JP3889608B2 - Thermally conductive material and method for producing the same - Google Patents

Thermally conductive material and method for producing the same Download PDF

Info

Publication number
JP3889608B2
JP3889608B2 JP2001340714A JP2001340714A JP3889608B2 JP 3889608 B2 JP3889608 B2 JP 3889608B2 JP 2001340714 A JP2001340714 A JP 2001340714A JP 2001340714 A JP2001340714 A JP 2001340714A JP 3889608 B2 JP3889608 B2 JP 3889608B2
Authority
JP
Japan
Prior art keywords
conductive material
heat conductive
heat
sheet
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001340714A
Other languages
Japanese (ja)
Other versions
JP2003142638A (en
Inventor
晃生 山口
康弘 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2001340714A priority Critical patent/JP3889608B2/en
Publication of JP2003142638A publication Critical patent/JP2003142638A/en
Application granted granted Critical
Publication of JP3889608B2 publication Critical patent/JP3889608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等の発熱源からの放熱を促すため、その発熱源に対して接触するように配置して使用される熱伝導材及びその製造方法に関し、詳しくは、柔軟性にも優れた熱伝導材及びその製造方法に関する。
【0002】
【従来の技術】
従来より、シリコーンやEPDM等の母材に熱伝導フィラーを充填し、混練・成形してなる熱伝導材が考えられている。この種の熱伝導材は、例えば電気・電子装置の内部において、発熱源となる電子部品と、放熱板や筐体パネル等といったヒートシンクとなる部品(以下、単にヒートシンクという)との間に介在させるように配置される。このように熱伝導材を配置した場合、電子部品等が発生する熱をヒートシンク側へ良好に逃がすことができる。このため、この種の熱伝導材は、例えばCPUの高速化等のために不可欠な素材として注目を集めている。
【0003】
【発明が解決しようとする課題】
ところが、この種の熱伝導材では、熱伝導性を高めるために多量の熱伝導フィラーを充填すると熱伝導材自身の柔軟性が失われる場合がある。この場合、熱伝導材と上記電子部品またはヒートシンクとの密着性が低下し、電子部品からの放熱性が充分に得られない可能性もある。
【0004】
高い熱伝導性を有する平板状のシートと高い柔軟性を有する平板状のシートとを個々に作成しておき、後から積層することも考えられるが、この場合、製造に手間がかかって製造コストが高くなってしまう。特に、上記積層面を電子部品等への接触面に垂直に配設する場合、その接触面を広くするためには多数のシートを積層する必要があり、多大な手間を必要とする。一方、上記積層面が電子部品等への接触面に平行な場合、電子部品等に直接接触する側のシートの特性が有効に作用し、電子部品等に直接接触しない側のシートの特性は充分に発揮されない。そこで、本発明は、良好な熱伝導性と柔軟性とを併せ持ち、かつ、製造が容易な熱伝導材、及びその製造方法を提供することを目的としてなされた。
【0005】
【課題を解決するための手段及び発明の効果】
上記目的を達するためになされた請求項1記載の発明は、
熱伝導材料を用いて構成された高熱伝導シートと、
該高熱伝導シートよりも柔軟な柔軟低熱伝導素材とを、
所定の軸を中心にして積層状に巻回してなることを特徴とする熱伝導材を、要旨としている。
【0006】
本発明の熱伝導材は、熱伝導材料を用いて構成された高い熱伝導性を有する高熱伝導シートと、それよりも柔軟な柔軟低熱伝導素材とを、所定の軸を中心にして積層状に巻回して構成されている。このため、上記所定の軸に垂直な端面(切断面でもよい)には高熱伝導シートと柔軟低熱伝導素材とが積層状に露出し、良好な熱伝導性と柔軟性とが同時に得られる。また、本発明の熱伝導材は、高熱伝導シートと柔軟低熱伝導素材とを積層して巻回するだけで得られるので極めて製造が容易である。しかも、上記端面(または切断面)として広い面積を確保したい場合でも、巻回を長く継続するだけでよい。
【0007】
従って、本発明の熱伝導材は、良好な熱伝導性と柔軟性とを併せ持ち、しかも、製造が極めて容易である。このため、電子部品等に良好に密着すると共にその発熱を良好にヒートシンクへ伝達することができ、電子部品等との接触面積の広いものも容易に製造できてその製造コストを良好に低減することができる。
【0008】
更に、本発明では、高熱伝導シートと柔軟低熱伝導素材との層の厚さ比率を変更するだけで熱伝導材全体としての柔軟性の調整が可能となる。また、高熱伝導シートが金属等の導電性フィラーを用いたものである場合、柔軟低熱伝導素材として絶縁性のものを使用すれば側面の絶縁性を容易に確保することができる。
【0009】
請求項2記載の発明は、請求項1記載の構成に加え、
上記高熱伝導シートが、シリコーンゴムに炭素繊維を充填したものであることを特徴としている。
シリコーンゴムは比較的柔軟で、熱伝導フィラーも多量に充填することができる。また、熱伝導フィラーとして炭素繊維(グラファイト)を利用した場合、高熱伝導シートの熱伝導性を良好に向上させることができる。従って、本発明では、請求項1記載の発明の効果に加えて、熱伝導性及び柔軟性を一層良好に向上させることができるといった効果が生じる。
【0010】
請求項3記載の発明は、請求項2記載の構成に加え、
上記炭素繊維が上記所定の軸と平行に配向していることを特徴としている。
炭素繊維(グラファイト)は、繊維長方向の熱伝導性がそれ以外の方向の熱伝導性に比べて極めて優れていることが知られている。本発明では、炭素繊維を上記所定軸と平行に(すなわち、上記端面または切断面と垂直に)配向させているので、上記端面(または切断面)を電子部品等に接触させて使用する場合、極めて良好な熱伝導性が得られる。従って、本発明では、請求項2記載の発明の効果に加えて、熱伝導性を一層向上させることができるといった効果が生じる。
【0011】
請求項4記載の発明は、請求項1記載の構成に加え、
上記高熱伝導シートが、鱗片状,ウイスカ状,または繊維状で熱伝導性の異方性を有する熱伝導フィラーを、ゴムまたは樹脂に、高い熱伝導性を有する軸を上記所定の軸と平行に配向させて充填したものであることを特徴としている。
【0012】
本発明では、鱗片状,ウイスカ状,または繊維状で熱伝導性の異方性を有する熱伝導フィラーを、ゴムまたは樹脂に、高い熱伝導性を有する軸を上記所定の軸と平行に(すなわち、上記端面または切断面と垂直に)配向させて充填している。このため、上記端面(または切断面)を電子部品等に接触させて使用する場合、極めて良好な熱伝導性が得られる。従って本発明では、請求項1記載の発明の効果に加えて、熱伝導性を一層向上させることができるといった効果が生じる。
【0013】
請求項5記載の発明は、請求項1〜4のいずれかに記載の構成に加え、上記高熱伝導シートと上記柔軟低熱伝導素材とを、制振材料からなる芯を中心にして積層状に巻回してなることを特徴としている。
本発明では、上記高熱伝導シート及び柔軟低熱伝導素材を制振材料からなる芯を中心にして積層状に巻回しているので、その巻回が容易になると共に、得られた熱伝導材は制振性も有する。なお、この場合、上記芯の中心軸が上記所定軸となる。従って、本発明では、請求項1〜4のいずれかに記載の発明の効果に加えて、製造を一層容易にすると共に制振性を付与することもできるといった効果が生じる。
【0014】
請求項6記載の発明は、請求項1〜4のいずれかに記載の構成に加え、上記高熱伝導シートと上記柔軟低熱伝導素材とを、導電材料または磁性材料からなる芯を中心にして積層状に巻回してなることを特徴としている。
本発明では、上記高熱伝導シート及び柔軟低熱伝導素材を導電材料または磁性材料からなる芯を中心にして積層状に巻回しているので、その巻回が容易になると共に、得られた熱伝導材は電磁波ノイズの防止効果も有する。なお、この場合、上記芯の中心軸が上記所定軸となる。従って、本発明では、請求項1〜4のいずれかに記載の発明の効果に加えて、製造を一層容易にすると共に電磁波ノイズの防止効果を付与することもできるといった効果が生じる。
【0015】
請求項7記載の発明は、
熱伝導材料を用いて構成された長尺状の高熱伝導シートを、その長尺方向に搬送し、
該搬送中の上記高熱伝導シート表面に、該高熱伝導シートよりも柔軟な柔軟低熱伝導素材を塗布して乾燥させ、
続いて、該乾燥後の上記高熱伝導シートを、上記長尺方向に沿って所定の軸を中心に巻回することを特徴とする熱伝導材の製造方法を、要旨としている。
【0016】
本発明では、熱伝導材料を用いて構成された長尺状の高熱伝導シートをその長尺方向に搬送し、その表面に柔軟低熱伝導素材を塗布することによって、高熱伝導シート上に柔軟低熱伝導素材を積層することができる。そして、これを乾燥させた後、上記長尺方向に沿って所定の軸を中心に巻回することにより、高熱伝導シートと柔軟低熱伝導素材とを積層状に巻回した請求項1記載の熱伝導材が得られる。また、高熱伝導シートとして請求項2〜4のいずれかに記載の構成を有するものを使用すれば、請求項2〜4のいずれかに記載の熱伝導材が得られる。更に、請求項5または6記載の芯を上記巻回の中心として使用すれば、請求項5または6記載の熱伝導材が得られる。従って、本発明では、請求項1〜6のいずれかに記載の熱伝導材を容易に製造することができる。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態を図面と共に説明する。図1は、本発明が適用された熱伝導材1の構成を概略的に表す斜視図である。図1に示すように、本実施の形態の熱伝導材1は、以下に述べるような高熱伝導シート3と柔軟低熱伝導素材5とを、所定の軸(図1の上下方向の軸)を中心にして積層状に巻回してなるものである。
【0018】
なお、図1では、説明の便宜上、高熱伝導シート3及び柔軟低熱伝導素材5を一部展開して示しているが、実際には、高熱伝導シート3及び柔軟低熱伝導素材5は終端まで巻回され、熱伝導材1は全体として円筒状に構成されている。また、図1では、高熱伝導シート3及び柔軟低熱伝導素材5が巻回される軸心部1aは中空に形成されているが、軸心部1aまで高熱伝導シート3及び柔軟低熱伝導素材5が巻回されていてもよく、軸心部1aには何らかの芯が配設されていてもよい。
【0019】
芯を配設する場合、後述の製造工程における高熱伝導シート3及び柔軟低熱伝導素材5の巻回が一層容易になり、製造が一層容易になる。また、その芯を制振材料,導電材料,磁性材料等の他の機能を有する素材で構成すれば、熱伝導材1に新たな機能を付与することもできる。例えば、芯を制振材料で構成すれば熱伝導材1に制振性を付与することができ、芯を導電材料または磁性材料で構成すれば熱伝導材1に電磁波ノイズの防止効果を付与することができる。なお、これらの芯は高熱伝導シート3及び柔軟低熱伝導素材5の巻回後に挿入してもよい。
【0020】
次に、高熱伝導シート3としては、シリコーンゴム,EPDM等の種々の母材に、鱗片状の窒化ホウ素、ウィスカ状の炭化ケイ素、繊維状の炭素繊維(グラファイト)等の種々の熱伝導フィラーを充填したものが使用できる。一例として、本実施の形態では、EPDMに炭素繊維を充填したものを使用した。また、炭素繊維は上記所定の軸と平行に配向させた。柔軟低熱伝導素材5としては、未加硫のシリコーンゴムや各種ゲル状物質等、種々の素材を使用することができる。一例として、本実施の形態では、シリコーンゴムを使用した。
【0021】
このように、本実施の形態の熱伝導材1は、高い熱伝導性を有する高熱伝導シート3と、それよりも柔軟な柔軟低熱伝導素材5とが、上記所定の軸を中心にして積層状に巻回された構成を有している。このため、上記所定の軸に垂直な端面(切断面でもよい)には高熱伝導シート3と柔軟低熱伝導素材5とが積層状に露出し、良好な熱伝導性と柔軟性とが同時に得られる。また、高熱伝導シート3と柔軟低熱伝導素材5との層の厚さ比率を変更するだけで熱伝導材1全体としての柔軟性の調整が可能となる。
【0022】
しかも、高熱伝導シート3を構成するEPDMは比較的柔軟で、熱伝導フィラーも多量に充填することができる。また、熱伝導フィラーとして充填された炭素繊維は熱伝導性がよく、しかも、その炭素繊維は上記所定軸と平行に(すなわち、上記端面または切断面と垂直に)配向されているので、上記端面(または切断面)を電子部品等に接触させて使用する場合、極めて良好な熱伝導性が得られる。このように、熱伝導材1は極めて良好な熱伝導性と柔軟性とを併せ持っているので、電子部品等に良好に密着すると共にその発熱を良好にヒートシンクへ逃がすことができる。
【0023】
更に、本実施の形態の熱伝導材1は、次のように極めて容易に製造することができる。先ず、高熱伝導シート3の製造方法について説明する。高熱伝導シート3は、EPDMに炭素繊維を混練し、シート状に成形することによって得られる。但し、炭素繊維はシートの圧延方向に沿って配向する傾向がある。そこで、図2に示すように、上記圧延によって得られたシート31を、圧延方向Aに垂直な断面(破線で図示)によって短冊状に細く切断し、切断後のシート33を長尺方向につなぎ合わせる。これによって、炭素繊維35が幅方向に配向した長尺状の高熱伝導シート3が得られる。なお、得られた高熱伝導シート3はドラム状に巻回しておく。
【0024】
続いて、図3に示す成形機51を用いて、前述の熱伝導材1を製造する。図3に示すように、成形機51では、装置の下方に巻回保持された前述の高熱伝導シート3がロール57,59を介して搬送される。ロール59上まで搬送された高熱伝導シート3の表面には、材料タンク61に設けられた材料注入口63から柔軟低熱伝導素材5が供給される。
【0025】
ロール59の上方には、ロール65が所定の隙間を開けて対向配置され、その間に、高熱伝導シート3と柔軟低熱伝導素材5との積層体が搬送される。高熱伝導シート3及び柔軟低熱伝導素材5は、続いて乾燥機71内に搬送されて乾燥され、更に、ロール73,75,77を介して搬送され、ロール79に巻き取られる。このようにしてロール79に巻き取られた高熱伝導シート3及び柔軟低熱伝導素材5は、そのロール79を中心にして積層状に巻回されており、前述の熱伝導材1が得られる。
【0026】
このように、本実施の形態の熱伝導材1は、高熱伝導シート3と柔軟低熱伝導素材5とを積層して巻回するだけで得られるので極めて製造が容易である。また、上記端面(または切断面)として広い面積を確保したい場合でも巻回を長く継続するだけでよく、電子部品等との接触面積の広いものも容易に製造できてその製造コストを良好に低減することができる。更に、成形機51では、ロール59とロール65との間隔を変えるだけで高熱伝導シート3と柔軟低熱伝導素材5との層の厚さ比率を変更でき、延いては、熱伝導材1全体としての柔軟性が容易に調整できる。
【図面の簡単な説明】
【図1】 本発明が適用された熱伝導材の構成を概略的に表す斜視図である。
【図2】 該熱伝導材を構成する高熱伝導シートの製造方法を表す説明図である。
【図3】 上記熱伝導材を成形する成形機の構成を表す概略図である。
【符号の説明】
1…熱伝導材 1a…軸心部 3…高熱伝導シート5…柔軟低熱伝導素材 31,33…シート 35…炭素繊維
51…成形機 57,59,65,73,79…ロール
61…材料タンク 63…材料注入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat conductive material used by being disposed so as to be in contact with a heat source in order to promote heat radiation from a heat source such as an electronic component, and a manufacturing method thereof. The present invention relates to a thermal conductive material and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, a heat conductive material obtained by filling a base material such as silicone or EPDM with a heat conductive filler, kneading and molding has been considered. This type of heat conducting material is interposed, for example, between an electronic component serving as a heat source and a heat sink component (hereinafter simply referred to as a heat sink) such as a heat radiating plate or a housing panel in an electric / electronic device. Are arranged as follows. When the heat conductive material is arranged in this way, the heat generated by the electronic component or the like can be released to the heat sink side satisfactorily. For this reason, this type of heat conducting material is attracting attention as an indispensable material for increasing the speed of CPUs, for example.
[0003]
[Problems to be solved by the invention]
However, in this type of heat conducting material, if a large amount of heat conducting filler is filled in order to increase the heat conductivity, the heat conducting material itself may lose its flexibility. In this case, the adhesiveness between the heat conductive material and the electronic component or the heat sink is lowered, and there is a possibility that sufficient heat dissipation from the electronic component cannot be obtained.
[0004]
It is conceivable that a flat sheet having high thermal conductivity and a flat sheet having high flexibility are prepared individually and then laminated later. Becomes higher. In particular, when the laminated surface is disposed perpendicularly to the contact surface to an electronic component or the like, it is necessary to laminate a large number of sheets in order to widen the contact surface, which requires a great deal of labor. On the other hand, when the laminated surface is parallel to the contact surface to the electronic component etc., the characteristics of the sheet on the side directly contacting the electronic component etc. are effective, and the characteristics of the sheet on the side not directly contacting the electronic component etc. are sufficient Is not demonstrated. Then, this invention was made | formed for the purpose of providing the heat conductive material which has favorable heat conductivity and a softness | flexibility, and is easy to manufacture, and its manufacturing method.
[0005]
[Means for Solving the Problems and Effects of the Invention]
The invention of claim 1 made to achieve the above object is
A high thermal conductivity sheet composed of a thermal conductive material;
A flexible low thermal conductive material that is more flexible than the high thermal conductive sheet,
The gist of the heat conductive material is characterized in that it is wound in a laminated form around a predetermined axis.
[0006]
The heat conductive material of the present invention is a laminate of a high heat conductive sheet having a high heat conductivity formed using a heat conductive material and a flexible low heat conductive material that is more flexible than that, with a predetermined axis as a center. It is composed by winding. For this reason, the high heat conductive sheet and the flexible low heat conductive material are exposed in a laminated form on the end surface (or a cut surface) perpendicular to the predetermined axis, and good thermal conductivity and flexibility can be obtained at the same time. Moreover, since the heat conductive material of this invention is obtained only by laminating | stacking and winding a high heat conductive sheet and a flexible low heat conductive material, manufacture is very easy. Moreover, even if it is desired to secure a large area as the end face (or cut face), it is only necessary to continue the winding for a long time.
[0007]
Therefore, the heat conductive material of the present invention has both good heat conductivity and flexibility, and is very easy to manufacture. For this reason, it can adhere well to electronic components and the like, and can transmit the heat generation to a heat sink, and can easily manufacture a large contact area with electronic components and reduce the manufacturing cost. Can do.
[0008]
Furthermore, in the present invention, it is possible to adjust the flexibility of the entire heat conductive material only by changing the layer thickness ratio between the high heat conductive sheet and the flexible low heat conductive material. In addition, when the high thermal conductive sheet uses a conductive filler such as a metal, the insulating properties of the side surfaces can be easily ensured by using an insulating material as the flexible low thermal conductive material.
[0009]
In addition to the structure of Claim 1, the invention of Claim 2 has
The high thermal conductive sheet is characterized in that a silicone rubber is filled with carbon fibers.
Silicone rubber is relatively flexible and can be filled with a large amount of thermally conductive filler. Moreover, when carbon fiber (graphite) is utilized as a heat conductive filler, the heat conductivity of a high heat conductive sheet can be improved favorably. Therefore, in the present invention, in addition to the effect of the invention described in claim 1, the effect that the thermal conductivity and flexibility can be further improved can be obtained.
[0010]
In addition to the structure of Claim 2, the invention of Claim 3 is
The carbon fiber is oriented parallel to the predetermined axis.
Carbon fiber (graphite) is known to have extremely superior thermal conductivity in the fiber length direction compared to thermal conductivity in other directions. In the present invention, since the carbon fiber is oriented parallel to the predetermined axis (that is, perpendicular to the end surface or the cut surface), when the end surface (or the cut surface) is used in contact with an electronic component or the like, Very good thermal conductivity is obtained. Therefore, in the present invention, in addition to the effect of the invention described in claim 2, the effect that the thermal conductivity can be further improved is produced.
[0011]
In addition to the structure of Claim 1, the invention of Claim 4 has
The high thermal conductive sheet is a scaly, whisker, or fibrous thermal conductive filler having thermal conductivity anisotropy, rubber or resin, and an axis having high thermal conductivity parallel to the predetermined axis. It is characterized by being filled with orientation.
[0012]
In the present invention, scale-like, whisker-like, or fiber-like thermally conductive filler having thermal conductivity anisotropy is made of rubber or resin, and an axis having high thermal conductivity is parallel to the predetermined axis (that is, , Oriented and filled (perpendicular to the end face or cut surface). For this reason, when using the said end surface (or cut surface) in contact with an electronic component etc., very favorable heat conductivity is obtained. Therefore, in the present invention, in addition to the effect of the first aspect of the invention, the effect of further improving the thermal conductivity is produced.
[0013]
According to a fifth aspect of the present invention, in addition to the configuration according to any one of the first to fourth aspects, the high thermal conductive sheet and the flexible low thermal conductive material are wound in a laminated manner around a core made of a vibration damping material. It is characterized by turning.
In the present invention, since the high thermal conductive sheet and the flexible low thermal conductive material are wound in a layered manner around the core made of a vibration damping material, the winding is facilitated and the obtained thermal conductive material is controlled. Also has trembling. In this case, the central axis of the core is the predetermined axis. Therefore, in the present invention, in addition to the effect of the invention according to any one of claims 1 to 4, there is an effect that the manufacturing can be further facilitated and vibration damping can be imparted.
[0014]
In addition to the structure in any one of Claims 1-4, invention of Claim 6 is a lamination | stacking form centering on the core which consists of a conductive material or a magnetic material with the said high heat conductive sheet and the said flexible low heat conductive material. It is characterized by being wound around.
In the present invention, the high heat conductive sheet and the flexible low heat conductive material are wound in a laminated form around a core made of a conductive material or a magnetic material, so that the winding becomes easy and the obtained heat conductive material Also has an effect of preventing electromagnetic noise. In this case, the central axis of the core is the predetermined axis. Therefore, in the present invention, in addition to the effect of the invention according to any one of claims 1 to 4, there is an effect that the manufacturing can be further facilitated and the effect of preventing electromagnetic noise can be imparted.
[0015]
The invention described in claim 7
A long and highly heat conductive sheet composed of a heat conductive material is conveyed in the long direction,
On the surface of the high heat conduction sheet being conveyed, a flexible low heat conduction material that is more flexible than the high heat conduction sheet is applied and dried,
Subsequently, the gist is a method for producing a heat conductive material, characterized in that the high heat conductive sheet after drying is wound around a predetermined axis along the longitudinal direction.
[0016]
In the present invention, an elongated high thermal conductive sheet composed of a thermal conductive material is conveyed in the longitudinal direction, and a flexible low thermal conductive material is applied to the surface thereof, thereby allowing a flexible low thermal conductivity on the high thermal conductive sheet. Materials can be stacked. And after drying this, the heat | fever of Claim 1 which wound the high heat conductive sheet and the flexible low heat conductive material in the laminated form by winding it around a predetermined axis along the longitudinal direction. A conductive material is obtained. Moreover, if what has the structure in any one of Claims 2-4 is used as a high heat conductive sheet, the heat conductive material in any one of Claims 2-4 will be obtained. Furthermore, if the core according to claim 5 or 6 is used as the center of the winding, the heat conductive material according to claim 5 or 6 is obtained. Therefore, in this invention, the heat conductive material in any one of Claims 1-6 can be manufactured easily.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view schematically showing a configuration of a heat conductive material 1 to which the present invention is applied. As shown in FIG. 1, the heat conducting material 1 of the present embodiment has a high heat conducting sheet 3 and a flexible low heat conducting material 5 as described below, centered on a predetermined axis (vertical axis in FIG. 1). Thus, it is formed by winding in a laminated form.
[0018]
In FIG. 1, for convenience of explanation, the high heat conductive sheet 3 and the flexible low heat conductive material 5 are shown partially expanded, but actually, the high heat conductive sheet 3 and the flexible low heat conductive material 5 are wound to the end. The heat conducting material 1 is configured in a cylindrical shape as a whole. Moreover, in FIG. 1, although the shaft center part 1a around which the high heat conductive sheet 3 and the flexible low heat conductive material 5 are wound is formed hollow, the high heat conductive sheet 3 and the flexible low heat conductive material 5 are formed up to the shaft center part 1a. It may be wound and some core may be arranged in the axial center part 1a.
[0019]
When the core is disposed, winding of the high thermal conductive sheet 3 and the flexible low thermal conductive material 5 in the manufacturing process described later becomes easier and the manufacturing becomes easier. Further, if the core is made of a material having other functions such as a vibration damping material, a conductive material, and a magnetic material, a new function can be imparted to the heat conducting material 1. For example, if the core is made of a vibration damping material, the heat conduction material 1 can be given vibration damping properties, and if the core is made of a conductive material or a magnetic material, the heat conduction material 1 is given an effect of preventing electromagnetic noise. be able to. These cores may be inserted after the high heat conductive sheet 3 and the flexible low heat conductive material 5 are wound.
[0020]
Next, as the high heat conductive sheet 3, various heat conductive fillers such as flaky boron nitride, whisker-like silicon carbide, and fibrous carbon fiber (graphite) are used on various base materials such as silicone rubber and EPDM. Filled ones can be used. As an example, in this embodiment, EPDM filled with carbon fiber is used. The carbon fibers were oriented parallel to the predetermined axis. As the flexible low heat conductive material 5, various materials such as unvulcanized silicone rubber and various gel materials can be used. As an example, silicone rubber is used in the present embodiment.
[0021]
As described above, the heat conductive material 1 of the present embodiment includes a high heat conductive sheet 3 having high heat conductivity and a flexible low heat conductive material 5 that is more flexible than the high heat conductive sheet 3 with the predetermined axis as the center. It has the structure wound by. For this reason, the high heat conductive sheet 3 and the flexible low heat conductive material 5 are exposed in a laminated form on the end surface (or a cut surface) perpendicular to the predetermined axis, and good thermal conductivity and flexibility can be obtained at the same time. . Further, the flexibility of the heat conductive material 1 as a whole can be adjusted only by changing the thickness ratio of the layers of the high heat conductive sheet 3 and the flexible low heat conductive material 5.
[0022]
Moreover, the EPDM constituting the high heat conductive sheet 3 is relatively flexible and can be filled with a large amount of heat conductive filler. Further, the carbon fiber filled as the heat conductive filler has good heat conductivity, and the carbon fiber is oriented parallel to the predetermined axis (that is, perpendicular to the end face or the cut face), so that the end face When (or the cut surface) is used in contact with an electronic component or the like, extremely good thermal conductivity is obtained. Thus, since the heat conductive material 1 has both extremely good heat conductivity and flexibility, it can adhere well to an electronic component and the like, and can release the heat to the heat sink.
[0023]
Furthermore, the heat conductive material 1 of this Embodiment can be manufactured very easily as follows. First, the manufacturing method of the high heat conductive sheet 3 is demonstrated. The high thermal conductive sheet 3 can be obtained by kneading carbon fiber in EPDM and forming it into a sheet shape. However, carbon fibers tend to be oriented along the rolling direction of the sheet. Therefore, as shown in FIG. 2, the sheet 31 obtained by the rolling is cut into strips by a cross section (illustrated by a broken line) perpendicular to the rolling direction A, and the cut sheets 33 are connected in the longitudinal direction. Match. Thereby, the elongate high heat conductive sheet 3 in which the carbon fibers 35 are oriented in the width direction is obtained. The obtained high thermal conductive sheet 3 is wound in a drum shape.
[0024]
Then, the above-mentioned heat conductive material 1 is manufactured using the molding machine 51 shown in FIG. As shown in FIG. 3, in the molding machine 51, the above-described high thermal conductive sheet 3 wound and held below the apparatus is conveyed through rolls 57 and 59. The flexible low heat conductive material 5 is supplied from the material injection port 63 provided in the material tank 61 to the surface of the high heat conductive sheet 3 conveyed up to the roll 59.
[0025]
Above the roll 59, the roll 65 is disposed to face the gap with a predetermined gap, and a laminate of the high heat conductive sheet 3 and the flexible low heat conductive material 5 is conveyed therebetween. The high heat conductive sheet 3 and the flexible low heat conductive material 5 are subsequently transported into the dryer 71 and dried, further transported through the rolls 73, 75, and 77 and wound around the roll 79. Thus, the high heat conductive sheet 3 and the flexible low heat conductive material 5 wound around the roll 79 are wound in a layered manner around the roll 79, and the above-described heat conductive material 1 is obtained.
[0026]
Thus, since the heat conductive material 1 of this Embodiment can be obtained only by laminating | stacking the high heat conductive sheet 3 and the flexible low heat conductive material 5, it is very easy to manufacture. In addition, even if it is desired to secure a large area as the end face (or cut surface), it is only necessary to continue the winding for a long time, and it is possible to easily manufacture a large contact area with electronic parts, etc., and to reduce the manufacturing cost well. can do. Furthermore, in the molding machine 51, the thickness ratio of the layer of the high thermal conductive sheet 3 and the flexible low thermal conductive material 5 can be changed only by changing the distance between the roll 59 and the roll 65. The flexibility can be easily adjusted.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a configuration of a heat conductive material to which the present invention is applied.
FIG. 2 is an explanatory view showing a method for producing a high thermal conductive sheet constituting the thermal conductive material.
FIG. 3 is a schematic diagram showing a configuration of a molding machine that molds the heat conductive material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat conductive material 1a ... Center part 3 ... High heat conductive sheet 5 ... Flexible low heat conductive material 31, 33 ... Sheet 35 ... Carbon fiber 51 ... Molding machine 57, 59, 65, 73, 79 ... Roll 61 ... Material tank 63 ... Material inlet

Claims (7)

熱伝導材料を用いて構成された高熱伝導シートと、
該高熱伝導シートよりも柔軟な柔軟低熱伝導素材とを、
所定の軸を中心にして積層状に巻回してなることを特徴とする熱伝導材。
A high thermal conductivity sheet composed of a thermal conductive material;
A flexible low thermal conductive material that is more flexible than the high thermal conductive sheet,
A heat conductive material, wherein the heat conductive material is wound in a laminated form around a predetermined axis.
上記高熱伝導シートが、シリコーンゴムに炭素繊維を充填したものであることを特徴とする請求項1記載の熱伝導材。2. The heat conductive material according to claim 1, wherein the high heat conductive sheet is a silicone rubber filled with carbon fibers. 上記炭素繊維が上記所定の軸と平行に配向していることを特徴とする請求項2記載の熱伝導材。The heat conductive material according to claim 2, wherein the carbon fibers are oriented parallel to the predetermined axis. 上記高熱伝導シートが、鱗片状,ウイスカ状,または繊維状で熱伝導性の異方性を有する熱伝導フィラーを、ゴムまたは樹脂に、高い熱伝導性を有する軸を上記所定の軸と平行に配向させて充填したものであることを特徴とする請求項1記載の熱伝導材。The high thermal conductive sheet is a scaly, whisker, or fibrous thermal conductive filler having thermal conductivity anisotropy, rubber or resin, and an axis having high thermal conductivity parallel to the predetermined axis. The heat conductive material according to claim 1, wherein the heat conductive material is oriented and filled. 上記高熱伝導シートと上記柔軟低熱伝導素材とを、制振材料からなる芯を中心にして積層状に巻回してなることを特徴とする請求項1〜4のいずれかに記載の熱伝導材。The heat conductive material according to any one of claims 1 to 4, wherein the high heat conductive sheet and the flexible low heat conductive material are wound in a laminated form around a core made of a vibration damping material. 上記高熱伝導シートと上記柔軟低熱伝導素材とを、導電材料または磁性材料からなる芯を中心にして積層状に巻回してなることを特徴とする請求項1〜4のいずれかに記載の熱伝導材。The heat conduction according to any one of claims 1 to 4, wherein the high heat conduction sheet and the flexible low heat conduction material are wound in a laminated form around a core made of a conductive material or a magnetic material. Wood. 熱伝導材料を用いて構成された長尺状の高熱伝導シートを、その長尺方向に搬送し、
該搬送中の上記高熱伝導シート表面に、該高熱伝導シートよりも柔軟な柔軟低熱伝導素材を塗布して乾燥させ、
続いて、該乾燥後の上記高熱伝導シートを、上記長尺方向に沿って所定の軸を中心に巻回することを特徴とする熱伝導材の製造方法。
A long high heat conductive sheet configured using a heat conductive material is conveyed in the long direction,
Applying and drying a flexible low thermal conductive material that is more flexible than the high thermal conductive sheet on the surface of the high thermal conductive sheet being transported,
Then, the said highly heat-conductive sheet after this drying is wound around the predetermined axis | shaft along the said elongate direction, The manufacturing method of the heat conductive material characterized by the above-mentioned.
JP2001340714A 2001-11-06 2001-11-06 Thermally conductive material and method for producing the same Expired - Fee Related JP3889608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340714A JP3889608B2 (en) 2001-11-06 2001-11-06 Thermally conductive material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340714A JP3889608B2 (en) 2001-11-06 2001-11-06 Thermally conductive material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003142638A JP2003142638A (en) 2003-05-16
JP3889608B2 true JP3889608B2 (en) 2007-03-07

Family

ID=19154866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340714A Expired - Fee Related JP3889608B2 (en) 2001-11-06 2001-11-06 Thermally conductive material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3889608B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535383B (en) * 2006-11-01 2012-02-22 日立化成工业株式会社 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP5703542B2 (en) * 2009-03-26 2015-04-22 三菱樹脂株式会社 Carbon fiber reinforced resin sheet and roll wound body thereof
JP6552974B2 (en) * 2016-01-22 2019-07-31 阿波製紙株式会社 Heat dissipation sheet and method of manufacturing heat dissipation sheet
KR102203339B1 (en) * 2018-07-19 2021-01-15 한국과학기술원 Fabrication of flexible material for efficient heat dissipation of chip and cooling method thereof

Also Published As

Publication number Publication date
JP2003142638A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP6295238B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
JP2008305937A5 (en)
Wu et al. Layer‐by‐layer assembled g‐C3N4 nanosheets/cellulose nanofibers oriented membrane‐filler leading to enhanced thermal conductivity
JP2021145134A5 (en)
JP2006335957A (en) Method of manufacturing thermally conductive molded article and thermally conductive molded article
JP3889608B2 (en) Thermally conductive material and method for producing the same
JP3288029B2 (en) Molded body, thermal conductive material and method for producing the same
JP2008184864A (en) Heating floor structure and floor heating panel
JP2010038470A (en) Heating floor structure and floor heating panel
JP3597426B2 (en) Thermal conductive material
JPH1154677A (en) Heat radiating carbon composite board
TWI477386B (en) Cushion material for hot-press and use of the same
TWI818959B (en) Anisotropic thermally conductive resin component and manufacturing method thereof
JPH08228052A (en) Manufacture of metal fitted substrate
JP7358459B2 (en) Thermal conductive sheet and its manufacturing method
US20200067384A1 (en) Rotor core and manufacturing method for rotor core
KR20110084017A (en) Heat conducting sheet with directional chip layer and method for producing the same
JP5588158B2 (en) Laminated plate and module
JPH04201438A (en) Thermal insulation board
CN109177421A (en) The preparation method and applications of piezo-electric damping material
CN218336937U (en) Fine compound heat-conducting plate of graphite alkene epoxy glass
KR102263098B1 (en) Heating Assembly and Heater Comprising The Heating Assembly
JPWO2020202908A5 (en)
JP5481109B2 (en) Metal core assembly and metal core substrate manufacturing method
JPS59123110A (en) Arc extinguishing side plate and method of producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061130

R150 Certificate of patent or registration of utility model

Ref document number: 3889608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees