JP3890538B2 - Continuous heating method and apparatus - Google Patents

Continuous heating method and apparatus Download PDF

Info

Publication number
JP3890538B2
JP3890538B2 JP07478196A JP7478196A JP3890538B2 JP 3890538 B2 JP3890538 B2 JP 3890538B2 JP 07478196 A JP07478196 A JP 07478196A JP 7478196 A JP7478196 A JP 7478196A JP 3890538 B2 JP3890538 B2 JP 3890538B2
Authority
JP
Japan
Prior art keywords
zone
heating
combustion
heated
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07478196A
Other languages
Japanese (ja)
Other versions
JPH09263837A (en
Inventor
順一 林
英樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP07478196A priority Critical patent/JP3890538B2/en
Publication of JPH09263837A publication Critical patent/JPH09263837A/en
Application granted granted Critical
Publication of JP3890538B2 publication Critical patent/JP3890538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スラブやビレット等の鋼片等、金属材料を通過させて所定温度に加熱する連続加熱装置において、酸化スケールの生成を抑制しながら効率的に加熱する方法および装置に関するものである。
【0002】
【従来の技術】
スラブやビレット等の鋼片等、金属材料を熱間圧延する際、あるいは熱処理する際の加熱装置として、予熱帯および加熱帯を順に設けた連続加熱装置が使用される。被加熱材は、予熱帯から加熱帯へと順次搬送され加熱される。加熱帯は複数に分割され、最終帯は均熱帯とも呼ばれる。加熱源としては、一般的にバーナーによる燃焼炎が使用され、予熱帯および加熱帯とも、空気比1.0〜1.1の完全燃焼とする操炉が行われている。
【0003】
このような従来の連続加熱装置において、鋼片等の加熱時のスケールロスを抑制するため、均熱帯の空気比を0.6〜0.95とし、その雰囲気を還元性とするとともに、加熱帯の空気比を増加させて未燃燃料を燃焼させる方法が、特開昭57−110619号公報により提案されている。
【0004】
また、特開平7−97617号公報には、鋼材加熱時における酸化スケールの発生を防止する加熱方法と装置が提案されている。その内容は、炉内のライン方向下流側に蓄熱切り替え燃焼の直火型バーナー群を配置し、低空気比で不完全燃焼させることにより無酸素または還元性雰囲気で加熱し、このときの未燃分を含む高温の燃焼ガスを炉内より吸引して蓄熱器にて熱回収するとともに、熱回収後の燃焼ガスを炉内のライン方向の上流側の直火式またはラジアントチューブ式バーナーの燃料ガスとして供給し熱効率の向上を併せて実施するものである。
【0005】
【発明が解決しようとする課題】
上記特開昭57−110619号公報の技術において、空気比0.6〜0.95の燃焼では、鋼片の酸化抑制効果はあるが、生成したスケールの還元効果までは期待出来ない。したがって、均熱帯のみをこのような低空気比にしても、スケール生成の抑制効果は不十分である。
【0006】
そこで、均熱帯と加熱帯をともに低空気比にしてスケール生成抑制効果を高める方法もあるが、燃焼空気温度が500〜600℃と低い場合には、均熱帯と加熱帯での燃料使用量が過多となり、未燃焼の排ガスが加熱帯から予熱帯へと多量に流入し、予熱帯での完全燃焼が困難となる。
【0007】
また、上記特開平7−97617号公報の技術において、炉内のライン方向下流側に蓄熱切り替え燃焼の直火型バーナー群を配置し、低空気比0.5〜0.6で不完全燃焼させることにより無酸素または還元性雰囲気で加熱し、鋼材加熱時における酸化スケールの発生を防止するとしているが、炉内のライン方向下流(加熱帯と均熱帯に相当)側をかかる低空気比で加熱しても、例えば鋼材の炉への装入温度が600〜800℃と高い場合(ホットチャージと称する)には炉内のライン方向上流側(予熱帯に相当)でスケールが生成し、この生成したスケールを還元除去するのは困難である。
【0008】
さらに、炉内の下流側で生じた未燃燃料を含んだ燃焼ガスを炉内の上流側で直火バーナーあるいはラジアントチューブバーナーで燃焼させるとしているが、未燃燃料を含んだ燃焼ガスの発熱量は通常燃料よりも低く、また変動も大きい。かかる燃焼ガスを上記バーナーにて安定して燃焼させることは難しい。
【0009】
本発明は、スラブやビレット等の鋼片等、金属材料を通過させて所定温度に加熱する連続加熱装置において、酸化スケールの生成を抑制するとともに、燃料を効率的に燃焼させて加熱する方法および装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明法は、予熱帯および加熱帯を順次通過させて加熱する連続加熱方法において、加熱帯では蓄熱燃焼切替型バーナーで低空気比で燃焼させるとともに、被加熱材近傍に燃料を分散供給して燃焼させ、予熱帯では、被加熱材の表面近傍に分散供給した該加熱帯からの未燃燃料を含む燃焼排ガスと、蓄熱切替型予熱空気生成器で生成して前記燃焼排ガスの供給口より被加熱材から離して供給された高温空気とを反応させて燃焼させることを特徴とする連続加熱方法である。
【0011】
また、上記目的を達成するための本発明装置は、予熱帯および加熱帯を順次通過させて加熱する連続加熱装置において、加熱帯には、蓄熱燃焼切替型バーナー、該バーナーによる燃焼の空気比制御系、被加熱材の表面近傍に供給口を有する燃料分散供給系およびその燃焼制御系を有し、予熱帯には、加熱帯の未燃燃料を含む燃焼排ガスを燃焼させるための、予熱帯の被加熱材の表面近傍に供給する加熱帯排ガス分散供給系と、前記燃焼排ガスの供給口より被加熱材から離して高温空気を供給する蓄熱切替型予熱空気生成装置群と、燃焼制御系を有することを特徴とする連続加熱装置である。
【0012】
【発明の実施の形態】
本発明法を図1および図2の例により以下に説明する。
図1は、図2に示すような本発明装置例について、その横断面図に、燃料、空気および排ガスの各配管の一部と制御系を書き入れたものである。図2において、スラブやビレット等の被加熱材1は、矢印の方向に連続加熱装置に装入され、予熱帯2、第1加熱帯3、第2加熱帯4および調整帯5を順次通過して加熱される。6は仕切壁、7は被加熱材1を搬送するためのスキッドビーム、8はサポートビームである。
【0013】
図2の加熱帯3、4と調整帯5には、蓄熱燃焼切替型のサイドバーナー9、10、11が配置され、本例では第1加熱帯3には上下各4対のバーナ9、第2加熱帯4には上下各4対のバーナー10、調整帯5には上下各1対のバーナー11が配置されている。さらに、加熱帯3、4には被加熱材1の表面近傍に供給口を有する燃料の分散供給管14、15が分散して配置されている。
【0014】
予熱帯には通常のバーナーはなく、炉の両サイドに蓄熱切替型予熱空気生成器29が上下各4対配置されている。そして、加熱帯の未燃燃料を含む燃焼排ガスの分散供給管13が分散して配置されている。通常、第2加熱帯4は均熱帯とも呼ばれるものであり、調整帯5は必要に応じて設置するものである。
【0015】
図1において、予熱帯2と第1加熱帯3、第2加熱帯4および調整帯5は横断面図である。予熱帯2と第1加熱帯3などを便宜上切り離しているが、実際は連続しており、被加熱材が図の下方から上方に搬送される。本例では、加熱帯3、4および調整帯5では蓄熱燃焼切替型バーナーを採用し、左右の各バーナーが交互に燃焼と蓄熱を行い、燃焼炎28を形成している。
【0016】
すなわち加熱帯3の最初のバーナー9は、左側(9a )が蓄熱、右側(9b )が燃焼、次のバーナーは左側が燃焼、右側が蓄熱、第2加熱帯4の最初のバーナー10は右側が燃焼、左側が蓄熱、つぎのバーナーは右側が蓄熱、左側が燃焼、というようになっている。
【0017】
また、予熱帯には蓄熱切替型予熱空気生成器29が設置され、左右の該生成器29が交互に蓄熱と空気予熱を行っている。すなわち、予熱帯2の最初の該生成器29は、左側(29a )が蓄熱、右側(29b )が空気予熱、つぎの該生成器は左側が空気予熱、右側が蓄熱、というようになっている。
【0018】
さらに、加熱帯3、4には、被加熱材1の表面近傍に燃料の供給口を有する分散供給管14、15を設け、該供給管14、15への燃料供給用の流量調整弁19を設けるとともに、予熱帯2の予熱空気吐出口の線上でしかも被加熱材1の表面近傍に、加熱帯3、4で生成し、加熱帯3、4のバーナー9、10の蓄熱器を通過してきた未燃燃料を含む燃焼ガスを供給する分散供給管13を設け、該供給管13への燃焼ガス流量を調整する流量調整弁21を設置している。また、上記未燃燃料を含む燃焼ガスに必要に応じ燃料を付加するための流量調整弁20を設置している。
【0019】
本発明法は、予熱帯2および加熱帯3、4を順次通過させて加熱する連続加熱法において、加熱帯3、4では蓄熱燃焼切替型バーナー9、10で燃焼させるとともに、分散供給管14、15により、被加熱材1の表面近傍に燃料を分散供給して低空気比で燃焼させ、予熱帯2では加熱帯3、4における未燃燃料を含む燃焼ガスに必要量の燃料を付加した混合ガスを、被加熱材1近傍に設置された分散供給口13より吹き込んで炉の両サイドに配置された蓄熱切替型予熱空気発生器29から供給される高温空気により燃焼させる。もちろん、加熱帯3から流入する未燃燃料を含む燃焼ガスもこの高温空気により燃焼させる。
【0020】
図1の例では、第1加熱帯3のバーナー9に燃料と燃焼空気を供給して燃焼炎28を形成している。燃料は、流量調整弁17および切替弁23を経て供給し、燃焼空気は流量調整弁18および切替弁24を経て供給し、空気比を調整して燃焼させる。
【0021】
そして、被加熱材1の上面側および下面側に分散供給管14、15を、加熱帯3、4とも各バーナーとバーナーの間に3列設け、流量調整弁19を経て燃料を供給し、被加熱材1の表面近傍で燃焼させ、該表面近傍の雰囲気を低空気比とする。図1の加熱帯3、4のその他のバーナーにも、図示を省略しているが、同様に燃料と燃焼空気を供給している。
【0022】
第1加熱帯3および第2加熱帯4の未燃燃料を含む燃焼ガスは、バーナー9a 等から切替弁24を経て吸引ブロワー26で吸引し必要量の燃料を流量調整弁20にて調整して付加した後、予熱帯2に燃料として供給し、被加熱材1の表面近傍に配置した分散供給口13より炉内に吹き込む。そして、炉の両サイドに配置された蓄熱切替型予熱空気生成器29から供給される高温空気により完全燃焼させる。また、加熱帯3より予熱帯2に流入する未燃燃料を含む燃焼ガスも該高温空気により完全燃焼させる。
【0023】
予熱帯2の排ガスは、蓄熱切替型予熱空気生成器29から切替弁25を経て吸引ブロワー27で吸引し排気している。また、予熱帯2に吹き込む空気の予熱をこの蓄熱切替型予熱空気生成器29で実施している。予熱帯2のその他の蓄熱切替型予熱空気生成器29にも、図示省略しているが、同様に排ガスの排気と空気の予熱を切り替えながら行っている。
【0024】
各切替弁23、24、25および流量調整弁17、18、19、20、21、22は、制御器16からの指示により作動する。その際、第1加熱帯3および第2加熱帯4の各バーナー10、11では、流量調整弁17および18を調整し、空気比0.7超〜0.9に制御して燃焼させ、流量調整弁19を調整して被加熱材1の表面近傍を空気比0.5〜0.7の還元性雰囲気とする。予熱帯2では燃焼反応を終了した燃焼ガスの空気比が1. 0〜1. 05となるように流量調整弁22にて炉内に投入する高温空気量を調整する。
【0025】
第1加熱帯3および第2加熱帯4において、蓄熱燃焼切替型のバーナー9、および10による吸引ガスの量は、該バーナーによる蓄熱後の排ガス温度が、吸引ブロワー26および配管の耐熱温度以下となるようにする。例えば加熱帯3、4の炉温が1300〜1350℃の場合、η=(炉内からの吸引ガス量)/(炉内への吐出ガスの燃焼反応後のガス量)が1.0だと、蓄熱器後のガス温度が1000℃にもなり、吸引ブロワー26および配管の耐熱温度を超えてしまうので、η<1とする。
【0026】
鋼材等の被加熱材1は、予熱帯2および加熱帯3、4内を搬送されて所定温度に加熱される。予熱帯2では、燃焼反応を終了した炉内ガスの空気比は1.0〜1.05で酸化性雰囲気となるが、被加熱材近傍では炉両サイドの蓄熱切替型予熱空気生成器29から吹き込まれた高温空気と、分散供給管13の供給口からの未燃焼燃料を含むガスとが反応して燃焼する過程で、還元性を有する活性ガスが発生するために、スケールの生成が抑制される。
【0027】
したがって、被加熱材1が連続加熱装置に200℃以下の低温で装入された場合には予熱帯でのスケール生成はほとんど無い。また被加熱材1が熱間装入され、その温度が600〜1000℃と高い場合でもスケール生成抑制効果がある。
【0028】
第1加熱帯3、第2加熱帯4では、材料温度が最終的には1200℃程度に達するが、被加熱材の表面近傍では分散供給された燃料とバーナーで生成した燃焼ガスとが反応する過程で、還元性を有する活性ガスが発生するために、スケールは成長せず還元される。また、バーナー火炎の近傍でも空気比が0.7〜0.9の雰囲気であるため、スケールの成長は抑制される。
【0029】
したがって、本発明法でスケール生成を抑制した加熱を行うことができる。また、第1加熱帯3、第2加熱帯4において、蓄熱燃焼切替型バーナーを用いるため、燃料供給量を過大にすることなく、空気比0.7〜0.9の空気比で安定した燃焼を行うことができる。そして、予熱帯2においても高温空気を供給するため未燃燃料を被加熱材の表面近傍で完全に燃焼させることができる。
【0030】
なお、本発明法において、加熱帯3、4の炉内を還元性の雰囲気とするには、被加熱材1の成分および材料温度に応じて、空気比を1.0未満の適正値にする。すなわち、各種材料あるいは元素についての、温度と酸化速度の関係図、燃焼ガス雰囲気における酸化−還元領域図などにより適正範囲を選定し、実験等により定めることができる。後者の図に関しては、例えば、Gasworme Band 13 Nr.10, Oktober 1964 P.387-396 の文献に、COG燃焼ガス中のFeについて、H2 O/H2 とCO2 /CO、および温度をパラメータとする酸化−還元範囲が示されている。
【0031】
また、図1に示した調整帯5は、第2加熱帯4の雰囲気を保護するため、必要に応じて設置する。第2加熱帯4の出口に扉を設けても、被加熱材1の搬出時に炉内に空気が侵入する場合は、空気比が上昇してスケール生成抑制効果が阻害されるので、調整帯5によりこれを防止する。調整帯のバーナー11では空気比1.0の完全燃焼を行い、被加熱材1は短時間で通過させ炉外に取り出す。第2加熱帯4の出口に非酸化性ガスのガスカーテン等を設けることにより空気侵入を防止した場合は、調整帯5を省略することができる。
【0032】
つぎに、本発明装置は、図1および図2に示すように、予熱帯2と加熱帯3、4が順に設置され、加熱帯3、4には蓄熱燃焼切替型のサイドバーナー9、10が配設され、該バーナー9、10による燃焼空気比制御系、加熱帯3、4の被加熱材1の表面近傍に供給口を有する燃料分散供給系およびその燃焼制御系を有し、予熱帯には、炉の両サイドに蓄熱切替型予熱空気生成装置群と加熱帯排ガス分散供給系と燃焼制御系を有している。
【0033】
図1の例では、加熱帯3、4におけるバーナー9、10の燃焼空気比制御系は、制御器16、空気の流量調整弁18、および燃料の流量調整弁17から構成される。燃料分散供給系は、加熱帯3の各バーナー9の間に3列に配設された分散供給管14、加熱帯4の各バーナー10の間に3列に配設された分散供給管15およびそれらの接続する燃料配管から構成される。燃料分散供給系の燃焼制御系は、制御器16および燃料分散供給用の流量調整弁19から構成される。
【0034】
予熱帯2の蓄熱切替型予熱空気生成装置群は、図1に4対示されているような蓄熱切替型予熱空気生成器29から構成される。加熱帯排ガス分散供給系は、加熱帯3および4のバーナー9および10の蓄熱器を経て燃焼ガスを吸引する吸引ブロワー26、該ガスの流量調整弁21、および分散供給管13から構成される。燃焼制御系は、制御器16、燃焼空気用のブロワ30、流量調整弁22、切替弁25、流量調整弁20、21から構成される。
そして、本発明装置の作用は、上記本発明法で説明したとおりである。
【0035】
【実施例】
(1)本発明例:図1および図2に示すような本発明装置により、COG(コークス炉ガス)を燃料として普通鋼スラブを加熱した。空気比は、第1加熱帯3および第2加熱帯4のバーナー10、11部で0. 9、被加熱材の表面近傍に分散供給する燃料はバーナー部に供給する量の28〜80%として、加熱帯3、4の空気比が0.7〜0.5となるようにし、調整帯5を1.0とした。また、予熱帯では加熱帯3、4での未燃燃料が完全に燃焼する予熱空気量を投入した。
【0036】
スラブの温度推移は図4に示すとおりであり、炉内の雰囲気温度は予熱帯2が1000〜1250℃、第1加熱帯が1250〜1300℃、第2加熱帯4が1250〜1270℃、調整帯が1200℃であった。また、燃焼空気温度は、予熱帯で平均1000℃、加熱帯3、4で平均1100℃、調整帯で平均1050℃であった。
【0037】
(2)比較例1:通常のサイドバーナーのみを用いた加熱装置、すなわち図3に示す予熱帯2、加熱帯3、4で構成される加熱装置を用いて、COGを燃料として普通鋼スラブを加熱した。空気比は、第2加熱帯4で0.6〜0.9、第1加熱帯3および予熱帯2では1.05とした。このとき、熱交換器後の予熱空気温度は550℃で、スラブの温度および雰囲気温度は上記本発明例と同様にした。
【0038】
(3)比較例2:通常のサイドバーナーのみを用いた加熱装置、すなわち図3に示す予熱帯2、加熱帯3、4で構成される加熱装置を用いて、COGを燃料として普通鋼スラブを加熱した。空気比は、第1加熱帯3および第2加熱帯4で0.6〜0.9、予熱帯2では1.05とした。このとき、熱交換器後の予熱空気温度は550℃で、スラブの温度および雰囲気温度は上記本発明例と同様にした。
【0039】
(4)従来例:上記比較例と同様の加熱装置、すなわち図3に示す予熱帯2、加熱帯3、4で構成される加熱装置を用いて、COGを燃料として普通鋼スラブを加熱した。空気比は、第1加熱帯3および第2加熱帯4で1.05、予熱帯2でも1.05とした。このとき、熱交換器後の予熱空気温度は550℃で、スラブの温度および雰囲気温度は上記本発明例と同様にした。
【0040】
上記各例について、加熱前後のスラブの重量差からスラブ表面の平均スケール生成量を求めた。また燃料使用量を求めた。その結果、表1に示すように、本発明によりスケール生成が抑制され、かつ効率的な燃焼が行えることが確認された。なお、表1において、スケール生成量比は従来例の生成量を1.0とする比、燃料比は従来例を1.0とする比で示した。
【0041】
実施例(1)〜(4)は、普通鋼スラブの加熱装置への装入温度は30℃の場合であるが、平均装入温度が800℃と高い場合についても本発明例1、比較例1、2および従来例での比較検証を実施し平均スケール生成量を求めた。スラブの温度推移は図5に示すとおりである。その結果、表2に示すように、本発明によりスケール生成が抑制され、かつ効率的な燃焼が行えることが確認された。用語の内容は、上記表1と同様である。
【0042】
【表1】

Figure 0003890538
【0043】
【表2】
Figure 0003890538
【0044】
【発明の効果】
本発明により、スラブやビレット等の鋼片等、金属材料を、予熱帯および加熱帯を順次通過させて加熱する連続加熱法において、加熱帯では蓄熱切替型バーナーにより燃焼空気が高温予熱されるので、燃料供給量を過大にすることなく、空気比0.7〜0.9の低空気比で安定した燃焼を行うことができる。また、鋼材表面近傍に燃料を分散投入することにより活性なガスが鋼材を包み込むためにスケールの生成を抑制することが出来る。予熱帯では、蓄熱切替型空気予熱器により燃焼空気が高温予熱されるので、加熱帯で生成した未燃分を含む燃焼ガスに必要な燃料を付加した混合ガスを完全に被加熱材の近傍で燃焼させることができる。
【0045】
このため、予熱帯でもスケール生成を抑制した加熱が行えるとともに、加熱帯で生成した未燃燃料を完全に炉内で燃焼させることができる。したがって、本発明は、被加熱材のスケール生成を抑制するとともに効率的な加熱を行う方法および装置である。
【図面の簡単な説明】
【図1】本発明法および装置の例を示す説明図である。
【図2】本発明装置の例を示す断面図である。
【図3】従来装置の例を示す断面図である。
【図4】本発明の実施例において、スラブを常温で本装置に装入した場合の温度推移を示すグラフである。
【図5】本発明の実施例において、スラブを800℃で本装置に装入した場合の温度推移を示すグラフである。
【符号の説明】
1…被加熱材 2…予熱帯
3…第1加熱帯 4…第2加熱帯
5…調整帯 6…仕切壁
7…スキッドビーム 8…サポートビーム
9、10、11…バーナー
13、14、15…分散供給管 16…制御器
17、18、19、20、21、22…流量調整弁
23、24、25…切替弁
26、27…吸引ブロワー 28…燃焼炎
29…蓄熱切替型予熱空気生成器 30…燃焼空気ブロワー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for efficiently heating while suppressing generation of oxide scale in a continuous heating apparatus that heats a metal material such as a slab or billet to a predetermined temperature.
[0002]
[Prior art]
A continuous heating device in which a pre-tropical zone and a heating zone are sequentially provided is used as a heating device when hot rolling or heat-treating a metal material such as a steel slab such as a slab or billet. The material to be heated is sequentially conveyed from the pre-tropical zone to the heating zone and heated. The heating zone is divided into multiple zones, and the final zone is also called the soaking zone. As a heating source, a combustion flame by a burner is generally used, and a furnace that performs complete combustion at an air ratio of 1.0 to 1.1 is performed in both the pre-tropical zone and the heating zone.
[0003]
In such a conventional continuous heating device, in order to suppress scale loss during heating of steel slabs, the soaking zone air ratio is set to 0.6 to 0.95, the atmosphere is reduced, and the heating zone Japanese Laid-Open Patent Publication No. 57-110619 proposes a method of burning unburned fuel by increasing the air ratio.
[0004]
Japanese Patent Laid-Open No. 7-97617 proposes a heating method and apparatus for preventing the generation of oxide scale during heating of a steel material. The content of this is that a direct-fired burner group for heat storage switching combustion is arranged downstream in the line direction in the furnace, and it is heated in an oxygen-free or reducing atmosphere by incomplete combustion at a low air ratio. The high-temperature combustion gas, including water, is sucked from the furnace and recovered by the heat accumulator, and the recovered combustion gas is the fuel gas of the direct-fired or radiant tube burner upstream in the line direction in the furnace. To improve the thermal efficiency.
[0005]
[Problems to be solved by the invention]
In the technique disclosed in Japanese Patent Application Laid-Open No. 57-110619, combustion with an air ratio of 0.6 to 0.95 has an effect of suppressing oxidation of a steel slab, but cannot be expected to reduce the generated scale. Therefore, even if only the soaking zone is set to such a low air ratio, the effect of suppressing the scale generation is insufficient.
[0006]
Therefore, there is a method to increase the scale generation suppression effect by setting both the soaking zone and the heating zone to a low air ratio. However, when the combustion air temperature is as low as 500 to 600 ° C., the amount of fuel used in the soaking zone and the heating zone is low. Excessive amount of unburned exhaust gas flows from the heating zone to the pretropical zone, making it difficult to burn completely in the pretropical zone.
[0007]
Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 7-97617, a direct-fire type burner group for heat storage switching combustion is disposed downstream in the line direction in the furnace, and incomplete combustion is performed at a low air ratio of 0.5 to 0.6. Heating in an oxygen-free or reducing atmosphere to prevent generation of oxide scale during heating of steel, but heating at a low air ratio on the downstream side of the furnace (corresponding to heating zone and soaking zone) However, for example, when the charging temperature of the steel material into the furnace is as high as 600 to 800 ° C. (referred to as hot charge), a scale is generated on the upstream side in the line direction in the furnace (corresponding to the pre-tropical zone). It is difficult to reduce and remove the scale.
