてから、前記突入制限抵抗の放熱用に設定した冷却時間が経過した後、前記冷却時間に基づいて前記カウンタ値を修正するカウンタ値修正手段と、を有するものとする。
【0007】
上記構成によれば、突入制限抵抗の冷却時間が経過した後に、その冷却時間に基づいてカウンタ値を修正してから、つまり次回の電源接続指示に対応してカウンタ値を戻してから、電源制御装置の制御動作を終了させることができる。このため、制御終了後に電源制御装置自身の電源を落としても、電源制御装置の電源が落とされている間の冷却時間を監視する外部タイマーを別途設ける必要なく次回の電源接続指示に対応できる。よって、外部タイマーの追加による暗電流の増加、専用回路の追加、および追加に伴うコストの増加などを抑えることができる。
【0008】
望ましくは、前記電源接続の継続時間に基づいて前記冷却時間を設定する冷却時間設定手段をさらに有し、前記カウンタ値修正手段は、前記冷却時間設定手段によって設定された冷却時間に基づいて前記カウンタ値を修正することを特徴とする。
【0009】
上記構成によれば、電源接続が継続している間の放熱を見込んで突入制限抵抗の冷却時間が設定されるため、冷却時間を不必要に長く確保することを回避できる。よって冷却時間の確保のために電源制御装置自身の電源を不必要に長く確保することが回避され、消費電力を低減できる。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0011】
図1には、本発明に係る電源制御装置の好適な実施形態、つまり電気自動車の駆動源モータへ電力を供給する電源回路およびその電源制御装置が示されており、図1はその全体構成を示す構成図である。
【0012】
電源回路10は、車両駆動源としてのモータ12およびフィルタ用コンデンサ14、モータ12に電力を供給する高電圧バッテリ16、高電圧バッテリ16とモータ12の接続/切断を行うリレー18,20,22および突入制限抵抗24で構成されている。高電圧バッテリ16は、例えばDC200Vの大容量バッテリである。フィルタ用コンデンサ14およびモータ12には電圧計26が並列に設けられ、電源制御装置30は、電圧計26の計測値に基づいて、各リレー18,20,22を制御する。
【0013】
電源制御装置30は、高電圧バッテリ16とは別の図示しない制御装置用バッテリに接続されており、ユーザーのキー操作、つまりイグニッションONされると電源制御装置30に電力が供給された後、電源回路10の制御を開始する構成になっている。逆に、イグニッションOFFされると所定の制御動作を行った後、電源制御装置30への電力供給も停止され、電源制御装置30による不必要な電力消費を回避している。制御装置用バッテリは、高電圧バッテリ16から電圧変換により得られるものであってもよい。
【0014】
次に、電源制御装置30内の各部について説明する。コントロール部32は、電源制御装置30内の各部を集中管理するとともに、外部とのインターフェース機能を担っている。つまり、電源接続指示であるイグニッションONが外部から入力されると、電源制御装置30を立ち上げて電源制御を開始する。また、電源切断指示であるイグニッションOFFが入力されると、電源制御終了直前に必要な動作を実行した後、電源制御装置30自身への電力供給を切断する。電源制御を行っていない期間、つまりイグニッションOFFが継続している期間は、電源制御装置30自身への電力も切断され、電源制御装置30内部で消費される電力を極力抑えている。
【0015】
リレー制御手段であるリレー制御部34は、 コントロール部32にイグニッションONが入力されると、リレー18,20,22を制御して高電圧バッテリ16の正極と負極とをモータ12に接続する。これによりモータ12に並列に設けられているフィルタ用コンデンサ14に電流が供給される。高電圧バッテリ16の電圧は、例えばDC200Vといった高電圧である。従って、電圧が低い状態のモータ12にいきなり接続すると、瞬間的に大電流つまり突入電流が流れ、リレー18,20,22の接点を破壊するおそれがある。このため、リレー20に対して直列に突入制限抵抗24が設けられ、電源供給開始時点においては、この突入制限抵抗24によって突入電流を防止するような手順で、各リレー18,20,22がONされる。
【0016】
つまり、イグニッションONが入力されると、リレー制御部34は、まず高電圧バッテリ16の負極側に設けられたリレー22をONした後に、正極側に設けられたリレー20をONする。この際、リレー20に対して直列に接続された突入制限抵抗24によって高電圧バッテリ16からモータ12側への突入電流が抑制される。高電圧バッテリ16から電流が供給され、フィルタ用コンデンサ14両端の電圧が上昇したことを電圧計26で検知すると、リレー20に並列に設けられたリレー18をONし、ついでリレー20をOFFする。これにより、突入電流を抑えつつ、高電圧バッテリ16の出力がモータ12に伝えられる。また、高電圧バッテリ16とモータ12を電源切断する場合は、リレー18とリレー22を同時に、あるいは一方ずつ切断すればよい。このようにして、高電圧バッテリ16とモータ12の電源接続/切断が行われる。
【0017】
カウンタ36は電源接続の回数をカウントする。つまり、リレー制御部34により制御される高電圧バッテリ16とモータ12の接続/切断の回数であるカウント値を計測し、接続制限部38に出力する。電源接続の際、突入制限抵抗24により突入電流が抑制されているが、この結果抑制されたエネルギーは突入制限抵抗24により熱として放出される。したがって、電源の接続/切断を短時間に繰り返し行うと、突入制限抵抗24が放熱を行うことができず、その温度が過度に上昇してしまい、突入制限抵抗24自身あるいは抵抗周辺の樹脂部品等を破壊する恐れがある。
【0018】
そこで、接続制限手段である接続制限部38は、突入制限抵抗24の温度が過度に上昇することを避けるため、電源接続回数のカウント値に基づいて電源の接続動作を制限する。つまりカウント値が所定の値、例えば接続回数100回に達した場合には、電源の接続動作を禁止する。
【0019】
カウンタ値修正部40は、電源接続回数のカウンタ値を所定の条件で修正する。上述したようにカウンタ値は突入制限抵抗24の温度推定に用いられるものである。突入制限抵抗24は、電源の接続時にのみ利用され、それ以外の時間帯、例えば電源の接続が継続している場合や電源が切断されている場合には利用されないため、その間に放熱が行われて温度が低下する。例えば、電源接続一回による突入制限抵抗24の温度上昇を1℃、突入制限抵抗24を1℃下げるのに必要な冷却時間を10秒、突入制限抵抗24の温度上昇許容値として常温値+100℃を考えると、突入制限抵抗24が常温値から冷却時間なしに繰り返して電源接続が行われた場合の接続回数の許容値は100回となる。
【0020】
ところが、電源接続が行われた後に電源接続が継続されている状態、例えば車両が走行している状態では、突入制限抵抗24が放熱している。従って、仮に突入制限抵抗24が常温値より90℃高い状態、つまりカウント値が90回の状態で接続された後、走行状態が900秒以上継続すれば、走行中の放熱により突入制限抵抗24は常温値にまで低下することになる。この場合カウンタ値修正部40はカウント値を0に変更すればよい。走行状態は必ずしも長期とは限らず、例えば20秒程度で走行が終了するかもしれない。このような場合、例えば10秒ごとにカウント値を1ずつ減ずるなど、利用状況に応じて適宜設定すればよい。
【0021】
突入制限抵抗24の放熱は車両走行中に限られるものではなく、車両が停止中にも行われる。しかし車両が停止しイグニッションOFFされており、電源制御装置30自身の電源が落とされている状態では、車両の停止期間つまり突入制限抵抗24の冷却時間を計測することができない。そこで本実施の形態では、外部からイグニッションOFFが入力されると電源制御を終了する前に突入制限抵抗24の冷却時間を予め設けて、冷却時間が経過してから電源制御を終了して電源制御装置30の電源を落としている。この際、つまり電源制御の終了時、カウンタ値修正部40は冷却時間に相当するカウント値の修正も行っている。以下に冷却時間の設定および冷却時間に基づくカウンタ値の修正について述べる。
【0022】
冷却時間設定手段である冷却時間設定部42は、電源接続の継続時間に応じて冷却時間を設定する。電源接続が継続している間にも、突入制限抵抗は放熱を行っているため、冷却時間は電源接続の継続時間に応じて設定されることが望ましい。つまり、電源接続の継続時間が長く、例えば先の例において900秒を超える継続時間であれば、突入制限抵抗24は常温値に戻っているため冷却時間は必要ない。逆に電源接続の継続時間が短く、突入制限抵抗24の放熱が全く行われていないような場合、最低でも10秒つまり一回の電源接続で上昇する温度分だけでも冷却時間を設けておくことにより、次回の電源接続が可能になる。このように冷却時間は次回の電源接続時の温度上昇を見込んで、予め設定されるものであればよく、車両の構成あるいは利用状況に応じて適宜設定される。
【0023】
冷却時間タイマー44は、イグニッションOFFが入力されてから冷却時間をカウントする。つまり、イグニッションOFFが入力されてからの経過時間をカウントし、経過時間が冷却時間設定部42で設定される冷却時間に達すると、冷却時間が経過した旨をコントロール部32およびカウンタ値修正部40に出力する。カウンタ値修正部40は冷却時間に基づいてカウント値を修正する。例えば100秒の冷却時間が経過した場合、100秒に相当する10回分をカウント値から減算する。一方コントロール部32は電源制御装置30内の各部による電源制御を終了させ、電源制御装置30自身への電力供給を停止させる。このように突入制限抵抗24の冷却時間を設けた後に電源制御装置30の制御動作を終了させているため、次回の電源制御装置30の制御動作開始時点において、突入制限抵抗24を許容値温度以下で利用することができる。
【0024】
上記実施の形態では、高電圧バッテリと車両駆動用モータで構成される電源回路の制御を示したが、本発明に係る電源制御装置は、その他の高電圧バッテリと高電圧負荷との組み合わせ、例えばエアコン装置やパワーステアリング装置等との組み合わせによる電源回路の制御に対しても有効である。
【0025】
【発明の効果】
以上説明したように、本発明により、外部タイマーを必要としない電源制御装置を提供できる。
【図面の簡単な説明】
【図1】 本発明に係る電源制御装置の全体構成を示す構成図である。
【符号の説明】
34 リレー制御部、38 接続制限部、40 カウンタ値修正部、42 冷却時間設定部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply control device, and more particularly to a power supply control device for a power supply circuit having a high output power supply.
[0002]
[Prior art]
Electric vehicles and hybrid vehicles have a motor as a drive source and a high voltage battery for supplying electric power to the motor, and a relay for cutting off the supply of electric power between the high voltage battery and the motor. Is provided. Then, the power supply control device controls the relay, whereby power supply and interruption are executed. The high voltage battery has a high voltage of, for example, DC 200 V. Therefore, if the high voltage battery is suddenly connected to the motor, an instantaneous large current, that is, an inrush current flows, and the relay may be destroyed. As a countermeasure, an inrush limiting resistor is provided, and current is supplied through the inrush limiting resistor at the start of power supply from the high voltage battery to the motor. In other words, the inrush limiting resistor converts the energy of the inrush current into the heat energy generated by itself, thereby preventing destruction of the relay or the like. However, when the connection between the high voltage battery and the motor is repeated, the inrush limiting resistor repeatedly generates heat without an opportunity for heat dissipation. For this reason, it is necessary to control the connection between the high voltage battery and the motor after monitoring the cooling time of the inrush limiting resistor and estimating the temperature of the inrush limiting resistor.
[0003]
The inrush limiting resistor radiates heat even when the high-voltage battery and the motor are not connected, that is, when the vehicle is stopped, the power supply to the power supply control device itself is stopped, and the control operation is stopped. Therefore, in order to monitor the cooling time of the inrush limiting resistor while the control operation of the power supply control device is stopped, an external timer that can be used even when the control operation of the power supply control device is stopped is separately provided. It was necessary to set up and monitor.
[0004]
[Problems to be solved by the invention]
As described above, the conventional power supply control device needs to use an external timer that can be used even when the control operation of the power supply control device is stopped.
[0005]
Accordingly, an object of the present invention is to provide a power supply control device that does not require an external timer.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a power supply control device according to the present invention controls a power supply circuit in which a battery and a load are connected via a relay and provided with an inrush limiting resistor for limiting an inrush current from the battery to the load. A relay control means, which is a power control device, which power-connects a battery and a load according to a power connection instruction inputted from the outside, and powers off the battery and the load according to a power-off instruction inputted from the outside; When a counter value corresponding to the number of times of power connection reaches a predetermined value, a connection limiting means for prohibiting the power connection, and a cooling time set for heat dissipation of the inrush limiting resistor after the power-off instruction is input It is assumed that the counter value correcting means corrects the counter value based on the cooling time after elapses.
[0007]
According to the above configuration, after the cooling time of the inrush limiting resistor has elapsed, the power supply control is performed after correcting the counter value based on the cooling time, that is, returning the counter value in response to the next power connection instruction. The control operation of the apparatus can be terminated. For this reason, even if the power supply control device itself is turned off after the control is finished, it is possible to respond to the next power supply connection instruction without the need to separately provide an external timer for monitoring the cooling time while the power supply control device is turned off. Therefore, an increase in dark current due to the addition of an external timer, an addition of a dedicated circuit, an increase in cost associated with the addition, and the like can be suppressed.
[0008]
Preferably, the apparatus further includes cooling time setting means for setting the cooling time based on the duration of the power connection, and the counter value correcting means is configured to set the counter based on the cooling time set by the cooling time setting means. It is characterized by correcting the value .
[0009]
According to the above configuration, since the cooling time of the inrush limiting resistor is set in anticipation of heat dissipation while the power connection is continued, it is possible to avoid securing the cooling time unnecessarily long. Therefore, it is possible to avoid unnecessarily long power supply for the power supply control device itself to secure the cooling time, and power consumption can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Preferred embodiments of the invention will be described below with reference to the drawings.
[0011]
FIG. 1 shows a preferred embodiment of a power supply control apparatus according to the present invention, that is, a power supply circuit for supplying power to a drive source motor of an electric vehicle and its power supply control apparatus. FIG. FIG.
[0012]
The power supply circuit 10 includes a motor 12 as a vehicle drive source and a filter capacitor 14, a high voltage battery 16 that supplies power to the motor 12, relays 18, 20, 22 that connect / disconnect the high voltage battery 16 and the motor 12, and The rush limiting resistor 24 is used. The high voltage battery 16 is a large capacity battery of DC 200V, for example. The filter capacitor 14 and the motor 12 are provided with a voltmeter 26 in parallel, and the power supply control device 30 controls the relays 18, 20, and 22 based on the measured value of the voltmeter 26.
[0013]
The power supply control device 30 is connected to a control device battery (not shown) different from the high-voltage battery 16, and after power is supplied to the power supply control device 30 when the user performs a key operation, that is, the ignition is turned on, The control of the circuit 10 is started. On the other hand, when the ignition is turned off, after a predetermined control operation is performed, the power supply to the power supply control device 30 is also stopped, and unnecessary power consumption by the power supply control device 30 is avoided. The control device battery may be obtained from the high voltage battery 16 by voltage conversion.
[0014]
Next, each part in the power supply control device 30 will be described. The control unit 32 centrally manages each unit in the power supply control device 30 and has an interface function with the outside. That is, when an ignition ON that is a power connection instruction is input from the outside, the power control device 30 is activated to start power control. Further, when an ignition OFF that is a power-off instruction is input, a necessary operation is executed immediately before the end of the power control, and then the power supply to the power control device 30 is cut off. During the period when the power supply control is not performed, that is, the period when the ignition OFF is continued, the power to the power supply control device 30 itself is also cut off, and the power consumed inside the power supply control device 30 is suppressed as much as possible.
[0015]
When the ignition ON is input to the control unit 32, the relay control unit 34 that is a relay control unit controls the relays 18, 20, and 22 to connect the positive electrode and the negative electrode of the high voltage battery 16 to the motor 12. As a result, a current is supplied to the filter capacitor 14 provided in parallel with the motor 12. The voltage of the high voltage battery 16 is a high voltage such as DC 200 V, for example. Therefore, when suddenly connected to the motor 12 in a low voltage state, a large current, that is, an inrush current flows instantaneously, and the contacts of the relays 18, 20, and 22 may be destroyed. For this reason, an inrush limiting resistor 24 is provided in series with the relay 20, and at the time of starting power supply, the relays 18, 20, and 22 are turned on in a procedure in which the inrush current is prevented by the inrush limiting resistor 24. Is done.
[0016]
That is, when the ignition ON is input, the relay control unit 34 first turns on the relay 22 provided on the negative electrode side of the high voltage battery 16 and then turns on the relay 20 provided on the positive electrode side. At this time, the inrush current from the high voltage battery 16 to the motor 12 side is suppressed by the inrush limiting resistor 24 connected in series to the relay 20. When current is supplied from the high voltage battery 16 and the voltmeter 26 detects that the voltage across the filter capacitor 14 has risen, the relay 18 provided in parallel with the relay 20 is turned on, and then the relay 20 is turned off. Thereby, the output of the high voltage battery 16 is transmitted to the motor 12 while suppressing the inrush current. Further, when the high voltage battery 16 and the motor 12 are powered off, the relay 18 and the relay 22 may be disconnected simultaneously or one by one. In this way, power connection / disconnection between the high voltage battery 16 and the motor 12 is performed.
[0017]
The counter 36 counts the number of times of power connection. That is, a count value that is the number of times of connection / disconnection of the high voltage battery 16 and the motor 12 controlled by the relay control unit 34 is measured and output to the connection limiting unit 38. When the power is connected, the inrush current is suppressed by the inrush limiting resistor 24, but the energy suppressed as a result is released as heat by the inrush limiting resistor 24. Therefore, if the connection / disconnection of the power source is repeatedly performed in a short time, the inrush limiting resistor 24 cannot radiate heat, and its temperature rises excessively, and the inrush limiting resistor 24 itself or a resin component around the resistor, etc. There is a risk of destroying.
[0018]
Therefore, the connection limiting unit 38 serving as a connection limiting unit limits the power supply connection operation based on the count value of the number of times of power supply connection in order to avoid an excessive rise in the temperature of the inrush limiting resistor 24. That is, when the count value reaches a predetermined value, for example, 100 times of connection, the power supply connection operation is prohibited.
[0019]
The counter value correcting unit 40 corrects the counter value of the number of times of power connection under a predetermined condition. As described above, the counter value is used for estimating the temperature of the inrush limiting resistor 24. The inrush limiting resistor 24 is used only when the power supply is connected, and is not used during other time periods, for example, when the power supply connection is continued or when the power supply is cut off. Temperature decreases. For example, the temperature rise of the inrush limiting resistor 24 by 1 power connection is 1 ° C., the cooling time required to lower the inrush limiting resistor 24 by 1 ° C. is 10 seconds, and the temperature rise allowable value of the inrush limiting resistor 24 is the normal temperature value + 100 ° C. When the power supply connection is repeatedly performed from the normal temperature value without the cooling time, the allowable number of connection times is 100 times.
[0020]
However, in a state where the power connection is continued after the power connection is made, for example, in a state where the vehicle is running, the inrush limiting resistor 24 radiates heat. Therefore, if the inrush limiting resistor 24 is 90 ° C. higher than the normal temperature value, that is, the traveling state continues for 900 seconds or more after being connected in a state where the count value is 90 times, the inrush limiting resistor 24 is caused by heat dissipation during traveling. It will drop to room temperature. In this case, the counter value correcting unit 40 may change the count value to zero. The traveling state is not necessarily long-term, and the traveling may end in about 20 seconds, for example. In such a case, for example, the count value may be decreased by 1 every 10 seconds, and may be set as appropriate according to the use situation.
[0021]
The heat release of the entry limiting resistor 24 is not limited to when the vehicle is running, but is also performed while the vehicle is stopped. However, when the vehicle is stopped and the ignition is turned off, and the power supply of the power supply control device 30 itself is turned off, the vehicle stop period, that is, the cooling time of the inrush limiting resistor 24 cannot be measured. Therefore, in the present embodiment, when the ignition OFF is input from the outside, a cooling time for the inrush limiting resistor 24 is provided in advance before the power supply control is finished, and the power supply control is finished after the cooling time has passed to finish the power supply control. The power of the device 30 is turned off. At this time, that is, at the end of the power control, the counter value correcting unit 40 also corrects the count value corresponding to the cooling time. Hereinafter, setting of the cooling time and correction of the counter value based on the cooling time will be described.
[0022]
The cooling time setting unit 42, which is a cooling time setting means, sets the cooling time according to the duration of power connection. Since the inrush limiting resistor dissipates heat even while the power connection is continued, it is desirable to set the cooling time according to the duration of the power connection. That is, if the duration time of the power connection is long, for example, if it is a duration time exceeding 900 seconds in the previous example, the cooling time is not necessary because the inrush limiting resistor 24 has returned to the normal temperature value. Conversely, if the duration of the power connection is short and the rush limiting resistor 24 does not dissipate heat at all, a cooling time should be provided for at least 10 seconds, that is, the temperature that rises with a single power connection. This enables the next power connection. As described above, the cooling time may be set in advance in consideration of the temperature rise at the next power connection, and is appropriately set according to the configuration of the vehicle or the use situation.
[0023]
The cooling time timer 44 counts the cooling time after the ignition OFF is input. That is, the elapsed time since the ignition OFF is input is counted, and when the elapsed time reaches the cooling time set by the cooling time setting unit 42, the control unit 32 and the counter value correcting unit 40 indicate that the cooling time has elapsed. Output to. The counter value correction unit 40 corrects the count value based on the cooling time. For example, when the cooling time of 100 seconds has elapsed, 10 times corresponding to 100 seconds are subtracted from the count value. On the other hand, the control unit 32 ends the power control by each unit in the power control device 30 and stops the power supply to the power control device 30 itself. Since the control operation of the power supply control device 30 is terminated after providing the cooling time for the rush restriction resistor 24 as described above, the rush restriction resistor 24 is set to a temperature equal to or lower than the allowable temperature at the next control operation start time of the power supply control device 30. Can be used.
[0024]
In the above embodiment, the control of the power supply circuit composed of the high voltage battery and the vehicle drive motor has been shown. However, the power supply control device according to the present invention is a combination of other high voltage battery and high voltage load, for example, It is also effective for controlling a power supply circuit by a combination with an air conditioner device, a power steering device, or the like.
[0025]
【The invention's effect】
As described above, the present invention can provide a power supply control device that does not require an external timer.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an overall configuration of a power supply control device according to the present invention.
[Explanation of symbols]
34 relay control unit, 38 connection limiting unit, 40 counter value correcting unit, 42 cooling time setting unit.

Claims (2)

バッテリと負荷がリレーを介して接続され、バッテリから負荷への突入電流を制限する突入制限抵抗が設けられた電源回路を制御する電源制御装置であって、
外部から入力される電源接続指示に応じてバッテリと負荷を電源接続し、外部から入力される電源切断指示に応じてバッテリと負荷を電源切断する、リレー制御手段と、
前記電源接続の回数に対応したカウンタ値が所定値に達すると前記電源接続を禁止する接続制限手段と、
前記電源切断指示が入力されてから、前記突入制限抵抗の放熱用に設定した冷却時間が経過した後、前記冷却時間に基づいて前記カウンタ値を修正するカウンタ値修正手段と、
を有する電源制御装置。
A power supply control device for controlling a power supply circuit in which a battery and a load are connected via a relay and provided with an inrush limiting resistor for limiting an inrush current from the battery to the load,
Relay control means for connecting a battery and a load in accordance with a power connection instruction inputted from the outside, and for cutting off the battery and the load in accordance with a power cut instruction inputted from outside.
Connection limiting means for prohibiting the power connection when a counter value corresponding to the number of times of power connection reaches a predetermined value;
Counter value correcting means for correcting the counter value based on the cooling time after the cooling time set for heat dissipation of the inrush limiting resistor has elapsed after the power-off instruction is input;
A power supply control device.
請求項1記載の電源制御装置であって、
前記電源接続の継続時間に基づいて前記冷却時間を設定する冷却時間設定手段をさらに有し、
前記カウンタ値修正手段は、前記冷却時間設定手段によって設定された冷却時間に基づいて前記カウンタ値を修正する、
ことを特徴とする電源制御装置。
The power supply control device according to claim 1,
A cooling time setting means for setting the cooling time based on the duration of the power connection;
The counter value correcting means corrects the counter value based on the cooling time set by the cooling time setting means ;
A power supply control device.
JP2002242511A 2002-08-22 2002-08-22 Power control device Expired - Fee Related JP3891071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242511A JP3891071B2 (en) 2002-08-22 2002-08-22 Power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242511A JP3891071B2 (en) 2002-08-22 2002-08-22 Power control device

Publications (2)

Publication Number Publication Date
JP2004088821A JP2004088821A (en) 2004-03-18
JP3891071B2 true JP3891071B2 (en) 2007-03-07

Family

ID=32051576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242511A Expired - Fee Related JP3891071B2 (en) 2002-08-22 2002-08-22 Power control device

Country Status (1)

Country Link
JP (1) JP3891071B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162167B1 (en) 2005-05-26 2012-07-17 엘지전자 주식회사 Starting System For Electric Appliance
JP4821906B2 (en) 2009-11-27 2011-11-24 株式会社豊田自動織機 Power control device
JP5683552B2 (en) * 2012-10-15 2015-03-11 オムロンオートモーティブエレクトロニクス株式会社 Vehicle charging device
JP7419984B2 (en) * 2020-06-17 2024-01-23 株式会社デンソー Control device

Also Published As

Publication number Publication date
JP2004088821A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP6229539B2 (en) Vehicle battery control device
US9847658B2 (en) Systems and methods for performing battery management
JP5869447B2 (en) Charger
JP2006246569A (en) Power control device of vehicle
JP6305126B2 (en) Battery pack with preliminary charge / discharge function
WO2017015586A1 (en) Lithium-ion battery including two power supplies
JP2010193597A (en) Charging controller
CN107124023B (en) Battery charging device and battery charging method
JP2018207558A (en) vehicle
US5677614A (en) Battery charger using a car battery as a power source
JP3891071B2 (en) Power control device
JP2015188997A (en) Electric tool
JP2008131772A (en) Power supply unit
TW201815010A (en) Motor driving control apparatus and electrically assisted vehicle
KR101844855B1 (en) Apparatus and method for charging battery in electric vehicle having function of power failure
US10562401B2 (en) Motor driving control apparatus and electrically assisted vehicle
JP4124729B2 (en) Stabilizing onboard power supply networks by creating energy that can be used for a short time
CN111971870A (en) Vehicle-mounted auxiliary power supply control device and vehicle-mounted auxiliary power supply device
KR20150050125A (en) System for preventing battery discharge of electric power cart and method thereof
KR20230035220A (en) Switching power supplies, powered battery systems and vehicles
CN106797135B (en) Method for assisting the starting of a heat engine of a motor vehicle
JP5764680B2 (en) Inrush current prevention device
JP2007060816A (en) Inverter power supply device for vehicle
JP4200287B2 (en) Motor drive device
KR101047651B1 (en) Power system short circuit detection device of fuel cell vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees