JP3888619B2 - Gas turbine combustor premixing device - Google Patents

Gas turbine combustor premixing device Download PDF

Info

Publication number
JP3888619B2
JP3888619B2 JP2001391789A JP2001391789A JP3888619B2 JP 3888619 B2 JP3888619 B2 JP 3888619B2 JP 2001391789 A JP2001391789 A JP 2001391789A JP 2001391789 A JP2001391789 A JP 2001391789A JP 3888619 B2 JP3888619 B2 JP 3888619B2
Authority
JP
Japan
Prior art keywords
swirler
premixing
fuel
swirling
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001391789A
Other languages
Japanese (ja)
Other versions
JP2003194337A (en
Inventor
茂 林
秀志 山田
弘 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Niigata Power Systems Co Ltd
Original Assignee
Japan Aerospace Exploration Agency JAXA
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Niigata Power Systems Co Ltd filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2001391789A priority Critical patent/JP3888619B2/en
Publication of JP2003194337A publication Critical patent/JP2003194337A/en
Application granted granted Critical
Publication of JP3888619B2 publication Critical patent/JP3888619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジェットエンジン、ガスタービンエンジン等のガス燃料を対象とした予混合方式燃焼器あるいは液体燃料を対象とした予混合予蒸発方式燃焼器の予混合装置に関する。
【0002】
【従来の技術】
ガスタービンは、燃料と圧縮した空気を燃焼器に供給して燃焼室で燃焼させ、生成した高温高圧の燃焼ガスをタービン翼車に与えて出力を得ている。かかるガスタービンには燃焼室に連続して予混合装置が設けられているものがある。この予混合装置は、燃料と空気を燃焼する前に予蒸発・予混合により均一に混合するための装置である。この予混合装置においては、燃料をその燃焼に必要な理論空気量よりもかなり多い量の空気と予め混合し、燃焼室に供給して燃焼させる希薄予混合燃焼を行なうことにより燃焼ガス温度を制御できることから、NOX の低減のみならずCOやHCの低減にも非常に有効であることがよく知られている。液体燃料の場合には、燃料を空気流中に微粒化して混合し、蒸発させることになるので、特に希薄予混合予蒸発燃焼と呼ばれる。現在のところ実用になっているのはガス燃焼の場合であり、予混合装置の主要部として、図7及び図8に示すような2個の薄肉半割円錐からなる先拡がりの円錐状の予混合管や、図9又は図10に示すように入口部に空気を旋回させるためのスワーラを設けた円筒状の予混合管が使用される。
【0003】
図7及び図8に示す略円錐台状の予混合管100の場合、空気は半円錐の母線に沿ったスリット状開口部101から流入し、円錐内面に沿って流れ、同図中に矢印で示すように円錐状の予混合管100内にその軸を中心とする旋回流れを形成する。燃料はスリット状開口部101に沿って配置された燃料管102の多数の噴射口からスリット状開口部101に流入する空気流に噴射される。
【0004】
図9又は図10に示すスワーラを設けた円筒状の予混合管105,106の場合には、円筒状の予混合管105,106の中心軸上に燃料噴射弁107が配置され、燃料はスワーラ108,109による旋回空気流中に噴射される。ここでスワーラとは、内側のリング (ボス)と外側のリング (ボス)の間に所定角度の複数枚の翼を円周上に等間隔で配置した装置であり、出口側の空気流に旋回を与えるものである。図9の装置においては、スワーラ108の内側のリングに同軸に燃料噴射弁107が設けられ、ここから噴射された燃料はスワーラ108で旋回を与えられた空気と混合されて燃焼に供される。
【0005】
図8、図9、図10の各図に示すいずれの場合においても、混合気には旋回が与えられるが、この旋回は予混合管100,105,106の出口の下流に既燃ガスが循環する高温の領域すなわち再循環域200を形成し、火炎の安定化に重要な役割を果たしている。
【0006】
ガスタービン燃焼器での燃焼においては、燃料が混合した空気の流れの中に火炎が存在する場合、この流れの流速が火炎の燃焼速度以上になると火炎が吹き飛ばされてしまうので、燃焼器内で火炎を安定させるには、燃焼器内に流速が低い領域を設ける必要がある。このため、前述した予燃焼装置では、良好な保炎性を保つために円錐状の予混合管100やスワーラ108,109を用いて空気に旋回を与え、筒型の燃焼器300内の予燃焼装置に隣接した部分に、既燃ガスが循環する高温の領域すなわち再循環域200が生じるようにしているのである。
【0007】
【発明が解決しようとする課題】
前述した予混合方式あるいは予混合予蒸発方式の本質的な問題点は、予混合管100,105,106内の燃料噴射位置よりも下流の空間には可燃性の混合空気が存在するために、火炎が燃焼器300内(燃焼室内)から予混合管100,105,106内に侵入する逆火と呼ばれる現象が生じる可能性があることである。
【0008】
既に述べたように、予混合管100,105,106内を流れる混合気には、保炎促進のために旋回が与えられるが、この旋回は燃料と空気の混合促進にも非常に有効である。旋回が強いほどより大きな既燃ガスの再循環領域200が形成されるので、火炎の安定度は向上する。NOX の発生を抑制するには可能な限り燃料希薄な状態で燃焼させることが必要であり、それには確実な保炎が不可欠である。
【0009】
一方、中心軸の周りの旋回を伴う流れでは、中心軸を含む中心部領域の圧力が下がり、中心軸に沿って速度の遅い領域ができる。旋回が強くなると、例えば図9又は図10に示すように、中心軸に沿って燃焼器300内から予混合管105,106に向けて気流が逆流する逆流領域400が生じる。このような状態になると、予混合管105,106内の平均速度が燃焼速度より十分大きい場合でも、火炎は容易に混合管105,106内に侵入する。予混合管105,106内への逆火が起きると、燃料・空気の混合が不完全な状態で燃焼が始まるためにNOX が急増するだけでなく、焼損の危険性があり、有害な機械的振動が発生することもある。
【0010】
図7及び図8に示したように、略円錐台形状の筒体を軸線に沿って略2分割した2個の部材を組み合わせて先拡がりの略円錐台状とした薄肉の予混合管100の場合には、軸方向の断面積の増大よりもスリット状開口部101からの空気流入の増加を十分大きくとれば、出口近傍を除くと中心軸付近の逆流を防ぐことができる。しかし、液体燃料の場合には縦長のスリット状開口部101に適した燃料噴射を行うことは困難である。
【0011】
一方、図9又は図10に示したような円筒状の予混合管105,106の場合には、従来からの円筒状の燃料噴射弁107を中心軸上に1本配置するだけで済み、製作コストが安く、変形しにくいなどの利点があるが、逆火が発生しやすいという問題があった。
【0012】
本発明はこのジレンマを解決するための手段として、旋回のもつ保炎促進効果を損なうことなく、逆火を起こしにくい燃料空気予混合管を提供する。
【0013】
【課題を解決するための手段】
請求項1に記載されたガスタービン燃焼器の予混合装置は、
ガスタービン燃焼器に設けられ、その中心軸の位置が中空である予混合管を備えた予混合装置であって、その中心軸の周りの旋回を伴う流れにより圧力が下がって流れの速度が遅くなり、中心軸そのものにおいて前記燃焼器内から前記予混合管に向けて気流が逆流する逆流領域が生じる状態になるため前記予混合管内の平均速度が燃焼速度より十分大きい場合であっても火炎が前記予混合管内に侵入するような予混合装置において、
出口に向けて断面積が減少する予混合管と、前記予混合管の中心に設けられた薄肉円筒状の液膜形成器と、前記液膜形成器の内部に設けられた第1スワーラと、前記第1スワーラと液膜形成器の間の隙間から燃料を供給する燃料供給手段と、前記液膜形成器の外側に設けられ前記第1スワーラと気流の旋回方向が互いに逆となっている第2スワーラとを有し、
微粒化を悪化させずに逆流を抑制するように、燃料噴射位置における前記予混合管の入口水力直径をD0 、前記予混合管の最小水力直径をD1 とした場合に、0.4≦(D1 /D0 2 ≦0.8とし、
保炎性能を低下させずに逆火を発生させないように、円周方向についての旋回方向が異なる隣接するスワーラの旋回気流を内側の旋回気流と外側の旋回気流に分けることとした場合、内側の旋回気流と外側の旋回気流の気流の旋回の強さを表すスワール数をそれぞれSIN、SOUT 、内側のスワーラと外側のスワーラの通路面積をそれぞれAIN、AOUT 、内側のスワーラと外側のスワーラの通路の外直径をそれぞれRIN、ROUT とするとき、0.02<(−SIN・AIN・RIN)/(SOUT ・AOUT ・ROUT )<0.2としたことを特徴とする。
【0016】
請求項に記載された予混合装置は、請求項1記載のガスタービン燃焼器の予混合装置において、前記予混合管(8,16)の出口に断面積が拡大する拡径部(9,22)が設けられたことを特徴としている。
【0017】
請求項に記載された予混合装置は、請求項1記載のガスタービン燃焼器の予混合装置において、前記液膜形成器の外側に第3スワーラが設けられ、その外側に前記第2スワーラが設けられていることを特徴としている。
【0018】
【発明の実施の形態】
図1はガス燃料用の多孔燃料ノズル1を用いた場合の形態で、内側に左旋回の第1スワーラ2、その外側に右旋回の第2スワーラ3が設けられている。また、予混合管4は断面が実質的に円形で出口に向けて断面積が減少する略中空円錐台形状の通路であって、燃料噴射部(多孔燃料ノズル1の噴射口の位置)における面積に対する出口の面積の比は40%である。
【0019】
図2は液体燃料の場合で、燃料ノズルには渦巻き式圧力燃料ノズル5を用い、内側の旋回は第1スワーラとしての軸流スワーラ6、外側の旋回は第2スワーラとしてのラジアルスワーラ7により生成している。燃料噴射位置より下流の予混合管8の断面形状は図1と同じであるが、出口部には断面積が拡大する拡径部9が設けられて流れの径方向への拡がりを助け、燃焼ガスの再循環領域の発達を促している。この渦巻き式圧力燃焼ノズル5では、単孔から旋回を与えられた燃料が噴出し、円錐状の膜を形成し、微粒化が行われる。
【0020】
図3は液体燃料が予混合管10を流れる気流によって微粒化する方式であり、中心の燃料噴射ノズル11の噴射口を囲んで薄肉円筒状の液膜形成器12が設けられている。燃料噴射ノズル11から噴射された燃料は液膜形成器12の内面に液膜を形成する。そして、この液膜化された燃料は、液膜形成器12の開放された先端部において、液膜形成器12の内外の気流の剪断力によって微粒化される。微粒化を促進するため、液膜形成器12の内外に第1スワーラ13及び第3スワーラ15を設け、これら第1及び第3スワーラ13,15の外側に1個の主流用の第2スワーラ14を設ける。液膜形成器12内の第1スワーラ13による気流の旋回方向と主流の第2スワーラ14による気流の旋回方向は互いに逆になっている。液膜形成器12のすぐ外側の第3スワーラ15の旋回方向は、どちらでもかまわない。
【0021】
図4は液体燃料が予混合管16を流れる気流によって微粒化する方式の他の構成例であり、予混合管16の中心には薄肉円筒状の液膜形成器17が設けられ、液膜形成器17の内部には第1スワーラ18が設けられている。この第1スワーラ18と液膜形成器17の間の隙間から燃料管19を介して燃料が供給される。液膜形成器17の外側には第3スワーラ21が設けられ、その外側には主流の第2スワーラ20が設けられている。第1スワーラ18による気流の旋回方向と主流の第2スワーラ20による気流の旋回方向は互いに逆になっている。液膜形成器17のすぐ外側の第3スワーラ21の旋回方向は、どちらでもかまわない。燃料は液膜形成器17の内面に液膜を形成し、図3の場合と略同様の作用で微粒化される。燃料噴射位置より下流の予混合管16の断面形状は図1と同じであるが、出口部には断面積が拡大する拡径部22が設けられて流れの径方向への拡がりを助け、燃焼ガスの再循環領域の発達を促している。
【0022】
図1から図4に示した以上いずれの例においても、内外の第1及び第2スワーラの旋回方向が異なるので、内側の第1スワーラの旋回流の直径あるいは流量を過度に大きくすると、保炎性が低下し、更に大きくすると逆火が発生する。実験と数値シミュレーションの結果、内側の第1スワーラと外側の第2スワーラ(3個のスワーラの場合には隣接するスワーラの旋回方向が異なる円筒において旋回気流を内側と外側に分ける)の気流の旋回の強さを表すスワール数をそれぞれSIN、SOUT とし、同じくスワーラの各面積をそれぞれAIN、AOUT とするとき、0.02<(−SIN・AIN・RIN)/(SOUT ・AOUT ・ROUT )<0.2のとき良好な結果が得られることが分かった。
【0023】
ここでスワール数について説明する。
スワール数SN は円形通路を流れる空気流の中心軸周りの各運動量Gm と軸方向運動量GX により次式で定義される。ここでRは通路の半径(環状通路の場合は外筒の内径)である。
【0024】
【数1】

Figure 0003888619
【0025】
特別な場合として、図5に示す軸流スワーラと、図6に示すラジアルスワーラがある。軸流スワーラは、図1,2,3,4に示した各スワーラ2,3,6,13,14,15,18,20,21が相当する。ラジアルスワーラは図2の第2スワーラ7が相当する。
【0026】
(1) 軸流スワーラの場合
軸流スワーラのスワール数SN は、図5に示すように羽根の角度(軸方向からの角度)をθ、内径をR1 、外径をR2 とすると、次式のように表される。
【0027】
【数2】
Figure 0003888619
【0028】
羽根の角度θがrによらず一定の場合には、軸流スワーラのスワール数SN は次式のように表される。
【0029】
【数3】
Figure 0003888619
【0030】
ヘリカル羽根の場合には、半径rにおける角度θと、内径での角度θ1 との間には、tanθ=(r/R1 )tanθ1 の関係があるので、軸流スワーラのスワール数SN は次式のように表される。
【0031】
【数4】
Figure 0003888619
【0032】
(2) ラジアルスワーラの場合
ラジアルスワーラのスワール数SN は、図6に示すように出口部通路の内径をR1 、外径をR2 、入口案内羽根の面により包絡される円筒の半径をR3 、入口の高さをh、幅をLとすると、次式のように表される。
【0033】
【数5】
Figure 0003888619
【0034】
以上説明した例では、予混合管は断面が実質的に円形で出口に向けて断面積が減少する略中空円錐台形状の通路であったが、実質的な断面円形のものに限らず、出口に向けて断面積が減少する筒状であれば、例えば隅部が曲面加工されて内面が連続的な曲面となった断面方形又は矩形等の断面略四角形の筒型通路でもよい。
【0035】
【発明の効果】
本発明によれば、予混合管の断面積を出口に向けて細くし、旋回方向の異なるスワーラを用いて内側・外側の旋回方向を逆にすることにより、中心付近の速度の遅い領域が排除されるために、燃焼室内からの逆火が生じにくくなる。また、予混合装置の焼損は発生せず、有害な機械的振動は生じない。
【0036】
また、内側・外側の気流の旋回の強さと流量に関係する断面積の比を適切にすることや、出口に拡大部を設けることで、逆火及び保炎性能の低下が起きないようにできる。
【0037】
予混合管の燃料噴射位置における断面積A0 に対するそれよりも下流における予混合管の最小断面A1 における面積の比A1 /A0 は、逆流を抑制するためには0.8(80%)を越えないことが望ましい。しかし、断面積比を小さくしすぎると以下の問題が生じる。予混合管の出口の流速と面積は、燃焼器の性能の面から決まるため、断面積比を小さくしすぎると(燃料噴射位置の断面を大きくすること)、気流の速度が極度に小さくなり、気流微粒化ノズルでは微粒化が悪化する。そのため、上記の断面積比は実用的には0.4(40%)を下回らないことが好ましい。
【0038】
内側の旋回が強く、その旋回気流の直径が大きいと予混合管出口における旋回が弱まり、保炎性能が低下する。更に大きくなると逆火が発生する。実験及び流れの数値計算により、逆火が起きずに保炎のための旋回が大きな流れを実現できるのは、内側、外側のスワーラの旋回強さと面積が以下の関係にあるときである。
【0039】
内側、外側の気流の旋回の強さを表すスワール数をそれぞれSIN、SOUT 、内側、外側のスワーラの面積をそれぞれAIN、AOUT (隣接するスワーラの旋回方向が同じものは、同一の空気流とみなす)とするとき、0.02<(−SIN・AIN・RIN)/(SOUT ・AOUT ・ROUT )<0.2である。
【図面の簡単な説明】
【図1】本発明の予混合装置の第1の例を示す模式的な断面図である。
【図2】本発明の予混合装置の第2の例を示す模式的な断面図である。
【図3】本発明の予混合装置の第3の例を示す模式的な断面図である。
【図4】本発明の予混合装置の第4の例を示す模式的な断面図である。
【図5】軸流スワーラの構造とその各部における寸法を示す模式図である。
【図6】ラジアルスワーラの構造とその各部における寸法を示す模式図である。
【図7】従来の予混合管の第1の例を示す斜視図である。
【図8】従来の予混合管の第1の例が設けられた燃焼器の模式的な断面図である。
【図9】従来の予混合管の第2の例が設けられた燃焼器の模式的な断面図である。
【図10】従来の予混合管の第3の例が設けられた燃焼器の模式的な断面図である。
【符号の説明】
1…燃料供給手段としての多孔燃料ノズル
2,3,6,7,13,14,15,18,20,21…スワーラ
4,8,10,16…予混合管
5…燃料供給手段としての渦巻き式圧力燃料ノズル
9,27…拡径部
11…燃料供給手段としての燃料噴射ノズル
19…燃料供給手段としての燃料管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a premixing combustor for a gas fuel such as a jet engine or a gas turbine engine, or a premixing device for a premixed prevaporization combustor for a liquid fuel.
[0002]
[Prior art]
The gas turbine supplies fuel and compressed air to a combustor and burns it in a combustion chamber. The generated high-temperature and high-pressure combustion gas is supplied to a turbine impeller to obtain an output. Some of these gas turbines are provided with a premixing device continuously in the combustion chamber. This premixing device is a device for uniformly mixing fuel and air by preevaporation and premixing before burning. In this premixing device, the fuel gas temperature is controlled by performing premixed combustion in which the fuel is premixed with a larger amount of air than the theoretical amount of air required for combustion and supplied to the combustion chamber for combustion. because it can, is well known to be highly effective in reducing of the NO X reduction not only CO and HC in. In the case of a liquid fuel, the fuel is atomized and mixed in an air stream, mixed and evaporated, so it is particularly called lean premixed pre-evaporative combustion. At present, it is practically used in the case of gas combustion. As the main part of the premixing device, a pre-expanded conical pre-form consisting of two thin half cones as shown in FIGS. A cylindrical premixing tube provided with a mixing tube or a swirler for swirling air at the inlet as shown in FIG. 9 or FIG. 10 is used.
[0003]
In the case of the substantially frustoconical premixing tube 100 shown in FIGS. 7 and 8, air flows from the slit-shaped opening 101 along the half-conical bus, flows along the inner surface of the cone, and is indicated by an arrow in the figure. As shown in the figure, a swirling flow around the axis is formed in the conical premixing tube 100. The fuel is injected into an air flow flowing into the slit-like opening 101 from a plurality of injection holes of the fuel pipe 102 arranged along the slit-like opening 101.
[0004]
In the case of the cylindrical premixing pipes 105 and 106 provided with the swirler shown in FIG. 9 or FIG. 10, a fuel injection valve 107 is disposed on the central axis of the cylindrical premixing pipes 105 and 106, and the fuel is swirled. It is injected into the swirling air flow by 108,109. Here, the swirler is a device in which a plurality of blades of a predetermined angle are arranged on the circumference at equal intervals between the inner ring (boss) and the outer ring (boss), and swirls in the air flow on the outlet side. Is to give. In the apparatus of FIG. 9, a fuel injection valve 107 is provided coaxially on the inner ring of the swirler 108, and the fuel injected therefrom is mixed with air swirled by the swirler 108 and used for combustion.
[0005]
In any of the cases shown in FIGS. 8, 9, and 10, swirl is given to the air-fuel mixture, but this swirl circulates the burned gas downstream of the outlets of the premixing tubes 100, 105, and 106. Forming a high temperature region, i.e., a recirculation zone 200, which plays an important role in stabilizing the flame.
[0006]
In combustion in a gas turbine combustor, if there is a flame in the flow of air mixed with fuel, the flame will be blown off if the flow velocity of the flow exceeds the combustion speed of the flame. In order to stabilize the flame, it is necessary to provide a region where the flow velocity is low in the combustor. For this reason, in the pre-combustion device described above, the air is swirled using the conical premixing tube 100 and the swirlers 108 and 109 in order to maintain good flame holding properties, and the pre-combustion in the cylindrical combustor 300 is performed. A high-temperature region in which the burned gas circulates, that is, a recirculation region 200 is generated in a portion adjacent to the apparatus.
[0007]
[Problems to be solved by the invention]
The essential problem of the premixing method or the premixing preevaporation method described above is that flammable mixed air exists in the space downstream of the fuel injection position in the premixing tubes 100, 105, 106. This is because there is a possibility that a phenomenon called backfire in which the flame enters the premixing pipes 100, 105 and 106 from the combustor 300 (combustion chamber) may occur.
[0008]
As described above, the air-fuel mixture flowing in the premixing tubes 100, 105, and 106 is swirled to promote flame holding. This swirling is also very effective for promoting the mixing of fuel and air. . The stronger the swirl, the larger the burned gas recirculation region 200 is formed, so that the flame stability is improved. In order to suppress the generation of NO x , it is necessary to burn in a fuel-lean state as much as possible, and reliable flame holding is indispensable.
[0009]
On the other hand, in the flow accompanied by the rotation around the central axis, the pressure in the central region including the central axis decreases, and a region with a low speed is formed along the central axis. When the swirl becomes strong, for example, as shown in FIG. 9 or FIG. 10, a backflow region 400 in which the airflow flows back from the inside of the combustor 300 toward the premixing tubes 105 and 106 along the central axis is generated. In such a state, even if the average speed in the premixing pipes 105 and 106 is sufficiently larger than the combustion speed, the flame easily enters the mixing pipes 105 and 106. When flashback into the premixing tube 105 occurs, the mixing of fuel and air is not only NO X increases rapidly to begin combustion in an incomplete state, there is a risk of burning harmful mechanical Vibration may occur.
[0010]
As shown in FIGS. 7 and 8, the thin-walled premixing tube 100 having a substantially truncated cone shape that is widened by combining two members obtained by dividing a substantially truncated cone-shaped cylindrical body into two substantially along the axis. In this case, if the increase in the air inflow from the slit-like opening 101 is sufficiently larger than the increase in the cross-sectional area in the axial direction, the backflow near the central axis can be prevented except for the vicinity of the outlet. However, in the case of liquid fuel, it is difficult to perform fuel injection suitable for the vertically long slit-shaped opening 101.
[0011]
On the other hand, in the case of the cylindrical premixing pipes 105 and 106 as shown in FIG. 9 or FIG. 10, it is only necessary to arrange one conventional cylindrical fuel injection valve 107 on the central axis. Although there are advantages such as low cost and difficulty in deformation, there is a problem that backfire is likely to occur.
[0012]
As a means for solving this dilemma, the present invention provides a fuel-air premixing tube that is less prone to backfire without impairing the flame holding acceleration effect of swirling.
[0013]
[Means for Solving the Problems]
The premixing device for a gas turbine combustor according to claim 1 is:
A premixing device provided with a premixing tube provided in a gas turbine combustor and having a hollow central axis, and the flow is slowed down by a flow accompanied by swirling around the central axis, and the flow speed is slow. Therefore, even if the average velocity in the premixing tube is sufficiently larger than the combustion speed, a flame is generated in a state where a backflow region in which the airflow flows back from the inside of the combustor toward the premixing tube is generated in the central axis itself. In a premixing device that enters the premixing tube,
A premixing tube whose cross-sectional area decreases toward the outlet, a thin cylindrical liquid film forming device provided at the center of the premixing tube, a first swirler provided inside the liquid film forming device, A fuel supply means for supplying fuel from a gap between the first swirler and the liquid film former, and a first swirler provided outside the liquid film former and swirling directions of the airflow are opposite to each other. With 2 swirlers,
When the inlet hydraulic diameter of the premixing pipe at the fuel injection position is D 0 and the minimum hydraulic diameter of the premixing pipe is D 1 so as to suppress backflow without deteriorating atomization, 0.4 ≦ (D 1 / D 0) and 2 ≦ 0.8,
If the swirl of adjacent swirlers with different swirl directions in the circumferential direction is divided into an inner swirl and an outer swirl The swirl numbers representing the swirl strength of the swirling airflow and the outer swirling airflow are respectively S IN and S OUT , and the passage areas of the inner swirler and the outer swirler are A IN , A OUT , the inner swirler and the outer swirler, respectively. When the outside diameter of the swirler passage is R IN and R OUT , 0.02 <(-S IN · A IN · R IN ) / (S OUT · A OUT · R OUT ) <0.2 It is characterized by.
[0016]
A premixing device according to a second aspect is the premixing device for a gas turbine combustor according to the first aspect, wherein the diameter-expanded portion (9, 9) has an enlarged cross-sectional area at the outlet of the premixing tube (8, 16). 22) is provided.
[0017]
A premixing device according to a third aspect is the premixing device for the gas turbine combustor according to the first aspect, wherein a third swirler is provided outside the liquid film former , and the second swirler is disposed outside the liquid swirler. It is characterized by being provided .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which a porous fuel nozzle 1 for gas fuel is used. A first swirler 2 that turns left is provided inside, and a second swirler 3 that turns right is provided outside. The premixing tube 4 is a substantially hollow frustoconical passage having a substantially circular cross section and decreasing in cross sectional area toward the outlet, and has an area at the fuel injection portion (position of the injection port of the porous fuel nozzle 1). The ratio of exit area to is 40%.
[0019]
FIG. 2 shows the case of liquid fuel. A spiral pressure fuel nozzle 5 is used as the fuel nozzle, the inner swirl is generated by the axial swirler 6 as the first swirler, and the outer swirl is generated by the radial swirler 7 as the second swirler. is doing. The cross-sectional shape of the premixing pipe 8 downstream from the fuel injection position is the same as in FIG. 1, but the outlet portion is provided with a diameter-expanding portion 9 having an enlarged cross-sectional area to help the flow expand in the radial direction and burn It encourages the development of gas recirculation areas. In the spiral pressure combustion nozzle 5, fuel swirled from a single hole is ejected to form a conical film for atomization.
[0020]
FIG. 3 shows a system in which liquid fuel is atomized by an airflow flowing through the premixing tube 10, and a thin cylindrical liquid film former 12 is provided surrounding the injection port of the central fuel injection nozzle 11. The fuel injected from the fuel injection nozzle 11 forms a liquid film on the inner surface of the liquid film former 12. The liquid film fuel is atomized at the open end of the liquid film former 12 by the shearing force of the airflow inside and outside the liquid film former 12. In order to promote atomization, a first swirler 13 and a third swirler 15 are provided inside and outside the liquid film former 12, and one mainstream second swirler 14 is provided outside the first and third swirlers 13 and 15. Is provided. The swirl direction of the airflow by the first swirler 13 in the liquid film former 12 and the swirl direction of the airflow by the main swirler 14 are opposite to each other. The swirl direction of the third swirler 15 just outside the liquid film former 12 may be either.
[0021]
FIG. 4 shows another configuration example in which the liquid fuel is atomized by the airflow flowing through the premixing pipe 16. A thin cylindrical liquid film forming device 17 is provided at the center of the premixing pipe 16 to form a liquid film. A first swirler 18 is provided inside the vessel 17. Fuel is supplied through a fuel pipe 19 from a gap between the first swirler 18 and the liquid film former 17. A third swirler 21 is provided outside the liquid film former 17, and a mainstream second swirler 20 is provided outside thereof. The swirl direction of the airflow by the first swirler 18 and the swirl direction of the airflow by the second main swirler 20 are opposite to each other. The swirl direction of the third swirler 21 just outside the liquid film former 17 may be either. The fuel forms a liquid film on the inner surface of the liquid film former 17 and is atomized by substantially the same operation as in FIG. The cross-sectional shape of the premixing pipe 16 downstream from the fuel injection position is the same as that shown in FIG. 1, but the outlet portion is provided with a diameter-expanding portion 22 whose cross-sectional area is enlarged to assist the expansion of the flow in the radial direction and combustion. It encourages the development of gas recirculation areas.
[0022]
In any of the above examples shown in FIGS. 1 to 4, the swirl directions of the inner and outer first and second swirlers are different, so that if the diameter or flow rate of the swirl flow of the inner first swirler is excessively increased, the flame holding If it becomes larger, backfire will occur. As a result of experiments and numerical simulations, swirling of the first swirler on the inner side and the second swirler on the outer side (in the case of three swirlers, the swirling air flow is divided into the inner side and the outer side in a cylinder having different swirling directions of adjacent swirlers) When the swirl numbers representing the strength of the swirler are respectively S IN and S OUT and the areas of the swirler are respectively A IN and A OUT , 0.02 <(− S IN · A IN · R IN ) / (S It has been found that good results are obtained when OUT · A OUT · R OUT ) <0.2.
[0023]
Here, the swirl number will be described.
The swirl number S N is defined by the following equation by each momentum G m around the central axis of the air flow flowing through the circular passage and the axial momentum G X. Here, R is the radius of the passage (in the case of an annular passage, the inner diameter of the outer cylinder).
[0024]
[Expression 1]
Figure 0003888619
[0025]
As a special case, there are an axial swirler shown in FIG. 5 and a radial swirler shown in FIG. The axial swirlers correspond to the swirlers 2, 3, 6, 13, 14, 15, 18, 20, 21 shown in FIGS. The radial swirler corresponds to the second swirler 7 of FIG.
[0026]
(1) In the case of the axial flow swirler As shown in FIG. 5, the swirl number S N of the axial flow swirler is expressed as follows: θ is the blade angle (angle from the axial direction), R 1 is the inner diameter, and R 2 is the outer diameter. It is expressed as:
[0027]
[Expression 2]
Figure 0003888619
[0028]
When the blade angle θ is constant regardless of r, the swirl number S N of the axial flow swirler is expressed as follows.
[0029]
[Equation 3]
Figure 0003888619
[0030]
In the case of a helical blade, since there is a relationship of tan θ = (r / R 1 ) tan θ 1 between the angle θ at the radius r and the angle θ 1 at the inner diameter, the swirl number S N of the axial flow swirler Is expressed as:
[0031]
[Expression 4]
Figure 0003888619
[0032]
(2) In the case of radial swirler As shown in FIG. 6, the swirl number S N of the radial swirler is the radius of the cylinder enveloped by the surface of the inlet guide vane, with the inner diameter of the outlet passage being R 1 , the outer diameter being R 2 . When R 3 , the height of the entrance is h, and the width is L, the following expression is obtained.
[0033]
[Equation 5]
Figure 0003888619
[0034]
In the example described above, the premixing tube is a substantially hollow truncated cone-shaped passage whose cross section is substantially circular and whose cross sectional area decreases toward the outlet. For example, a cylindrical passage having a substantially square cross section such as a square or a rectangle having a curved inner surface and a continuous curved inner surface may be used.
[0035]
【The invention's effect】
According to the present invention, the cross-sectional area of the premixing tube is narrowed toward the outlet, and the swirling directions with different swirling directions are used to reverse the inner and outer swirling directions, thereby eliminating a low-speed region near the center. Therefore, backfire from the combustion chamber is less likely to occur. Also, the premixing device does not burn out and no harmful mechanical vibrations occur.
[0036]
In addition, by making the ratio of the cross-sectional area related to the swirl strength and flow rate of the inner and outer airflows appropriate, and by providing an enlarged part at the outlet, it is possible to prevent a reduction in flashback and flame holding performance. .
[0037]
The ratio of the area A 1 / A 0 in the minimum cross section A 1 of the premix pipe downstream from the cross sectional area A 0 at the fuel injection position of the premix pipe is 0.8 (80%) in order to suppress the backflow. ) Should not be exceeded. However, if the cross-sectional area ratio is too small, the following problems occur. Since the flow velocity and area at the outlet of the premixing pipe are determined from the aspect of the performance of the combustor, if the cross-sectional area ratio is too small (the cross section of the fuel injection position is enlarged), the velocity of the air flow becomes extremely small, In the air atomization nozzle, atomization deteriorates. Therefore, it is preferable that the cross-sectional area ratio is practically not less than 0.4 (40%).
[0038]
If the inner swirl is strong and the diameter of the swirl airflow is large, the swirl at the exit of the premixing tube is weakened and flame holding performance is reduced. When it becomes larger, backfire occurs. It is when the swirl strength and area of the inner and outer swirlers have the following relationship that the swirl for flame holding can realize a large flow without backfire by the numerical calculation of the experiment and the flow.
[0039]
The swirl numbers representing the strength of the swirling of the inner and outer airflows are respectively S IN and S OUT , and the inner and outer swirler areas are respectively A IN and A OUT (the swirling directions of the adjacent swirlers are the same. when the considered as air flow), 0.02 <(- S iN · a iN · R iN) / (S OUT · a OUT · R OUT) < 0.2.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a first example of a premixing device of the present invention.
FIG. 2 is a schematic cross-sectional view showing a second example of the premixing device of the present invention.
FIG. 3 is a schematic cross-sectional view showing a third example of the premixing device of the present invention.
FIG. 4 is a schematic cross-sectional view showing a fourth example of the premixing device of the present invention.
FIG. 5 is a schematic diagram showing the structure of an axial flow swirler and the dimensions of each part thereof.
FIG. 6 is a schematic diagram showing the structure of the radial swirler and the dimensions of each part thereof.
FIG. 7 is a perspective view showing a first example of a conventional premixing tube.
FIG. 8 is a schematic cross-sectional view of a combustor provided with a first example of a conventional premixing tube.
FIG. 9 is a schematic cross-sectional view of a combustor provided with a second example of a conventional premixing tube.
FIG. 10 is a schematic cross-sectional view of a combustor provided with a third example of a conventional premixing tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Porous fuel nozzle 2,3,6,7,13,14,15,18,20,21 ... swirler 4, 8, 10, 16 ... premixing pipe 5 ... swirl as fuel supply means Type pressure fuel nozzles 9, 27, enlarged diameter portion 11, fuel injection nozzle 19 as fuel supply means, fuel pipe as fuel supply means

Claims (3)

ガスタービン燃焼器に設けられ、その中心軸の位置が中空である予混合管を備えた予混合装置であって、その中心軸の周りの旋回を伴う流れにより圧力が下がって流れの速度が遅くなり、中心軸そのものにおいて前記燃焼器内から前記予混合管に向けて気流が逆流する逆流領域が生じる状態になるため前記予混合管内の平均速度が燃焼速度より十分大きい場合であっても火炎が前記予混合管内に侵入するような予混合装置において、
出口に向けて断面積が減少する予混合管と、前記予混合管の中心に設けられた薄肉円筒状の液膜形成器と、前記液膜形成器の内部に設けられた第1スワーラと、前記第1スワーラと液膜形成器の間の隙間から燃料を供給する燃料供給手段と、前記液膜形成器の外側に設けられ前記第1スワーラと気流の旋回方向が互いに逆となっている第2スワーラとを有し、
微粒化を悪化させずに逆流を抑制するように、燃料噴射位置における前記予混合管の入口水力直径をD0 、前記予混合管の最小水力直径をD1 とした場合に、0.4≦(D1 /D0 2 ≦0.8とし、
保炎性能を低下させずに逆火を発生させないように、円周方向についての旋回方向が異なる隣接するスワーラの旋回気流を内側の旋回気流と外側の旋回気流に分けることとした場合、内側の旋回気流と外側の旋回気流の気流の旋回の強さを表すスワール数をそれぞれSIN、SOUT 、内側のスワーラと外側のスワーラの通路面積をそれぞれAIN、AOUT 、内側のスワーラと外側のスワーラの通路の外直径をそれぞれRIN、ROUT とするとき、0.02<(−SIN・AIN・RIN)/(SOUT ・AOUT ・ROUT )<0.2としたこと
を特徴とするガスタービン燃焼器の予混合装置。
A premixing device provided with a premixing tube provided in a gas turbine combustor and having a hollow central axis, and the flow is slowed down by a flow accompanied by swirling around the central axis, and the flow speed is slow. Therefore, even if the average velocity in the premixing tube is sufficiently larger than the combustion speed, a flame is generated in a state where a backflow region in which the airflow flows back from the inside of the combustor toward the premixing tube is generated in the central axis itself. In a premixing device that enters the premixing tube,
A premixing tube whose cross-sectional area decreases toward the outlet, a thin cylindrical liquid film forming device provided at the center of the premixing tube, a first swirler provided inside the liquid film forming device, A fuel supply means for supplying fuel from a gap between the first swirler and the liquid film former, and a first swirler provided outside the liquid film former and swirling directions of the airflow are opposite to each other. With 2 swirlers,
When the inlet hydraulic diameter of the premixing pipe at the fuel injection position is D 0 and the minimum hydraulic diameter of the premixing pipe is D 1 so as to suppress backflow without deteriorating atomization, 0.4 ≦ (D 1 / D 0) and 2 ≦ 0.8,
If the swirling airflow of adjacent swirlers with different swirling directions in the circumferential direction is divided into an inner swirling airflow and an outer swirling airflow so as not to cause backfire without reducing flame holding performance, The swirl numbers representing the swirl strength of the swirling airflow and the outer swirling airflow are respectively S IN and S OUT , and the passage areas of the inner swirler and the outer swirler are A IN , A OUT , the inner swirler and the outer swirler, respectively. When the outside diameter of the swirler passage is R IN and R OUT , 0.02 <(-S IN · A IN · R IN ) / (S OUT · A OUT · R OUT ) <0.2 A premixing device for a gas turbine combustor.
前記予混合管の出口に断面積が拡大する拡径部が設けられた請求項1記載のガスタービン燃焼器の予混合装置。  The premixing device for a gas turbine combustor according to claim 1, wherein the outlet of the premixing tube is provided with an enlarged diameter portion whose cross-sectional area is enlarged. 前記液膜形成器の外側に第3スワーラが設けられ、その外側に前記第2スワーラが設けられていることを特徴とする請求項1記載のガスタービン燃焼器の予混合装置。The premixing device for a gas turbine combustor according to claim 1 , wherein a third swirler is provided outside the liquid film former and the second swirler is provided outside the third swirler .
JP2001391789A 2001-12-25 2001-12-25 Gas turbine combustor premixing device Expired - Lifetime JP3888619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391789A JP3888619B2 (en) 2001-12-25 2001-12-25 Gas turbine combustor premixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001391789A JP3888619B2 (en) 2001-12-25 2001-12-25 Gas turbine combustor premixing device

Publications (2)

Publication Number Publication Date
JP2003194337A JP2003194337A (en) 2003-07-09
JP3888619B2 true JP3888619B2 (en) 2007-03-07

Family

ID=27599276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391789A Expired - Lifetime JP3888619B2 (en) 2001-12-25 2001-12-25 Gas turbine combustor premixing device

Country Status (1)

Country Link
JP (1) JP3888619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225323B1 (en) * 2012-11-08 2013-01-23 순천대학교 산학협력단 Double swirling flow combustion device for gas turbine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472863B2 (en) * 2009-06-03 2014-04-16 独立行政法人 宇宙航空研究開発機構 Staging fuel nozzle
CN110345513B (en) * 2019-07-12 2021-04-16 中国航发沈阳发动机研究所 Cyclone atomization device for staged combustion
KR102096749B1 (en) * 2019-11-25 2020-04-02 순천대학교 산학협력단 Combustion apparatus to maximize running efficiency and emission performance
CN114459024B (en) * 2022-02-11 2023-05-23 清华大学 Flame synthesis burner capable of realizing axial and tangential combined rotational flow flexible adjustment
JP7465027B1 (en) 2023-10-02 2024-04-10 江▲蘇▼大学 A gas-liquid pintle injector that uses forward and reverse swirling flows to strengthen spray combustion and cool the head of the pintle rod of the gas-liquid pintle injector.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225323B1 (en) * 2012-11-08 2013-01-23 순천대학교 산학협력단 Double swirling flow combustion device for gas turbine
WO2014073732A1 (en) * 2012-11-08 2014-05-15 순천대학교 산학협력단 Dual swirling flow combustion device for gas turbine

Also Published As

Publication number Publication date
JP2003194337A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US5626017A (en) Combustion chamber for gas turbine engine
US5251447A (en) Air fuel mixer for gas turbine combustor
US5638682A (en) Air fuel mixer for gas turbine combustor having slots at downstream end of mixing duct
JP3986348B2 (en) Fuel supply nozzle of gas turbine combustor, gas turbine combustor, and gas turbine
JP3703863B2 (en) Swirl mixer for combustor and method for burning fuel and air in combustor
US7568345B2 (en) Effervescence injector for an aero-mechanical system for injecting air/fuel mixture into a turbomachine combustion chamber
US9518740B2 (en) Axial swirler for a gas turbine burner
EP0500256B1 (en) Air fuel mixer for gas turbine combustor
JP3305909B2 (en) Premix injection device
EP2530382A2 (en) Fuel injector
JP3828969B2 (en) Premix burner
JPH07310909A (en) Self-ignition type combustion chamber
JPH06323540A (en) Combustion chamber
JP2012251742A (en) Fuel injector
US3975141A (en) Combustion liner swirler
EP0849531B1 (en) Method of combustion with low acoustics
JP2008128631A (en) Device for injecting fuel-air mixture, combustion chamber and turbomachine equipped with such device
JPH04260722A (en) Combustion chamber of gas turbine
JPH06213450A (en) Fuel injection nozzle
US5896739A (en) Method of disgorging flames from a two stream tangential entry nozzle
JP3888619B2 (en) Gas turbine combustor premixing device
JP2999311B2 (en) Method and burner for minimizing NOx emissions from combustion
JPH09166326A (en) Gas turbine combustion device
JP3863631B2 (en) Burner
JP3889079B2 (en) Burner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060906

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3888619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term