[0008]
Furthermore, the combustion gas containing unburned fuel generated in the downstream side of the furnace is burned by the direct fire burner or radiant tube burner on the upstream side of the furnace, but the calorific value of the combustion gas containing unburned fuel Is lower than normal fuel and fluctuates greatly. It is difficult to stably burn such combustion gas with the burner.
[0009]
The present invention relates to a continuous heating apparatus that passes a metal material such as a slab or billet and heats to a predetermined temperature and suppresses the generation of oxide scale and efficiently burns and burns fuel. An object is to provide an apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method of the present invention is a continuous heating method in which the pre-tropical zone and the heating zone are sequentially passed and heated. In the heating zone, the heat storage combustion switching burner is used for combustion at a low air ratio, and in the vicinity of the material to be heated. In the pre- tropical zone, the fuel is dispersed and supplied to the surface of the material to be heated , and the combustion exhaust gas containing unburned fuel from the heating zone distributed and supplied to the vicinity of the surface of the material to be heated is generated by the regenerative heating preheated air generator. a continuous heating method characterized by burning by the hot air supplied away from the material to be heated from the supply port of the combustion exhaust gas is reacted.
[0011]
In order to achieve the above object, the device of the present invention is a continuous heating device that sequentially heats through the pre-tropical zone and the heating zone, and the heating zone includes a regenerative combustion switching burner and combustion air ratio control by the burner. System, a fuel dispersion supply system having a supply port in the vicinity of the surface of the material to be heated, and a combustion control system thereof. In the pretropical zone, a pretropical zone for burning combustion exhaust gas containing unburned fuel in the heating zone is used. A heating zone exhaust gas dispersion supply system that is supplied near the surface of the heated material, a regenerative heating type preheated air generator group that supplies high-temperature air away from the heated material from the combustion exhaust gas supply port, and a combustion control system It is the continuous heating apparatus characterized by this.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention will be described below with reference to the examples of FIGS.
FIG. 1 shows an example of the apparatus of the present invention as shown in FIG. 2, in which a part of each pipe of fuel, air and exhaust gas and a control system are written in the cross-sectional view. In FIG. 2, a material 1 to be heated such as a slab or billet is inserted into a continuous heating device in the direction of the arrow, and sequentially passes through the pre-tropical zone 2, the first heating zone 3, the second heating zone 4 and the adjustment zone 5. Heated. 6 is a partition wall, 7 is a skid beam for conveying the material 1 to be heated, and 8 is a support beam.
[0013]
In the heating zones 3, 4 and the adjustment zone 5 of FIG. 2, side-burners 9, 10, 11 of the regenerative combustion switching type are arranged, and in this example, the first heating zone 3 has four pairs of upper and lower burners 9, The two heating zones 4 are each provided with four pairs of upper and lower burners 10, and the adjustment zone 5 is provided with a pair of upper and lower burners 11. Further, fuel supply and supply pipes 14 and 15 having supply ports in the vicinity of the surface of the material 1 to be heated are distributed in the heating zones 3 and 4.
[0014]
There is no ordinary burner in the pre-tropical zone, and the heat storage switching type pre-heating air generators 29 are arranged in four pairs on the upper and lower sides on both sides of the furnace. And the dispersion | distribution supply pipe | tube 13 of the combustion exhaust gas containing the unburned fuel of a heating zone is disperse | distributed and arrange | positioned. Usually, the 2nd heating zone 4 is also called a soaking zone, and the adjustment zone 5 is installed as needed.
[0015]
In FIG. 1, the pre-tropical zone 2, the first heating zone 3, the second heating zone 4 and the adjustment zone 5 are cross-sectional views. Although the pre-tropical zone 2 and the first heating zone 3 are separated for convenience, they are actually continuous, and the material to be heated is conveyed from the lower side to the upper side in the figure. In this example, in the heating zones 3 and 4 and the adjustment zone 5, a heat storage combustion switching type burner is adopted, and the left and right burners alternately perform combustion and heat storage to form a combustion flame 28.
[0016]
That is, the first burner 9 in the heating zone 3 stores heat on the left side (9a), burns on the right side (9b), the left burner burns on the left side, stores heat on the right side, and the first burner 10 in the second heating zone 4 has the right side. Combustion, heat storage on the left side, the next burner is heat storage on the right side, combustion on the left side, and so on.
[0017]
In addition, a heat storage switching type preheating air generator 29 is installed in the pre-tropics, and the left and right generators 29 alternately perform heat storage and air preheating. That is, the first generator 29 in the pre-tropical zone 2 has heat storage on the left side (29a), air pre-heating on the right side (29b), the next generator has air pre-heating on the left side, and heat storage on the right side. .
[0018]
Further, the heating zones 3 and 4 are provided with distributed supply pipes 14 and 15 having fuel supply ports in the vicinity of the surface of the material 1 to be heated, and a flow rate adjusting valve 19 for supplying fuel to the supply pipes 14 and 15 is provided. In addition to being provided, it has been generated in the heating zones 3 and 4 on the line of the preheating air discharge port in the pre-tropical zone 2 and in the vicinity of the surface of the heated material 1, and has passed through the regenerators of the burners 9 and 10 in the heating zones 3 and 4. A distributed supply pipe 13 for supplying combustion gas containing unburned fuel is provided, and a flow rate adjusting valve 21 for adjusting the flow rate of the combustion gas to the supply pipe 13 is installed. Further, a flow rate adjusting valve 20 is provided for adding fuel to the combustion gas containing unburned fuel as necessary.
[0019]
The method of the present invention is a continuous heating method in which the pre-tropical zone 2 and the heating zones 3 and 4 are sequentially passed and heated, and in the heating zones 3 and 4, combustion is performed by the regenerative combustion switching burners 9 and 10, and the distributed supply pipe 14, 15, fuel is dispersedly supplied near the surface of the material to be heated 1 and burned at a low air ratio, and in the pre-tropical zone 2, the required amount of fuel is added to the combustion gas including unburned fuel in the heating zones 3 and 4 Gas is combusted by the high-temperature air supplied from the regenerative switching preheated air generator 29 that is blown from the dispersion supply port 13 installed in the vicinity of the heated material 1 and arranged on both sides of the furnace. Of course, the combustion gas containing unburned fuel flowing in from the heating zone 3 is also burned by this high-temperature air.
[0020]
In the example of FIG. 1, the combustion flame 28 is formed by supplying fuel and combustion air to the burner 9 of the first heating zone 3. The fuel is supplied through the flow rate adjusting valve 17 and the switching valve 23, and the combustion air is supplied through the flow rate adjusting valve 18 and the switching valve 24, and the air ratio is adjusted and burned.
[0021]
Then, distributed supply pipes 14 and 15 are provided on the upper surface side and the lower surface side of the material 1 to be heated, and three rows are provided between the burners for the heating zones 3 and 4, and fuel is supplied via the flow rate adjusting valve 19. Combustion is performed in the vicinity of the surface of the heating material 1, and the atmosphere in the vicinity of the surface is set to a low air ratio. Although not shown, the other burners in the heating zones 3 and 4 of FIG. 1 are also supplied with fuel and combustion air.
[0022]
Combustion gas containing unburned fuel in the first heating zone 3 and the second heating zone 4 is sucked by the suction blower 26 through the switching valve 24 from the burner 9a and the like, and the required amount of fuel is adjusted by the flow rate adjusting valve 20. After the addition, it is supplied as fuel to the pre-tropical zone 2 and blown into the furnace through the dispersion supply port 13 disposed near the surface of the material 1 to be heated. And it is made to burn completely with the high temperature air supplied from the heat storage switching type preheating air generator 29 arrange | positioned at the both sides of a furnace. Further, the combustion gas containing unburned fuel flowing into the pre-tropical zone 2 from the heating zone 3 is also completely burned by the high-temperature air.
[0023]
The exhaust gas of the pre-tropical zone 2 is sucked and exhausted from the heat storage switching type preheating air generator 29 through the switching valve 25 by the suction blower 27. Further, preheating of the air blown into the pre-tropical zone 2 is performed by the heat storage switching type pre-heating air generator 29. Although not shown in the figure, the other heat storage switching type preheating air generator 29 in the pre-tropical zone 2 is also switched while switching between exhaust gas exhaust and air preheating.
[0024]
Each of the switching valves 23, 24, 25 and the flow rate adjusting valves 17, 18, 19, 20, 21, 22 are operated according to instructions from the controller 16. At that time, in each of the burners 10 and 11 in the first heating zone 3 and the second heating zone 4, the flow rate adjusting valves 17 and 18 are adjusted, and the combustion is performed by controlling the air ratio to be over 0.7 to 0.9. The adjustment valve 19 is adjusted so that the vicinity of the surface of the heated material 1 is a reducing atmosphere having an air ratio of 0.5 to 0.7. In the pre-tropical zone 2, the flow rate adjusting valve 22 adjusts the amount of high-temperature air that is introduced into the furnace so that the air ratio of the combustion gas that has finished the combustion reaction is 1.0 to 1.05.
[0025]
In the first heating zone 3 and the second heating zone 4, the amount of suction gas by the heat storage combustion switching type burners 9 and 10 is such that the exhaust gas temperature after heat storage by the burner is equal to or lower than the heat resistance temperature of the suction blower 26 and the piping. To be. For example, when the furnace temperature in the heating zones 3 and 4 is 1300 to 1350 ° C., η = (amount of suction gas from the furnace) / (amount of gas after combustion reaction of the discharge gas into the furnace) is 1.0 Since the gas temperature after the heat accumulator reaches 1000 ° C. and exceeds the heat resistance temperature of the suction blower 26 and the piping, η <1.
[0026]
A heated material 1 such as a steel material is conveyed through the pre-tropical zone 2 and the heating zones 3 and 4 and heated to a predetermined temperature. In the pre-tropical zone 2, the air ratio of the in-furnace gas that has finished the combustion reaction is 1.0 to 1.05, and an oxidizing atmosphere is formed. However, in the vicinity of the heated material, the heat storage switching type pre-heating air generator 29 on both sides of the furnace is used. In the process in which the hot air blown in and the gas containing unburned fuel from the supply port of the dispersion supply pipe 13 react and burn, a reducing active gas is generated, so that scale generation is suppressed. The
[0027]
Therefore, when the material 1 to be heated is charged into the continuous heating device at a low temperature of 200 ° C. or less, there is almost no scale generation in the pretropical zone. Moreover, even when the material 1 to be heated is charged hot and the temperature is as high as 600 to 1000 ° C., there is an effect of suppressing scale formation.
[0028]
In the first heating zone 3 and the second heating zone 4, the material temperature finally reaches about 1200 ° C., but the fuel supplied in a dispersed manner reacts with the combustion gas generated by the burner in the vicinity of the surface of the heated material. In the process, active gas having reducing properties is generated, so that the scale does not grow and is reduced. Further, since the atmosphere has an air ratio of 0.7 to 0.9 even in the vicinity of the burner flame, the growth of scale is suppressed.
[0029]
Therefore, it is possible to perform heating while suppressing scale formation by the method of the present invention. Moreover, in the 1st heating zone 3 and the 2nd heating zone 4, since the regenerative combustion switching type burner is used, stable combustion at an air ratio of 0.7 to 0.9 without increasing the fuel supply amount It can be performed. And even in the pre-tropical zone 2, high-temperature air is supplied so that unburned fuel can be completely burned near the surface of the material to be heated.
[0030]
In the method of the present invention, in order to make the furnace in the heating zones 3 and 4 have a reducing atmosphere, the air ratio is set to an appropriate value of less than 1.0 according to the component of the heated material 1 and the material temperature. . That is, it is possible to select an appropriate range based on the relationship between the temperature and the oxidation rate, the oxidation-reduction region diagram in the combustion gas atmosphere, etc. for various materials or elements, and determine them by experiments. Regarding the latter figure, for example, in the literature of Gasworme Band 13 Nr. 10, Oktober 1964 P.387-396, H 2 O / H 2 , CO 2 / CO, and temperature are parameters for Fe in COG combustion gas. The oxidation-reduction range is shown.
[0031]
Moreover, in order to protect the atmosphere of the 2nd heating zone 4, the adjustment zone 5 shown in FIG. 1 is installed as needed. Even if a door is provided at the outlet of the second heating zone 4, if air enters the furnace when the material to be heated 1 is carried out, the air ratio is increased and the scale generation suppression effect is hindered. This prevents this. The burner 11 in the adjustment zone performs complete combustion at an air ratio of 1.0, and the heated material 1 is passed in a short time and taken out of the furnace. When air intrusion is prevented by providing a gas curtain or the like of non-oxidizing gas at the outlet of the second heating zone 4, the adjustment zone 5 can be omitted.
[0032]
Next, as shown in FIG. 1 and FIG. 2, the apparatus of the present invention is provided with a pre-tropical zone 2 and heating zones 3, 4 in order, and in the heating zones 3, 4, the regenerative combustion switching type side burners 9, 10 are provided. A combustion air ratio control system by the burners 9, 10, a fuel dispersion supply system having a supply port in the vicinity of the surface of the heated material 1 in the heating zones 3 and 4, and its combustion control system, Has a heat storage switching type preheating air generator group, a heating zone exhaust gas dispersion supply system, and a combustion control system on both sides of the furnace.
[0033]
In the example of FIG. 1, the combustion air ratio control system of the burners 9 and 10 in the heating zones 3 and 4 includes a controller 16, an air flow rate adjustment valve 18, and a fuel flow rate adjustment valve 17. The fuel dispersion supply system includes dispersion supply pipes 14 arranged in three rows between the burners 9 in the heating zone 3, dispersion supply pipes 15 arranged in three rows between the burners 10 in the heating zone 4, and It consists of the fuel pipes that connect them. The combustion control system of the fuel dispersion supply system includes a controller 16 and a flow control valve 19 for fuel dispersion supply.
[0034]
The heat storage switching type preheating air generating device group of the pre-tropical zone 2 is configured by four heat storage switching type preheating air generators 29 as shown in FIG. The heating zone exhaust gas dispersion supply system includes a suction blower 26 that sucks combustion gas through the heat accumulators of the burners 9 and 10 in the heating zones 3 and 4, the gas flow rate adjustment valve 21, and the dispersion supply pipe 13. The combustion control system includes a controller 16, a blower 30 for combustion air, a flow rate adjustment valve 22, a switching valve 25, and flow rate adjustment valves 20 and 21.
The operation of the device of the present invention is as described in the method of the present invention.
[0035]
【Example】
(1) Example of the present invention: An ordinary steel slab was heated using COG (coke oven gas) as fuel by the apparatus of the present invention as shown in FIGS. The air ratio is 0.9 at the burners 10 and 11 parts of the first heating zone 3 and the second heating zone 4, and the fuel distributed and supplied near the surface of the heated material is 28 to 80% of the amount supplied to the burner part The air ratio of the heating zones 3 and 4 was set to 0.7 to 0.5, and the adjustment zone 5 was set to 1.0. In the pre-tropical zone, an amount of pre-heated air that completely burns unburned fuel in the heating zones 3 and 4 was introduced.
[0036]
The temperature transition of the slab is as shown in FIG. 4, and the atmospheric temperature in the furnace is adjusted to 1000 to 1250 ° C. in the pre-tropical zone 2, 1250 to 1300 ° C. in the first heating zone, and 1250 to 1270 ° C. in the second heating zone 4 The band was 1200 ° C. Further, the combustion air temperature was 1000 ° C. on average in the pre-tropical zone, 1100 ° C. on average in the heating zones 3 and 4, and 1050 ° C. on average in the adjustment zone.
[0037]
(2) Comparative Example 1: A heating device using only a normal side burner, that is, a heating device composed of the pre-tropical zone 2, heating zones 3 and 4 shown in FIG. Heated. The air ratio was 0.6 to 0.9 in the second heating zone 4, and 1.05 in the first heating zone 3 and pretropical zone 2. At this time, the preheated air temperature after the heat exchanger was 550 ° C., and the temperature of the slab and the ambient temperature were the same as those of the above-described example of the present invention.
[0038]
(3) Comparative Example 2: Using a heating device using only a normal side burner, that is, a heating device composed of the pre-tropical zone 2, heating zones 3 and 4 shown in FIG. Heated. The air ratio was 0.6 to 0.9 in the first heating zone 3 and the second heating zone 4, and 1.05 in the pre-tropical zone 2. At this time, the preheated air temperature after the heat exchanger was 550 ° C., and the temperature of the slab and the ambient temperature were the same as those of the above-described example of the present invention.
[0039]
(4) Conventional example: Using a heating device similar to the above comparative example, that is, a heating device constituted by the pre-tropical zone 2 and the heating zones 3 and 4 shown in FIG. 3, the ordinary steel slab was heated using COG as fuel. The air ratio was 1.05 in the first heating zone 3 and the second heating zone 4, and 1.05 in the pre-tropical zone 2. At this time, the preheated air temperature after the heat exchanger was 550 ° C., and the temperature of the slab and the ambient temperature were the same as those of the above-described example of the present invention.
[0040]
About each said example, the average scale production amount of the slab surface was calculated | required from the weight difference of the slab before and behind a heating. The amount of fuel used was also determined. As a result, as shown in Table 1, it was confirmed that scale generation was suppressed and efficient combustion could be performed according to the present invention. In Table 1, the ratio of scale generation is shown as a ratio where the generation amount of the conventional example is 1.0, and the fuel ratio is shown as a ratio where the conventional example is 1.0.
[0041]
In Examples (1) to (4), the charging temperature of the ordinary steel slab into the heating device was 30 ° C., but the present invention example 1 and comparative example were also obtained when the average charging temperature was as high as 800 ° C. Comparison verification with 1 and 2 and a prior art example was implemented, and average scale production amount was calculated. The temperature transition of the slab is as shown in FIG. As a result, as shown in Table 2, it was confirmed that scale generation was suppressed and efficient combustion could be performed according to the present invention. The terms are the same as in Table 1 above.
[0042]
[Table 1]
Figure 0003890538
[0043]
[Table 2]
Figure 0003890538
[0044]
【The invention's effect】
According to the present invention, in a continuous heating method in which a metal material such as a slab, billet or other steel slab is sequentially passed through a pre-tropical zone and a heating zone, the combustion air is pre-heated at a high temperature by a heat storage switching type burner in the heating zone. In addition, stable combustion can be performed at a low air ratio of 0.7 to 0.9 without increasing the fuel supply amount. Moreover, since the active gas envelops the steel material by dispersing and supplying the fuel near the steel surface, the generation of scale can be suppressed. In the pre-tropical zone, the combustion air is preheated to a high temperature by the heat storage switching air preheater, so that the mixed gas with the necessary fuel added to the combustion gas including unburned gas generated in the heating zone is completely in the vicinity of the material to be heated. Can be burned.
[0045]
For this reason, heating with suppressed scale generation can be performed even in the pre-tropical zone, and unburned fuel generated in the heating zone can be completely burned in the furnace. Therefore, the present invention is a method and an apparatus for performing efficient heating while suppressing scale generation of a material to be heated.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of the method and apparatus of the present invention.
FIG. 2 is a cross-sectional view showing an example of the device of the present invention.
FIG. 3 is a cross-sectional view showing an example of a conventional apparatus.
FIG. 4 is a graph showing a temperature transition when a slab is charged into the apparatus at room temperature in an example of the present invention.
FIG. 5 is a graph showing a temperature transition when a slab is charged into the apparatus at 800 ° C. in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Material to be heated 2 ... Pre-tropical zone 3 ... 1st heating zone 4 ... 2nd heating zone 5 ... Adjustment zone 6 ... Partition wall 7 ... Skid beam 8 ... Support beam 9, 10, 11 ... Burner 13, 14, 15 ... Distributed supply pipe 16... Controllers 17, 18, 19, 20, 21, 22 ... Flow rate adjusting valves 23, 24, 25 ... Switching valves 26, 27 ... Suction blower 28 ... Combustion flame 29 ... Heat storage switching type preheated air generator 30 ... combustion air blower

Claims (2)

予熱帯および加熱帯を順次通過させて加熱する連続加熱方法において、加熱帯では蓄熱燃焼切替型バーナーで低空気比で燃焼させるとともに、被加熱材近傍に燃料を分散供給して燃焼させ、予熱帯では、被加熱材の表面近傍に分散供給した該加熱帯からの未燃燃料を含む燃焼排ガスと、蓄熱切替型予熱空気生成器で生成して前記燃焼排ガスの供給口より被加熱材から離して供給された高温空気とを反応させて燃焼させることを特徴とする連続加熱方法。In the continuous heating method in which heating is performed by sequentially passing through the pre-tropical zone and the heating zone, the heating zone is burned at a low air ratio with a regenerative combustion switching type burner, and fuel is dispersedly supplied and burned in the vicinity of the material to be heated. Then, the combustion exhaust gas containing unburned fuel from the heating zone dispersedly supplied near the surface of the heated material and the heat storage switching type preheated air generator are separated from the heated material from the combustion exhaust gas supply port. A continuous heating method characterized by reacting the supplied high-temperature air and burning it. 予熱帯および加熱帯を順次通過させて加熱する連続加熱装置において、加熱帯には、蓄熱燃焼切替型バーナー、該バーナーによる燃焼の空気比制御系、被加熱材の表面近傍に供給口を有する燃料分散供給系およびその燃焼制御系を有し、予熱帯には、加熱帯の未燃燃料を含む燃焼排ガスを燃焼させるための、予熱帯の被加熱材の表面近傍に供給する加熱帯排ガス分散供給系と、前記燃焼排ガスの供給口より被加熱材から離して高温空気を供給する蓄熱切替型予熱空気生成装置群と、燃焼制御系を有することを特徴とする連続加熱装置。In a continuous heating apparatus that sequentially heats through the pre-tropical zone and the heating zone, the heating zone includes a regenerative combustion switching burner, an air ratio control system for combustion by the burner, and a fuel having a supply port near the surface of the heated material Dispersed supply system for heating zone exhaust gas that has a distributed supply system and its combustion control system, and supplies it near the surface of the heated material in the pretropical zone to burn the combustion exhaust gas containing unburned fuel in the heating zone. A continuous heating apparatus comprising: a system, a heat storage switching type preheated air generating apparatus group that supplies high-temperature air away from a material to be heated from the combustion exhaust gas supply port, and a combustion control system.
JP07478196A 1996-03-28 1996-03-28 Continuous heating method and apparatus Expired - Fee Related JP3890538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07478196A JP3890538B2 (en) 1996-03-28 1996-03-28 Continuous heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07478196A JP3890538B2 (en) 1996-03-28 1996-03-28 Continuous heating method and apparatus

Publications (2)

Publication Number Publication Date
JPH09263837A JPH09263837A (en) 1997-10-07
JP3890538B2 true JP3890538B2 (en) 2007-03-07

Family

ID=13557186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07478196A Expired - Fee Related JP3890538B2 (en) 1996-03-28 1996-03-28 Continuous heating method and apparatus

Country Status (1)

Country Link
JP (1) JP3890538B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048020A (en) * 2012-09-04 2014-03-17 Chugai Ro Co Ltd Continuous type heating furnace

Also Published As

Publication number Publication date
JPH09263837A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP5955958B2 (en) Hybrid installation and method for melting glass
EA016077B1 (en) Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method
JP3890538B2 (en) Continuous heating method and apparatus
CN100397021C (en) Method of improving the temperature profile of a furnace
JP3356595B2 (en) Heating furnace combustion control method
JPH09243056A (en) Heat accumulation switching burner
JP3044286B2 (en) Continuous annealing furnace
JP3328471B2 (en) Heating furnace combustion control method
JP3328456B2 (en) Operating method of heating furnace
JP3845143B2 (en) Continuous heating method and apparatus
JPH09263835A (en) Continuous heating method and apparatus therefor
JPH09263836A (en) Continuous heating method and apparatus therefor
JP2009092328A (en) Furnace atmosphere control method for heating furnace
EP0905262A1 (en) Heating method and heating apparatus
JPH0987750A (en) Method and device for heating strip
JP3799841B2 (en) Operating method of heating furnace
JP2687830B2 (en) Exhaust heat recovery method in heating furnace using regenerative burner
JPH09111350A (en) Continuous heating furnace and operation thereof
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP3924121B2 (en) Furnace temperature control method for heat treatment furnace with regenerative burner
JP2755089B2 (en) Combustion method for continuous heating furnace with regenerative burner
JP3371652B2 (en) heating furnace
JPH01212722A (en) Method for continuously heating steel strip
JPH0553848B2 (en)
JPH06322434A (en) Operation of heating furnace and heating furnace equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees