JP3886262B2 - Spherical silica particles and method for producing the same - Google Patents

Spherical silica particles and method for producing the same Download PDF

Info

Publication number
JP3886262B2
JP3886262B2 JP25688398A JP25688398A JP3886262B2 JP 3886262 B2 JP3886262 B2 JP 3886262B2 JP 25688398 A JP25688398 A JP 25688398A JP 25688398 A JP25688398 A JP 25688398A JP 3886262 B2 JP3886262 B2 JP 3886262B2
Authority
JP
Japan
Prior art keywords
spherical silica
silica particles
water
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25688398A
Other languages
Japanese (ja)
Other versions
JP2000086228A (en
Inventor
研也 善場
晋 水谷
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP25688398A priority Critical patent/JP3886262B2/en
Publication of JP2000086228A publication Critical patent/JP2000086228A/en
Application granted granted Critical
Publication of JP3886262B2 publication Critical patent/JP3886262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体樹脂封止用に好適な充填材としての球状シリカ粒子及びその製造方法に関するものである。
【0002】
【従来の技術】
純度の高いシリカを高温で溶融し、冷却したものは非晶質網目構造を持ち、低膨脹性で耐熱衝撃性があり、熱伝導率が低いため耐熱材料として古くから用いられている。また、その粉末も化学的に安定で、高い絶縁性を持ち、高周波誘電体損失も少ないことから、半導体封止樹脂フィラーに用いられ、特に球状のものは流動性や充填性の向上に役立っている。
【0003】
この球状シリカ粒子を充填材として半導体封止剤に用いる場合、空気中の湿分による電気絶縁性の劣化は素子の性能上好ましくないことであった。この為、従来はシリカ粒子のイオン水抽出電導度を測定することによって総合的な湿分劣化特性として評価を行っていた。原因となる個々のイオン性不純物の解明、その低減方法も不十分であった。
【0004】
この為、イオン水抽出電導度を低減するため特開平8−119620号公報には流動層内で微細シリカに吸着しているハロゲン化物を水蒸気により脱離する方法が報告されている。しかしながら、この方法は流動層形成温度が250〜600℃と高温なため、球状シリカ粒子の捕集装置を損傷するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は上記状況に鑑みてなされたもので、球状シリカ粒子の抽出水電導度の低い、つまりイオン性不純物の吸着の少ない球状シリカ粒子、及びその球状シリカ粒子を安定供給できる製造方法を見いだすことを目的とする。
【0006】
【課題を達成するための手段】
本発明は製造した球状シリカ粒子について、球状シリカ粒子の捕集温度、加熱時間、抽出水電導度、可燃性ガスの硫黄分含有量、捕集装置劣化によるコンタミとの関係に着目し調査した結果、球状シリカ粒子の抽出水電導度の低い球状シリカ粒子、及びその球状シリカ粒子を安定供給することが可能な製造方法を見いだし、本発明に到達した。
【0007】
すなわち、本発明は、シリカ質からなる球状粉体であって、以下の方法で測定された20℃の水に溶出可能な窒素分が5ppb以下、同じく硫黄分が50ppb以下、同じく塩素分が10ppb以下であり、これらの窒素分、硫黄分、及び塩素分の総和が65ppb以下であることを特徴とする球状シリカ粒子である。
[20℃の水に溶出可能な窒素分、硫黄分、塩素分の測定方法]
球状シリカ粒子5重量部を脱イオン水70重量部中に20℃で12時間浸漬し、シリカ表面に吸着しているイオン水可溶な窒素、塩素、硫黄化合物を抽出させ、その抽出水をイオンクロマトグラフィーにかけて各成分を測定し、球状シリカ粒子中の含有量として算出する。
【0008】
また、本発明は、シリカ原料を、硫黄分含有量が3ppm以下の可燃性ガスを用いて形成された火炎で溶融処理した後、得られた球状シリカ粒子を110℃〜300℃の温度範囲で少なくとも、温度・時間積=温度(℃)×時間(Hrs)≧250、となるように加熱することを特徴とする上記球状シリカ粒子の製造方法である。
0009
【発明の実施の形態】
本発明でいう球状シリカ粒子は、例えばシリカ質原料を可燃性ガスを用いた火炎中に溶射し、溶融球状化処理することにより得ることが出来る。球状化後の粒子は燃焼後の排ガスと共に冷却され、球状のまま固化する。球状化直後のシリカ粒子は表面の活性が強く、ガス中のイオン性不純物が吸着し易い。特に微粉の球状シリカであるほど比表面積が高く吸着が大きい傾向がある。そのため、抽出水電導度も上昇し易い。
0010
火炎中で加熱されて球状化したシリカは、順次冷却されながら、エアーセパレーター等によって粒度別に分級されながら最終的にはバッグフィルター等の捕集設備で回収され、保温回収タンクで貯蔵される。球状シリカの粒度は好ましくは20μm以下、特に好ましくは10μm以下の粒径に対して本発明の方法を適用するのが効果的である。保温回収タンクの温度が低いか、或いは露点以下に一旦冷却すると、結露により、球状シリカ粒子の水分含有量が増加する。そのため、燃焼時に発生する窒素酸化物等のイオン性不純物がシリカ粒子に溶け込み、球状シリカ粒子の抽出水電導度を上昇させる。シリカ粒子の加熱は、この球状化後に一度も100℃以下に曝さないで、保温回収タンクで行うのが最も好適である。保温回収タンクに乾燥したイオン性不純物の少ない高温空気で置換すると更に好適である。保温回収タンクの加熱処理温度(捕集温度)は110〜300℃にする必要がある。好ましくは130〜250℃とする。加熱温度が300℃より高い場合には保温回収タンク自体の劣化が進行し易く、腐食による異物、コンタミが球状シリカ粒子に混入する問題が生じる。
0011
加熱時間は少なくとも温度・時間積すなわち、温度(℃)×時間(Hr s)≧250となるように温度及び加熱時間を設定する必要がある。好ましくは300以上、特に好ましくは400以上である。一旦冷却した、水に可溶な窒素、塩素、硫黄を多く含む球状シリカを再加熱して処理する時は、320以上となるように加熱時間を設定するのが好ましい。上限については、設備の効率的運用を考えると、最大1000以下とするのが良い。
0012
火炎を形成する可燃性ガスについては、アセチレン、エチレン、プロパン、ブタン等の炭化水素系のガスあるいはこれらの混合ガスを適宜用いる事ができる。可燃性ガス中の硫黄は3ppm以下、好ましくは2ppm以下、特に好ましくは1ppm以下とする。通常の可燃性ガスは硫黄分が3〜7ppmと硫黄含有量が多く、抽出水電導度は上昇する。燃焼支燃性ガスは酸素、酸素リッチ空気、あるいは空気のいずれでも良いが、塩素、硫黄分は少ないものが好ましい。
0013
本発明において、20℃の水に溶出可能な窒素分、硫黄分、塩素分の測定方法は、適切にサンプリングした球状シリカ粒子5重量部を脱イオン水70重量部中に20℃で12時間浸漬し、シリカ表面に吸着しているイオン水可溶な窒素、塩素、硫黄化合物を抽出させる。その抽出水を市販のイオンクロマトグラフィー(DIONEX社製、DX−100)にかけて各成分を測定し、シリカ中の含有量として算出する。
0014
また、抽出水電導度はシリカ粉20重量部を、20℃の脱イオン水100重量部中に30分間浸漬し抽出水とする、その抽出水を電導度計(東亜電波工業社製、CM−20E型)にかけて測定した。球状シリカ粉の抽出水電導度は50μS/cm以下が望ましい。また、シリカ中のコンタミ量の判断は目視で行った。
0015
【実施例】
次に実施例を図1に示すような球状シリカ粒子の製造装置を用いた場合を例として説明する。球状化バーナー1と冷却ガス(空気)吸入口2を有する直胴型で竪型の冷却塔において、冷却塔内壁7の外側に水冷ジャケット外壁5を設け、冷却塔を2重管構造とした。水冷ジャケット外壁5には、冷却水入口3と冷却水出口4を設けた。冷却水貯蔵部6の最も下方の位置(冷却帯8の終端部かつ冷却塔径中心の位置)と、保温回収タンク19の内部とに温度計16を設けた。冷却塔下部には、球状化された粒子を1次回収する為の粒子1次回収口10と、粒子2次捕集装置12への排気連絡口9とを配置し、粒子2次捕集装置12としてバグフィルターを用い粒子の2次捕集を行い、粒子2次回収口11より回収できるようにした。さらに、燃焼排ガス及び空気の吸引装置として生成ガス排気用吸引ブロワー13を設置し、ガス排出口15の部分より放出される排ガス量を制御できるようにガス量コントロール用バルブ14を設けた。さらに、保温回収タンク19を設置し、ロータリーバルブ18で球状シリカの滞留量を調節できるようにした。また、空気導入口20、空気排出口21を設け保温回収タンク内の温度を調節できるようにした。
0016
実操業は、塔内径1.0m、冷却帯長さ3.0mの冷却塔を用い、球状化バーナーより平均粒径5μmの結晶性シリカ粉末10kg/Hrを酸素ガスに同伴させて供給し、プロパンガス3N /hと酸素15N /hで燃焼させた火炎流17により球状化を行った。生成ガス排気用吸引ブロワー出口のガス量コントロール用バルブの開度を調節し、吸引空気量の調節を行なった。この時の冷却帯8の終端部温度は421℃を示した。また、硫黄分濃度が異なるプロパンを種々用いて製造を行った。生成した球状粒子の粗粉は粒子1次回収口10より、また微粉部分は粒子2次捕集装置12であるバッグフィルターよりそれぞれ捕集され、払い落とされた球状シリカはバッグフィルターの底部から保温回収タンク19に堆積し、ロータリーバルブ18を通して回収した。ロータリーバルブ18の回転数を調節することにより、排出量を制御して、保温回収タンク内の堆積粉の滞留時間を調節し、種々の温度・時間で貯蔵を行った。粒子2次回収口11で回収した球状シリカの平均粒径は2μm、比表面積36 gで真円度0.98であった。操業条件と得られた球状シリカの特性を表1にまとめて示す。
0017
実施例1〜5は、保温回収タンク内の温度110℃以上300℃以下、加熱時間時間又は4時間、可燃性ガスの硫黄分含有量3ppm以下とした場合であり、球状シリカ粒子の抽出水電導度はいずれも50μS/cm以下を示した。また、20℃の水に溶出可能なイオン性不純物吸着量はいずれも、窒素分5ppb以下、硫黄分50ppb以下、塩素分10ppb以下、更に窒素分、硫黄分、塩素分の総和は65ppb以下であった。保温回収タンクの劣化によるコンタミ混入も問題なかった。
0018
参考例1、2は、保温回収タンク内の温度が100℃以下の場合であるが、球状シリカ粒子の抽出水電導度は50μS/cmを超え、イオン性不純物吸着量も多かった。参考例3のように、保温回収タンク内の温度が300℃を超えると、球状シリカ粒子の窒素、塩素分は低いが、保温回収タンクの劣化が確認され、捕集品の中に劣化によるコンタミが多く見受けられた。参考例4のように、加熱温度は高いが保温回収タンク内の滞留時間が2時間と短く、温度時間積が不十分であると、球状シリカ粒子の抽出水電導度は50μS/cmを超えてしまい、イオン性不純物吸着量も多かった。また、参考例5のように、可燃性ガスの硫黄分が3ppmをこえると、球状シリカ粒子の窒素分、塩素分は低いが、硫黄分は50ppbを超えた。
0019
【表1】

Figure 0003886262
0020
【発明の効果】
本発明による水に溶出可能なイオン性不純物の少ない球状シリカ粒子は抽出水電導度を低下させる。したがって、半導体封止材の充填材として用いたとき、耐湿性、耐水性に優れた素子を得ることができる。また、その球状シリカ粒子を安定して製造することが可能となる。
【図面の簡単な説明】
【図1】球状粒子製造装置の概観図
【符号の説明】
1 球状化バーナー
2 冷却ガス(空気)吸入口
3 冷却水入口
4 冷却水出口
5 水冷ジャケット外壁
6 冷却水貯蔵部
7 冷却塔内壁
8 冷却帯
9 排気連絡口
10 粒子1次回収口
11 粒子2次回収口
12 粒子2次捕集装置
13 生成ガス排気用吸引ブロワー
14 ガス量コントロー用バルブ
15 ガス排出口
16 温度計
17 火炎流
18 ロータリーバルブ
19 保温回収タンク
20 空気導入口
21 空気排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to spherical silica particles as a filler suitable for semiconductor resin sealing and a method for producing the same.
[0002]
[Prior art]
A high-purity silica melted at a high temperature and cooled has an amorphous network structure, has low expansion and thermal shock resistance, and has a low thermal conductivity, and has long been used as a heat-resistant material. Also, the powder is also chemically stable, has a high insulating property, since the less high frequency dielectric loss, used in the semiconductor sealing resin filler, in particular a spherical helps improve fluidity and filling property Yes.
[0003]
When these spherical silica particles are used as a filler in a semiconductor encapsulant, the deterioration of electrical insulation due to moisture in the air is not preferable in terms of device performance. For this reason, conventionally, the ionic water extraction conductivity of silica particles has been measured to evaluate the comprehensive moisture deterioration characteristics. Elucidation of individual ionic impurities that cause it and methods for reducing it were also insufficient.
[0004]
Therefore, the Japanese Patent Laid-Open 8-119620 discloses for reducing ion water extraction conductivity has been reported a method of leaving a halide adsorbed on the finely divided silica in a fluidized layer by steam. However, since this method has a fluidized bed formation temperature as high as 250 to 600 ° C., there is a problem that the collecting device for spherical silica particles is damaged.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and finds spherical silica particles having low extraction water conductivity of spherical silica particles, that is, less adsorption of ionic impurities, and a production method capable of stably supplying the spherical silica particles. With the goal.
[0006]
[Means for achieving the object]
The present invention is a result of investigating the spherical silica particles produced by focusing attention on the collection temperature of spherical silica particles, heating time, extraction water conductivity, sulfur content of combustible gas, and contamination due to deterioration of the collector. The present inventors have found a spherical silica particle having a low extraction water conductivity of spherical silica particles and a production method capable of stably supplying the spherical silica particles, and have reached the present invention.
[0007]
That is, the present invention is a spherical powder made of siliceous, and the nitrogen content that can be eluted in water at 20 ° C. measured by the following method is 5 ppb or less, the sulfur content is 50 ppb or less, and the chlorine content is 10 ppb. It is the following, It is the spherical silica particle characterized by the sum total of these nitrogen content, sulfur content, and chlorine content being 65 ppb or less.
[Measurement method of nitrogen, sulfur and chlorine that can be dissolved in water at 20 ℃]
Immerse 5 parts by weight of spherical silica particles in 70 parts by weight of deionized water at 20 ° C. for 12 hours to extract ionic water-soluble nitrogen, chlorine and sulfur compounds adsorbed on the silica surface, and ionize the extracted water. Each component is measured by chromatography and calculated as the content in the spherical silica particles.
[0008]
Moreover, this invention melt | dissolves the silica raw material by the flame formed using the combustible gas whose sulfur content is 3 ppm or less, and obtained spherical silica particle in the temperature range of 110 to 300 degreeC. It is a method for producing the spherical silica particles, wherein heating is performed so that at least temperature / time product = temperature (° C.) × time (Hrs) ≧ 250.
[ 0009 ]
DETAILED DESCRIPTION OF THE INVENTION
The spherical silica particles referred to in the present invention can be obtained, for example, by spraying a siliceous raw material in a flame using a combustible gas and subjecting it to a melt spheroidization treatment. The particles after spheroidization are cooled together with the exhaust gas after combustion, and solidify in the form of spheres. The silica particles immediately after spheronization have a strong surface activity and are easy to adsorb ionic impurities in the gas. In particular, the finer the spherical silica, the higher the specific surface area and the greater the adsorption. Therefore, the extracted water conductivity is likely to increase.
[ 0010 ]
The silica that has been spheroidized by heating in a flame is finally recovered by a collection facility such as a bag filter while being classified by particle size by an air separator or the like while being cooled sequentially, and is stored in a heat retaining tank. It is effective to apply the method of the present invention to a spherical silica having a particle size of preferably 20 μm or less, particularly preferably 10 μm or less. When the temperature of the heat retaining tank is low or once cooled below the dew point, the moisture content of the spherical silica particles increases due to condensation. For this reason, ionic impurities such as nitrogen oxides generated during combustion dissolve in the silica particles, and the extraction water conductivity of the spherical silica particles is increased. The heating of the silica particles is most preferably performed in a heat-recovery recovery tank without being exposed to 100 ° C. or lower once after the spheroidization. It is more preferable that the heat-recovery tank is replaced with dry high-temperature air with little ionic impurities. The heat treatment temperature (collection temperature) of the heat retention and recovery tank needs to be 110 to 300 ° C. Preferably it is 130-250 degreeC. When the heating temperature is higher than 300 ° C., the heat retention and recovery tank itself is easily deteriorated, and there arises a problem that foreign matter and contamination due to corrosion are mixed into the spherical silica particles.
[ 0011 ]
It is necessary to set the temperature and the heating time so that the heating time is at least the temperature-time product, that is, temperature (° C.) × time ( Hr s ) ≧ 250. Preferably it is 300 or more, Especially preferably, it is 400 or more. When the spherical silica containing a large amount of nitrogen, chlorine, and sulfur, which is once cooled, is heated again, it is preferable to set the heating time to be 320 or more. The upper limit is preferably set to 1000 or less in consideration of efficient operation of facilities.
[ 0012 ]
As the combustible gas forming the flame, a hydrocarbon-based gas such as acetylene, ethylene, propane, or butane or a mixed gas thereof can be appropriately used. Sulfur in the combustible gas is 3 ppm or less, preferably 2 ppm or less, particularly preferably 1 ppm or less. A normal combustible gas has a sulfur content of 3 to 7 ppm and a high sulfur content, and the extracted water conductivity increases. The combustion-supporting gas may be either oxygen, oxygen-rich air, or air, but preferably has a low chlorine and sulfur content.
[ 0013 ]
In the present invention, a nitrogen, sulfur, and chlorine content that can be eluted in water at 20 ° C is measured by immersing 5 parts by weight of appropriately sampled spherical silica particles in 70 parts by weight of deionized water at 20 ° C for 12 hours. Then , ion water-soluble nitrogen, chlorine and sulfur compounds adsorbed on the silica surface are extracted. The extracted water is subjected to commercially available ion chromatography (DIONEX, DX-100), each component is measured, and the content in silica is calculated.
[ 0014 ]
The extracted water conductivity is obtained by immersing 20 parts by weight of silica powder in 100 parts by weight of deionized water at 20 ° C. for 30 minutes to obtain extracted water. The extracted water is a conductivity meter (CM- 20E type) and measured. The extraction water conductivity of the spherical silica powder is desirably 50 μS / cm or less. Moreover, the judgment of the amount of contamination in silica was performed visually.
[ 0015 ]
【Example】
Next, the case where the apparatus for producing spherical silica particles as shown in FIG. 1 is used will be described as an example. In a straight barrel type saddle type cooling tower having a spheroidizing burner 1 and a cooling gas (air) suction port 2, a water cooling jacket outer wall 5 is provided outside the cooling tower inner wall 7, and the cooling tower has a double tube structure. A cooling water inlet 3 and a cooling water outlet 4 are provided on the outer wall 5 of the water cooling jacket . Lowermost position of the cooling water reservoir 6 and the (terminal portion and the cooling tower shape center position of the cooling zone 8), the thermometer 16 is provided on the inside of the insulation recovery tank 19. In the lower part of the cooling tower, a primary particle recovery port 10 for primary recovery of the spheroidized particles and an exhaust communication port 9 to the secondary particle collection device 12 are arranged, and the secondary particle collection device perform secondary collection of particles with a bar Gufiru coater with a 12, and so can be recovered from the particles secondary recovery port 11. Further, a suction blower 13 for exhausting generated gas is installed as a suction device for combustion exhaust gas and air, and a gas amount control valve 14 is provided so that the amount of exhaust gas discharged from the gas discharge port 15 can be controlled. Furthermore, a heat retaining tank 19 was installed so that the amount of spherical silica retained could be adjusted with the rotary valve 18. In addition, an air inlet 20 and an air outlet 21 are provided so that the temperature in the heat collection tank can be adjusted.
[ 0016 ]
Actual operation, the tower inner diameter 1.0 m, using a cooling tower cooling zone length 3.0 m, was fed a crystalline silica powder 10 kg / Hr of average particle size 5μm than spheroidization burner is entrained in an oxygen gas, propane spheroidizing was performed by gas 3N m 3 / h and oxygen 15N m 3 / h flame stream 17 is burned in. The opening amount of the gas amount control valve at the outlet of the generated gas exhaust suction blower was adjusted to adjust the amount of suction air. The end portion temperature of the cooling zone 8 at this time was 421 ° C. Moreover, it manufactured using various propane from which a sulfur content density | concentration differs. From the resulting coarse powder particles primary recovery port 10 of the spherical particles and fines portion is collected respectively from the bag filter is a particle secondary trap 12, brushed off the spherical silica is from the bottom of the bag filter The heat accumulated in the heat collection tank 19 and collected through the rotary valve 18 . By adjusting the number of rotations of the rotary valve 18, the discharge amount was controlled, the residence time of the accumulated powder in the heat retaining tank was adjusted, and storage was performed at various temperatures and times. The average particle diameter of the spherical silica recovered at the particle secondary recovery port 11 was 2 μm, the specific surface area was 36 m 2 / g , and the roundness was 0.98. The properties of the resulting spherical silica and operating conditions to shown in Table 1.
[ 0017 ]
Examples 1-5, the temperature of the heat insulation recovery tank 110 ° C. or higher 300 ° C. or less, 3 or 4 hours the heating time, a case where the sulfur content of the combustible gas was 3ppm or less, spherical silica particles The extracted water conductivities of all showed 50 μS / cm or less. In addition, the adsorption amount of ionic impurities that can be eluted in water at 20 ° C. is 5 ppb or less for nitrogen, 50 ppb or less for sulfur, 10 ppb or less for chlorine, and the sum of nitrogen, sulfur, and chlorine is 65 ppb or less. There was. There was no problem with contamination due to deterioration of the heat collection tank .
[ 0018 ]
Reference Examples 1 and 2 are cases where the temperature in the heat retention and recovery tank was 100 ° C. or lower, but the extraction water conductivity of the spherical silica particles exceeded 50 μS / cm , and the ionic impurity adsorption amount was also large. As in Reference Example 3, when the temperature in the heat retention tank exceeds 300 ° C., the nitrogen content and chlorine content of the spherical silica particles are low, but the heat retention recovery tank is confirmed to be deteriorated, and the collected product is deteriorated. There was a lot of contamination. As in Reference Example 4, when the heating temperature is high but the residence time in the heat retaining tank is as short as 2 hours and the temperature-time product is insufficient, the extraction water conductivity of the spherical silica particles exceeds 50 μS / cm. As a result, the amount of ionic impurities adsorbed was also large. Further, as in Reference Example 5, when the sulfur content of the combustible gas exceeded 3 ppm, the nitrogen content and chlorine content of the spherical silica particles were low, but the sulfur content exceeded 50 ppb.
[ 0019 ]
[Table 1]
Figure 0003886262
[ 0020 ]
【The invention's effect】
The spherical silica particles with few ionic impurities that can be eluted in water according to the present invention lower the extraction water conductivity. Therefore, an element excellent in moisture resistance and water resistance when used as a filler for a semiconductor sealing material can be obtained. Moreover, it becomes possible to manufacture the spherical silica particles stably.
[Brief description of the drawings]
[Fig. 1] Overview of spherical particle production equipment [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spheroidizing burner 2 Cooling gas (air) inlet 3 Cooling water inlet 4 Cooling water outlet 5 Water cooling jacket outer wall 6 Cooling water storage part 7 Cooling tower inner wall 8 Cooling zone 9 Exhaust communication port 10 Particle primary recovery port 11 Particle secondary Recovery port 12 Particle secondary collection device 13 Suction blower 14 for generating gas exhaust Gas control valve 15 Gas exhaust port 16 Thermometer 17 Flame flow 18 Rotary valve 19 Heat collection tank 20 Air inlet 21 Air exhaust port

Claims (2)

シリカ質からなる球状粉体であって、以下の方法で測定された20℃の水に溶出可能な窒素分が5ppb以下、同じく硫黄分が50ppb以下、同じく塩素分が10ppb以下であり、これらの窒素分、硫黄分、及び塩素分の総和が65ppb以下であることを特徴とする球状シリカ粒子。
[20℃の水に溶出可能な窒素分、硫黄分、塩素分の測定方法]
球状シリカ粒子5重量部を脱イオン水70重量部中に20℃で12時間浸漬し、シリカ表面に吸着しているイオン水可溶な窒素、塩素、硫黄化合物を抽出させ、その抽出水をイオンクロマトグラフィーにかけて各成分を測定し、球状シリカ粒子中の含有量として算出する。
A spherical powder made of siliceous, having a nitrogen content of 5 ppb or less, a sulfur content of 50 ppb or less, and a chlorine content of 10 ppb or less, which can be eluted in water at 20 ° C. measured by the following method. A spherical silica particle having a total of nitrogen, sulfur, and chlorine of 65 ppb or less.
[Measurement method of nitrogen, sulfur and chlorine that can be dissolved in water at 20 ℃]
Immerse 5 parts by weight of spherical silica particles in 70 parts by weight of deionized water at 20 ° C. for 12 hours to extract ionic water-soluble nitrogen, chlorine and sulfur compounds adsorbed on the silica surface, and ionize the extracted water. Each component is measured by chromatography and calculated as the content in the spherical silica particles.
シリカ原料を、硫黄分含有量が3ppm以下の可燃性ガスを用いて形成された火炎で溶融処理した後、得られた球状シリカ粒子を110℃〜300℃の温度範囲で少なくとも、温度・時間積=温度(℃)×時間(Hrs)≧250、となるように加熱することを特徴とする請求項1に記載の球状シリカ粒子の製造方法。After melting the silica raw material with a flame formed using a combustible gas having a sulfur content of 3 ppm or less, the obtained spherical silica particles are at least in a temperature range of 110 ° C. to 300 ° C. The method for producing spherical silica particles according to claim 1, wherein heating is performed so that = temperature (° C.) × time (Hrs) ≧ 250.
JP25688398A 1998-09-10 1998-09-10 Spherical silica particles and method for producing the same Expired - Fee Related JP3886262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25688398A JP3886262B2 (en) 1998-09-10 1998-09-10 Spherical silica particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25688398A JP3886262B2 (en) 1998-09-10 1998-09-10 Spherical silica particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000086228A JP2000086228A (en) 2000-03-28
JP3886262B2 true JP3886262B2 (en) 2007-02-28

Family

ID=17298745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25688398A Expired - Fee Related JP3886262B2 (en) 1998-09-10 1998-09-10 Spherical silica particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3886262B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4163919B2 (en) * 2001-09-25 2008-10-08 三菱化学株式会社 Silica and method for producing silica
JP6221182B2 (en) * 2014-10-27 2017-11-01 大陽日酸株式会社 Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
EP3950588B1 (en) * 2019-03-26 2023-11-29 Denka Company Limited Spherical silica powder
WO2023153355A1 (en) * 2022-02-09 2023-08-17 デンカ株式会社 Spherical silica powder

Also Published As

Publication number Publication date
JP2000086228A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
KR101388146B1 (en) Low cost routes to high purity silicon and derivatives thereof
US5198206A (en) Condensing sulfuric acid vapors to produce sulfuric acid
US20110129399A1 (en) High purity and free flowing metal oxides powder
JP5644109B2 (en) Method for producing boron-containing glass product and method for purifying exhaust gas generated during production of boron-containing glass product
CN101512042A (en) Plasma deposition apparatus and method for making polycrystalline silicon
CN100473605C (en) Method and apparatus for production of amorphous silica from silicon and silicon-containing materials
JP3886262B2 (en) Spherical silica particles and method for producing the same
CN108070398A (en) Carbon roasting furnace asphalt smoke gas purifying recoverying and utilizing method
JP2004125330A (en) Cleaning method and device for blast furnace gas
US4206722A (en) Heat recovery process for fired power plants
JP2011212531A (en) Alkylsilanol removing material, and method for manufacturing the same
EP0177894A2 (en) Method of producing metallic silicon particularly for use in the photovoltaic industry
JP2000247658A5 (en)
US20210284541A1 (en) Silicon Fine Particles and Method for Producing the Same
CN106512644A (en) Multi-layer adsorption tower for purifying electronic grade polycrystalline silicon tail gas
FR2651448A1 (en) METHOD AND APPARATUS FOR SEPARATING PARTICLES IN AN ELECTROSTATIC PRECIPITATION APPARATUS.
JPS6220129B2 (en)
JP4090534B2 (en) Method for producing gas absorbent
CN206593472U (en) Useless negative electrode superhigh-temperature calcination kiln and calciner plant
KR910005049B1 (en) Method for apparatus arsenic bloom
WO2020213472A1 (en) Method for producing silicon microparticles
JP3126517B2 (en) High temperature coal gas impurity separation equipment
JP7002170B2 (en) Graphite powder manufacturing method
JPH1170315A (en) Treatment of high temperature gas
RU2023735C1 (en) Apparatus for producing zinc oxide used in manufacture of varistors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees