JP3885371B2 - Dispersion type EL device - Google Patents

Dispersion type EL device Download PDF

Info

Publication number
JP3885371B2
JP3885371B2 JP19851098A JP19851098A JP3885371B2 JP 3885371 B2 JP3885371 B2 JP 3885371B2 JP 19851098 A JP19851098 A JP 19851098A JP 19851098 A JP19851098 A JP 19851098A JP 3885371 B2 JP3885371 B2 JP 3885371B2
Authority
JP
Japan
Prior art keywords
light
layer
dielectric
layers
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19851098A
Other languages
Japanese (ja)
Other versions
JP2000030863A (en
Inventor
功二 田邉
平治 生駒
直弘 西岡
陽介 近久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19851098A priority Critical patent/JP3885371B2/en
Priority to TW088110471A priority patent/TW420965B/en
Priority to EP05075366A priority patent/EP1555854A3/en
Priority to DE69935376T priority patent/DE69935376T2/en
Priority to EP99305368A priority patent/EP0973358B1/en
Priority to US09/349,406 priority patent/US6479930B1/en
Priority to KR1019990028438A priority patent/KR100316488B1/en
Publication of JP2000030863A publication Critical patent/JP2000030863A/en
Priority to HK00104078A priority patent/HK1024819A1/en
Priority to KR1020010034369A priority patent/KR100316489B1/en
Application granted granted Critical
Publication of JP3885371B2 publication Critical patent/JP3885371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器の表示部や操作部にバックライト等として使用される分散型EL素子に関するものである。
【0002】
【従来の技術】
近年、各種電子機器の多様化が進むにつれて、暗闇でも表示部の識別や操作が可能なように表示パネルやLCDの後方に照光用のバックライトを備えたものが増え、そのバックライト用として分散型EL素子が多く使用されるようになってきた。
【0003】
このような従来の分散型EL素子について、図6を用いて説明する。
【0004】
なお、構成を判り易くするために、図面は厚さ方向の寸法を拡大して表わしている。
【0005】
図6は従来の分散型EL素子の断面図であり、同図において、1はポリエチレンテレフタレート等の可撓性を有する光透過性の絶縁フィルムで、この片面の全面にスパッタ法または電子ビーム法により酸化インジュウム錫(以下、ITOと記載する)からなる光透過性電極層2が形成され、さらにこの上に、フッ素ゴムやシアノ系樹脂等の高誘電性樹脂に発光の母材となる硫化亜鉛等の蛍光体粉末を分散させた発光体層3や、同じく高誘電性樹脂にチタン酸バリウム等の誘電性粉末を分散させた誘電体層4、誘電体層4に接続された銀やカーボンレジン系の背面電極層5、エポキシ樹脂やポリエステル樹脂等の絶縁層6が順次重ねて印刷形成されている。
【0006】
そして、銀やカーボンレジン系の配線パターン7Aと7Bの端部が光透過性電極層2と背面電極層5に接続されて、分散型EL素子が構成されている。
【0007】
以上のような構成の分散型EL素子を電子機器に装着し、電子機器の回路(図示せず)から、光透過性電極層2と背面電極層5に接続された配線パターン7Aと7Bの間に交流電圧を印加すると、分散型EL素子の発光体層3が駆動して発光し、この光が電子機器の表示パネルやLCD等を後方から照光するため、周囲が暗い場合でも表示部や操作部の識別を明確に行うことができるものであった。
【0008】
また、この時の分散型EL素子の発光色は、発光体層3の高誘電性樹脂内に分散させる蛍光体粉末の種類によって決まるが、高誘電性樹脂内に蛍光染料や蛍光顔料を分散させたり、或いは絶縁フィルム1を着色されたものにすることによって、蛍光体粉末の発光色以外の色に変換することもできる。
【0009】
【発明が解決しようとする課題】
しかしながら上記従来の分散型EL素子においては、発光体層3の高誘電性樹脂内に蛍光染料や蛍光顔料を分散させたり、絶縁フィルム1を着色されたものにして発光色以外の色に変換したとしても、単色の発光色しか得ることができず、複数の発光色を得ようとすると、複数の分散型EL素子を電子機器に装着する必要があり、使用部品数が増加すると共に、この装着作業に時間を要し高価なものとなるという課題があった。
【0010】
本発明は、このような従来の課題を解決するものであり、単一の分散型EL素子で様々な発光色が得られ、電子機器への装着も容易で安価な多色発光型の分散型EL素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明は、光透過性の絶縁フィルム片面の全面または所定の箇所に、複数の光透過性電極層及び蛍光体粉末を分散した高誘電性樹脂からなる複数の発光体層を交互に重ねて形成し、最後の発光体層上に背面電極層を印刷形成した構成の分散型EL素子において、上記各発光体層の上に、高誘電性樹脂に高誘電性の誘電性粉末であるチタン酸バリウムを分散した誘電体層をそれぞれ重ねて印刷形成したものにする上、上記光透過性の絶縁フィルムに近い側の1層目の上記誘電体層の上記チタン酸バリウムの添加量を、上記1層目の誘電体層に対し上記背面電極層側となる2層目の上記誘電体層の上記チタン酸バリウムの添加量より少ない比率のものとし、かつ上記1層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して2〜60重量%で、上記2層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して60〜95重量%であるものにするものである。
【0012】
これにより、絶縁フィルムに近い側の1層目の誘電体層での光の遮断が少なくて様々な発光色が得られる安価な分散型EL素子を得ることができる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、光透過性の絶縁フィルムと、この絶縁フィルム片面の全面または所定の箇所に交互に重ねて形成された、複数の光透過性電極層及び蛍光体粉末を分散した高誘電性樹脂からなり発光色の異なる複数の発光体層と、最後の発光体層上に印刷形成された背面電極層からなる分散型EL素子であって、上記各発光体層の上に、高誘電性樹脂に高誘電性の誘電性粉末であるチタン酸バリウムを分散した誘電体層がそれぞれ重ねて印刷形成されると共に、上記光透過性の絶縁フィルムに近い側の1層目の上記誘電体層の上記チタン酸バリウムの添加量が、上記1層目の誘電体層に対し上記背面電極層側となる2層目の上記誘電体層の上記チタン酸バリウムの添加量より少ない比率のものとされ、かつ上記1層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して2〜60重量%で、上記2層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して60〜95重量%であるものとされた分散型EL素子としたものであり、複数の発光体層を個別または同時に発光させることによって、絶縁フィルムに近い側の1層目の誘電体層での光の遮断が少なくて様々な発光色が得られ、安価な多色発光型の分散型EL素子を得ることができるという作用を有する。
【0014】
以下、本発明の実施の形態について、図1〜図5を用いて説明する。
【0015】
なお、構成を判り易くするために、各図面は厚さ方向の寸法を拡大して表わしている。
【0016】
また、従来の技術の項で説明した構成と同一構成の部分には同一符号を付して詳細な説明を省略する。
【0017】
(実施の形態1)
図1は本発明の第1の実施の形態による分散型EL素子の断面図、図2は同外観斜視図であり、同図において、1はポリエチレンテレフタレート等の可撓性を有する光透過性の絶縁フィルムで、この片面の全面または所定の箇所に、針状ITO等の光透過性導電粉末を分散したフェノキシ樹脂やエポキシ樹脂、フッ素ゴム等の可撓性を有する光透過性樹脂からなる複数の光透過性電極層12A,12Bと、発光の母材となる硫化亜鉛等の蛍光体粉末を分散したフッ素ゴムやシアノ系樹脂等の高誘電性樹脂からなり発光色の異なる複数の発光体層13A,13Bが、交互に重ねて印刷形成されている。
【0018】
そして、この上に、発光体層13Bに接続された銀やカーボンレジン系の背面電極層14や、エポキシ樹脂やポリエステル樹脂等の絶縁層15が順次重ねて印刷形成されると共に、銀やカーボンレジン系の配線パターン16A,16B,16Cの端部が各々光透過性電極層12A,12Bと背面電極層14に接続されて、分散型EL素子が構成されている。
【0019】
以上のような構成の分散型EL素子を電子機器に装着し、電子機器の回路(図示せず)から、光透過性電極層12A,12Bと背面電極層14に接続された配線パターン16A,16B,16Cの間に交流電圧を印加すると、分散型EL素子の発光体層13A,13Bが駆動して発光し、この光が電子機器の表示パネルやLCD等を後方から照光することは従来の技術の場合と同様であるが、発光体層13A,13Bの発光色は、高誘電性樹脂内に分散した蛍光体粉末の発光色が異なるかまたは高誘電性樹脂内に蛍光染料や蛍光顔料を添加して着色することによって、異なったものとなっている。
【0020】
例えば、発光体層13Aの発光色をブルーとし、発光体層13Bの発光色をオレンジとした場合には、光透過性電極層12Aと12Bに接続された配線パターン16Aと16Bの間に交流電圧を印加すると、発光体層13Aがブルーに発光し、光透過性電極層12Bと背面電極層14に接続された配線パターン16Bと16Cの間に交流電圧を印加すると、発光体層13Bがオレンジに発光し、配線パターン16A,16B,16C全てに交流電圧を印加すると、発光体層13Aと13Bの両方が発光するため、この光が合成されてイエローに発光する。
【0021】
このように本実施の形態によれば、複数の光透過性電極層12A,12Bと発光色の異なる複数の発光体層13A,13Bを交互に重ねて印刷形成することによって、様々な発光色が得られ、安価な多色発光型の分散型EL素子を得ることができるものである。
【0022】
また、各要素材料粉を可撓性の樹脂に分散した他の形成層と同様に、可撓性を有する光透過性樹脂を用いて光透過性電極層12A,12Bを印刷形成しているため、折り曲げや曲面への取付け等が可能な可撓性に優れた分散型EL素子とすることができる。
【0023】
さらに、光透過性電極層12Aや12Bに蛍光染料や蛍光顔料を添加して蛍光色に着色することにより、発光体層13A,13Bの発光色との組合せによって、さらに様々な発光色を得ることができる。
【0024】
また、図3に示すように、発光体層13A,13Bの上に、発光体層13A,13Bと同様のフッ素ゴムやシアノ系樹脂等の高誘電性樹脂にチタン酸バリウム等の誘電性粉末を分散した誘電体層17A,17Bを重ねて印刷形成することによって、各電極層間の絶縁が確実なものとなると共に、絶縁を確保するための一定の厚さの中で、印加される電圧が誘電体層17A,17Bに比べ発光体層13A,13Bの方が大きいものとなるため、発光体層の発光輝度を高めることができる。
【0025】
この場合、1層目の誘電体層17Aのチタン酸バリウムの添加量が多すぎると、2層目の発光体層13Bの光が遮断されるため、2層目の誘電体層17Bのチタン酸バリウムの添加量は高誘電性樹脂に対して60〜95重量%とし、1層目の誘電体層17Aのチタン酸バリウムの添加量は2〜60重量%程度にすることが望ましい。
【0026】
また、誘電体層17A,17Bの高誘電性樹脂に分散する誘電性粉末に、強誘電性のチタン酸バリウムや酸化チタン等の望ましくは0.1μm以下の微粒子、或いは加水分解して強誘電性金属酸化物を生じるバリウムエトキシドやチタンエトキシド等の加水分解性有機金属を用いることによって、発光体層からの光の遮断を最小限に抑えることができる。
【0027】
そして、2層目の誘電体層17Bを白色とすることによって、発光体層13A,13Bから発光した光が、この白色の誘電体層に反射して全て絶縁フィルム側に発光するため、さらに発光輝度を高めることができる。
【0028】
(実施の形態2)
図4は本発明の第2の実施の形態による分散型EL素子の断面図であり、同図において、絶縁フィルム1片面の全面または所定の箇所に、複数の光透過性電極層12A,12Bと複数の発光体層13A,13Bが交互に重ねて印刷形成されていることや、この上に背面電極層14や絶縁層15が順次重ねて印刷形成されると共に、配線パターン16A,16Bや16C(図示せず)の端部が各々光透過性電極層12A,12Bと背面電極層14に接続されていることは、実施の形態1の場合と同様であるが、2層目の光透過性電極層12Bと発光体層13Bの間には、ポリエステル樹脂やエポキシ樹脂、アクリル樹脂、フェノキシ樹脂、フッ素ゴム等に蛍光染料または蛍光顔料を分散した色変換層18が印刷形成されている。
【0029】
以上のような構成において、例えば、発光体層13A,13Bの発光色をブルーとし、色変換層18をオレンジとした場合には、光透過性電極層12Aと12Bに接続された配線パターン16Aと16Bの間に交流電圧を印加すると、発光体層13Aがブルーに発光し、光透過性電極層12Bと背面電極層14に接続された配線パターン16Bと16Cの間に交流電圧を印加すると、発光体層13Bもブルーに発光するが、この光は色変換層18によって変換されてオレンジに発光し、配線パターン16A,16B,16C全てに交流電圧を印加すると、発光体層13Aのブルーと色変換層18からのオレンジが合成されてイエローに発光する。
【0030】
このように本実施の形態によれば、2層目以降の光透過性電極層12Bと発光体層13Bの間に印刷形成した色変換層18により各発光体層の発光色を変えることによって、各発光体層13A,13Bの発光色は同一なままで、様々な発光色が得られ、安価な多色発光型の分散型EL素子を得ることができるものである。
【0031】
なお、発光体層13Bが光透過性電極層12Bと背面電極層14の間に直接ではなく色変換層18を介して挟まれているため、発光体層13Bの発光輝度が約5〜30%程度低下するが、図5に示すように、色変換層18の上に光透過性電極層12Bに接続された光透過性導電層19を重ねて印刷成形し、この光透過性導電層19と背面電極層14により発光体層13Bに交流電圧を直接印加することによって、発光輝度の低下を防止することができる。
【0032】
また、以上の説明では、各々2層の光透過性電極層と発光体層を交互に重ねて印刷形成した構成について説明したが、これを3層、4層と重ねて形成することによって、さらに多くの発光色が得られることは勿論である。
【0033】
そして、1層目の光透過性電極層12Aはスパッタ法または電子ビーム法によって形成することも可能であるが、発光体層13Aの上の2層目の光透過性電極層12Bは、スパッタ法や電子ビーム法によって形成することは実質的に困難であり、印刷によって形成する場合のシート抵抗値としては1kΩ以下が望ましいが、50kΩ程度までであれば発光輝度が大幅に低下することはない。
【0034】
さらに、以上の説明では、絶縁フィルム1片面の全面に、複数の光透過性電極層12A,12Bや発光体層13A,13B、色変換層18等を重ねて形成した構成について説明したが、これらを所定の箇所にのみ形成し、左右或いは上下の発光色を異なるものとしたり、光の合成や変換を様々に組合せることによって、さらに多様な多色発光型の分散型EL素子を実現できることは勿論である。
【0035】
【発明の効果】
以上のように本発明によれば、絶縁フィルムに近い側の1層目の誘電体層での光の遮断が少なくて様々な発光色が得られる安価な分散型EL素子を得ることができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態による分散型EL素子の断面図
【図2】 同外観斜視図
【図3】 同断面図
【図4】 本発明の第2の実施の形態による分散型EL素子の断面図
【図5】 同断面図
【図6】 従来の分散型EL素子の断面図
【符号の説明】
1 絶縁フィルム
12A,12B 光透過性電極層
13A,13B 発光体層
14 背面電極層
15 絶縁層
16A,16B,16C 配線パターン
17A,17B 誘電体層
18 色変換層
19 光透過性導電層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distributed EL element used as a backlight or the like in a display unit or an operation unit of various electronic devices.
[0002]
[Prior art]
In recent years, with the diversification of various electronic devices, the number of display panels and LCDs equipped with a backlight for illumination behind the display panel and LCD so that the display unit can be identified and operated even in the dark has been dispersed. Many type EL elements have been used.
[0003]
Such a conventional dispersion type EL element will be described with reference to FIG.
[0004]
In addition, in order to make the configuration easy to understand, the drawing shows an enlarged dimension in the thickness direction.
[0005]
FIG. 6 is a cross-sectional view of a conventional dispersion-type EL element. In FIG. 6, reference numeral 1 denotes a light-transmitting insulating film having flexibility such as polyethylene terephthalate. The entire surface of one side is formed by sputtering or electron beam. A light-transmitting electrode layer 2 made of indium tin oxide (hereinafter referred to as ITO) is formed, and further on this, zinc sulfide or the like serving as a light-emitting base material on a high dielectric resin such as fluororubber or cyano resin The phosphor layer 3 in which the phosphor powder is dispersed, the dielectric layer 4 in which a dielectric powder such as barium titanate is dispersed in the same high dielectric resin, and the silver or carbon resin system connected to the dielectric layer 4 The back electrode layer 5 and an insulating layer 6 such as an epoxy resin or a polyester resin are sequentially stacked and printed.
[0006]
Then, the end portions of the silver or carbon resin-based wiring patterns 7A and 7B are connected to the light transmissive electrode layer 2 and the back electrode layer 5 to constitute a dispersion type EL element.
[0007]
The distributed EL element having the above-described configuration is mounted on an electronic device, and a circuit (not shown) between the wiring patterns 7A and 7B connected to the light transmissive electrode layer 2 and the back electrode layer 5 from the circuit of the electronic device. When an alternating voltage is applied to the light emitting element, the light emitting layer 3 of the dispersion type EL element is driven to emit light, and this light illuminates the display panel or LCD of the electronic device from behind, so that the display unit and the operation can be performed even when the surroundings are dark. The part could be clearly identified.
[0008]
Further, the light emission color of the dispersion type EL element at this time is determined by the kind of the phosphor powder dispersed in the high dielectric resin of the light emitting layer 3, but a fluorescent dye or fluorescent pigment is dispersed in the high dielectric resin. Or by making the insulating film 1 colored, it can be converted into a color other than the luminescent color of the phosphor powder.
[0009]
[Problems to be solved by the invention]
However, in the conventional dispersion type EL element, fluorescent dyes or fluorescent pigments are dispersed in the high dielectric resin of the luminescent layer 3, or the insulating film 1 is colored and converted to a color other than the luminescent color. However, only a single emission color can be obtained, and if multiple emission colors are to be obtained, it is necessary to install a plurality of dispersed EL elements in an electronic device, which increases the number of parts used and this installation. There was a problem that the work required time and was expensive.
[0010]
The present invention solves such a conventional problem, and a single dispersion type EL element can provide various emission colors, and can be easily mounted on an electronic device and is inexpensive and a multicolor emission type dispersion type. An object is to provide an EL element.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of light emitters made of a high dielectric resin in which a plurality of light transmissive electrode layers and a phosphor powder are dispersed over the entire surface of a light transmissive insulating film or at a predetermined location. In a dispersion type EL device having a structure in which layers are alternately stacked and a back electrode layer is printed on the last phosphor layer, a high dielectric resin is coated on each phosphor layer. In addition, each of the dielectric layers in which barium titanate, which is a conductive powder, is overlapped and printed and printed, the barium titanate of the first dielectric layer on the side close to the light-transmitting insulating film is formed. The amount of addition is less than the amount of addition of the barium titanate in the second dielectric layer on the back electrode layer side with respect to the first dielectric layer, and the first layer The amount of barium titanate added to the dielectric layer is In 2 to 60% by weight relative to the serial high dielectric resin, to those added amount of the barium titanate of the second dielectric layer is 60 to 95 wt% with respect to the high dielectric resin Is.
[0012]
Thereby, it is possible to obtain an inexpensive dispersive EL element that can obtain various emission colors with less light blocking by the first dielectric layer on the side close to the insulating film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there are provided a light-transmitting insulating film, and a plurality of light-transmitting electrode layers and phosphor powders formed alternately on the entire surface of the insulating film or at predetermined positions. A dispersion type EL element comprising a plurality of light emitting layers made of a high dielectric resin in which light emission color is dispersed and a back electrode layer printed on the last light emitting layer. A dielectric layer obtained by dispersing barium titanate, which is a high-dielectric dielectric powder, on a high-dielectric resin is printed on top of each other, and the first layer on the side close to the light-transmissive insulating film. The addition amount of the barium titanate in the dielectric layer is less than the addition amount of the barium titanate in the second dielectric layer on the back electrode layer side with respect to the first dielectric layer. Ratio of the dielectric of the first layer The addition amount of barium titanate layers with 2 to 60 wt% with respect to the high dielectric resin, the addition amount of the barium titanate of the second dielectric layer is against the high dielectric resin 60-95 is obtained by the weight% is that as the variance type EL element, by emitting a plurality of light emitting layers separately or simultaneously, the first layer closer to the insulating film side with a dielectric layer It has an effect that light emission is reduced and various emission colors can be obtained, and an inexpensive multicolor emission type EL element can be obtained.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0015]
In addition, in order to make a structure easy to understand, each drawing expands and represents the dimension of the thickness direction.
[0016]
Also, the same reference numerals are given to the same components as those described in the section of the prior art, and detailed description thereof will be omitted.
[0017]
(Embodiment 1)
FIG. 1 is a cross-sectional view of a dispersion type EL device according to a first embodiment of the present invention. FIG. 2 is a perspective view of the same. In FIG. 1, 1 is a light transmissive material having flexibility such as polyethylene terephthalate. Insulating film, a plurality of light-transmitting resins having flexibility such as phenoxy resin, epoxy resin, fluorine rubber, etc., in which light-transmitting conductive powder such as needle-like ITO is dispersed on the entire surface of one side or a predetermined place. Light-transmitting electrode layers 12A and 12B and a plurality of light-emitting layers 13A made of a high dielectric resin such as fluororubber or cyano-based resin in which phosphor powder such as zinc sulfide serving as a light-emitting base material is dispersed and having different emission colors , 13B are printed in an alternating manner.
[0018]
A silver or carbon resin-based back electrode layer 14 connected to the light emitting layer 13B and an insulating layer 15 such as an epoxy resin or a polyester resin are sequentially stacked thereon and printed thereon. The end portions of the system wiring patterns 16A, 16B, and 16C are connected to the light transmissive electrode layers 12A and 12B and the back electrode layer 14, respectively, to constitute a dispersion type EL element.
[0019]
The distributed EL element having the above configuration is mounted on an electronic device, and wiring patterns 16A and 16B connected to the light transmissive electrode layers 12A and 12B and the back electrode layer 14 from a circuit (not shown) of the electronic device. , 16C, the light emitting layers 13A and 13B of the dispersion type EL element are driven to emit light, and this light illuminates the display panel or LCD of the electronic device from the rear side. The emission color of the phosphor layers 13A and 13B is the same as in the case of the above, but the emission color of the phosphor powder dispersed in the high dielectric resin is different, or a fluorescent dye or fluorescent pigment is added in the high dielectric resin. And different colors.
[0020]
For example, when the luminescent color of the luminescent layer 13A is blue and the luminescent color of the luminescent layer 13B is orange, an alternating voltage is applied between the wiring patterns 16A and 16B connected to the light transmissive electrode layers 12A and 12B. Is applied, the phosphor layer 13A emits blue light, and when an AC voltage is applied between the wiring patterns 16B and 16C connected to the light transmissive electrode layer 12B and the back electrode layer 14, the phosphor layer 13B turns orange. When light is emitted and an AC voltage is applied to all of the wiring patterns 16A, 16B, and 16C, both of the light emitter layers 13A and 13B emit light, and this light is combined to emit yellow light.
[0021]
As described above, according to the present embodiment, a plurality of light-transmitting electrode layers 12A and 12B and a plurality of light-emitting layers 13A and 13B having different light emission colors are alternately stacked to form various light emission colors. Thus, an inexpensive multicolor light emitting dispersion type EL element can be obtained.
[0022]
Further, the light transmissive electrode layers 12A and 12B are printed and formed using a light transmissive resin having flexibility in the same manner as other forming layers in which each element material powder is dispersed in a flexible resin. In addition, it is possible to obtain a distributed EL element having excellent flexibility that can be bent or attached to a curved surface.
[0023]
Furthermore, by adding fluorescent dyes or fluorescent pigments to the light transmissive electrode layers 12A and 12B and coloring them in fluorescent colors, various luminescent colors can be obtained by combining with the luminescent colors of the luminescent layers 13A and 13B. Can do.
[0024]
Further, as shown in FIG. 3, a dielectric powder such as barium titanate is coated on the light emitting layers 13A and 13B and a high dielectric resin such as fluororubber and cyano resin similar to the light emitting layers 13A and 13B. By printing the dispersed dielectric layers 17A and 17B on top of each other, the insulation between the electrode layers can be ensured, and the applied voltage can be applied within a certain thickness to ensure the insulation. Since the light emitter layers 13A and 13B are larger than the body layers 17A and 17B, the light emission luminance of the light emitter layer can be increased.
[0025]
In this case, if the amount of barium titanate added to the first dielectric layer 17A is too large, the light of the second phosphor layer 13B is blocked, so the titanate of the second dielectric layer 17B. The addition amount of barium is preferably 60 to 95% by weight with respect to the high dielectric resin, and the addition amount of barium titanate in the first dielectric layer 17A is preferably about 2 to 60% by weight.
[0026]
Further, the dielectric powder dispersed in the high dielectric resin of the dielectric layers 17A and 17B is desirably fine particles of 0.1 μm or less such as ferroelectric barium titanate or titanium oxide, or hydrolyzed to be ferroelectric. By using a hydrolyzable organic metal such as barium ethoxide or titanium ethoxide that generates a metal oxide, light blocking from the light emitting layer can be minimized.
[0027]
Further, by making the second dielectric layer 17B white, light emitted from the light emitting layers 13A and 13B is reflected by the white dielectric layer and is emitted to the insulating film side. Brightness can be increased.
[0028]
(Embodiment 2)
FIG. 4 is a cross-sectional view of a dispersion type EL device according to the second embodiment of the present invention. In FIG. 4, a plurality of light transmissive electrode layers 12A and 12B are formed on the entire surface of one side of an insulating film or at a predetermined position. The plurality of light emitting layers 13A and 13B are alternately printed and formed, the back electrode layer 14 and the insulating layer 15 are sequentially printed and formed thereon, and the wiring patterns 16A, 16B and 16C ( The end portions of (not shown) are connected to the light transmissive electrode layers 12A and 12B and the back electrode layer 14, respectively, as in the case of the first embodiment. A color conversion layer 18 in which a fluorescent dye or a fluorescent pigment is dispersed in a polyester resin, an epoxy resin, an acrylic resin, a phenoxy resin, a fluororubber, or the like is printed and formed between the layer 12B and the phosphor layer 13B.
[0029]
In the above configuration, for example, when the light emitting layers 13A and 13B have a blue emission color and the color conversion layer 18 has an orange color, the wiring pattern 16A connected to the light transmissive electrode layers 12A and 12B When an alternating voltage is applied between 16B, the light emitter layer 13A emits blue light, and when an alternating voltage is applied between the wiring patterns 16B and 16C connected to the light transmissive electrode layer 12B and the back electrode layer 14, light emission occurs. The body layer 13B also emits blue light, but this light is converted by the color conversion layer 18 to emit orange light. When an AC voltage is applied to all the wiring patterns 16A, 16B, and 16C, the color of the light emitter layer 13A is converted to blue. The orange from layer 18 is synthesized and emits yellow light.
[0030]
Thus, according to the present embodiment, by changing the emission color of each light emitter layer by the color conversion layer 18 formed by printing between the second and subsequent light transmissive electrode layers 12B and the light emitter layer 13B, The light emission colors of the light emitting layers 13A and 13B remain the same, and various light emission colors can be obtained, so that an inexpensive multicolor light emission type dispersion EL element can be obtained.
[0031]
Since the light emitter layer 13B is sandwiched between the light transmissive electrode layer 12B and the back electrode layer 14 via the color conversion layer 18 instead of directly, the light emission luminance of the light emitter layer 13B is about 5 to 30%. As shown in FIG. 5, the light transmissive conductive layer 19 connected to the light transmissive electrode layer 12 </ b> B is superimposed on the color conversion layer 18 and printed and molded. By directly applying an AC voltage to the light emitter layer 13B by the back electrode layer 14, it is possible to prevent a decrease in light emission luminance.
[0032]
Moreover, in the above description, although the structure which printed and formed the light-transmitting electrode layer and light-emitting body layer of 2 layers alternately each was demonstrated, by forming this on 3 layers and 4 layers, and further forming, Of course, many emission colors can be obtained.
[0033]
The first light transmissive electrode layer 12A can be formed by sputtering or electron beam, but the second light transmissive electrode layer 12B on the phosphor layer 13A is formed by sputtering. It is substantially difficult to form by the electron beam method, and the sheet resistance value when formed by printing is preferably 1 kΩ or less, but if it is about 50 kΩ, the emission luminance will not be significantly reduced.
[0034]
Further, in the above description, the configuration in which the plurality of light transmissive electrode layers 12A and 12B, the light emitter layers 13A and 13B, the color conversion layer 18 and the like are formed over the entire surface of one surface of the insulating film has been described. It is possible to realize more diverse multicolor light emitting type dispersion EL elements by forming the light emitting element only at a predetermined location, making the left and right or upper and lower emission colors different, and combining light combining and conversion in various ways. Of course.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an inexpensive dispersive EL element which can obtain various emission colors with less light blocking by the first dielectric layer on the side close to the insulating film. An advantageous effect is obtained.
[Brief description of the drawings]
1 is a cross-sectional view of a dispersive EL element according to a first embodiment of the present invention. FIG. 2 is a perspective view of the same. FIG. 3 is a cross-sectional view of the same. Cross-sectional view of a dispersion-type EL element [FIG. 5] Cross-sectional view thereof [FIG. 6] Cross-sectional view of a conventional dispersion-type EL element [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating film 12A, 12B Light-transmissive electrode layer 13A, 13B Light emitter layer 14 Back electrode layer 15 Insulating layer 16A, 16B, 16C Wiring pattern 17A, 17B Dielectric layer 18 Color conversion layer 19 Light-transmissive conductive layer

Claims (4)

光透過性の絶縁フィルムと、この絶縁フィルム片面の全面または所定の箇所に交互に重ねて形成された、複数の光透過性電極層及び蛍光体粉末を分散した高誘電性樹脂からなり発光色の異なる複数の発光体層と、最後の発光体層上に印刷形成された背面電極層からなる分散型EL素子であって、上記各発光体層の上に、高誘電性樹脂に高誘電性の誘電性粉末であるチタン酸バリウムを分散した誘電体層がそれぞれ重ねて印刷形成されると共に、上記光透過性の絶縁フィルムに近い側の1層目の上記誘電体層の上記チタン酸バリウムの添加量が、上記1層目の誘電体層に対し上記背面電極層側となる2層目の上記誘電体層の上記チタン酸バリウムの添加量より少ない比率のものとされ、かつ上記1層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して2〜60重量%で、上記2層目の誘電体層の上記チタン酸バリウムの添加量が上記高誘電性樹脂に対して60〜95重量%であるものとされた分散型EL素子。It consists of a light-transmitting insulating film and a high dielectric resin in which a plurality of light-transmitting electrode layers and phosphor powders are dispersed alternately on the entire surface of the insulating film or on a predetermined location. A dispersive EL element comprising a plurality of different light emitter layers and a back electrode layer printed on the last light emitter layer, wherein a high dielectric resin is formed on each of the light emitter layers. Addition of the barium titanate in the first dielectric layer on the side close to the light-transmitting insulating film, while the dielectric layers in which barium titanate, which is a dielectric powder, is dispersed are printed on each other The amount of the first dielectric layer is less than the amount of the barium titanate added to the second dielectric layer on the back electrode layer side, and the first dielectric layer Addition of barium titanate to the dielectric layer As but at 2 to 60 wt% with respect to the high dielectric resin, the addition amount of the barium titanate of the second dielectric layer is 60 to 95 wt% with respect to the high dielectric resin It has been dispersion-type EL element. 2層目以降の光透過性電極層と発光体層の間に印刷形成された色変換層を更に備えた請求項1記載の分散型EL素子。  The dispersion type EL device according to claim 1, further comprising a color conversion layer formed by printing between the second and subsequent light transmissive electrode layers and the light emitting layer. 最上層の誘電体層を白色とした請求項1記載の分散型EL素子。  The dispersion type EL element according to claim 1, wherein the uppermost dielectric layer is white. 光透過性電極層を蛍光色に着色した請求項1記載の分散型EL素子。  The dispersion type EL device according to claim 1, wherein the light transmissive electrode layer is colored in a fluorescent color.
JP19851098A 1998-07-14 1998-07-14 Dispersion type EL device Expired - Fee Related JP3885371B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP19851098A JP3885371B2 (en) 1998-07-14 1998-07-14 Dispersion type EL device
TW088110471A TW420965B (en) 1998-07-14 1999-06-22 Dispersion-type electroluminescence element
DE69935376T DE69935376T2 (en) 1998-07-14 1999-07-06 Dispersion electroluminescent element
EP99305368A EP0973358B1 (en) 1998-07-14 1999-07-06 Dispersion-type electroluminescence element
EP05075366A EP1555854A3 (en) 1998-07-14 1999-07-06 Dispersion-type electroluminescence element
US09/349,406 US6479930B1 (en) 1998-07-14 1999-07-08 Dispersion-type electroluminescence element
KR1019990028438A KR100316488B1 (en) 1998-07-14 1999-07-14 Dispersion-type Electroluminescence Element
HK00104078A HK1024819A1 (en) 1998-07-14 2000-07-04 Dispersion-type electroluminescence element
KR1020010034369A KR100316489B1 (en) 1998-07-14 2001-06-18 Dispersion-type Electroluminescence Element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19851098A JP3885371B2 (en) 1998-07-14 1998-07-14 Dispersion type EL device

Publications (2)

Publication Number Publication Date
JP2000030863A JP2000030863A (en) 2000-01-28
JP3885371B2 true JP3885371B2 (en) 2007-02-21

Family

ID=16392346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19851098A Expired - Fee Related JP3885371B2 (en) 1998-07-14 1998-07-14 Dispersion type EL device

Country Status (1)

Country Link
JP (1) JP3885371B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795932B2 (en) * 1989-11-09 1998-09-10 出光興産株式会社 Electroluminescence element
JPH0355793A (en) * 1989-07-24 1991-03-11 Hitachi Ltd Filmed luminous element
JPH03194895A (en) * 1989-12-22 1991-08-26 Shinko Electric Co Ltd Multicolor el display
JP2696056B2 (en) * 1993-10-08 1998-01-14 フクビ化学工業株式会社 Electroluminescence and manufacturing method thereof
JP3424436B2 (en) * 1996-05-28 2003-07-07 松下電器産業株式会社 EL lamp
JPH1069983A (en) * 1996-08-28 1998-03-10 Nec Kansai Ltd Electroluminescent lamp
JPH10149878A (en) * 1996-11-21 1998-06-02 Nec Kansai Ltd Manufacture of electroluminescence lamp
JP3297619B2 (en) * 1996-12-18 2002-07-02 ティーディーケイ株式会社 Organic EL color display

Also Published As

Publication number Publication date
JP2000030863A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
EP0973358B1 (en) Dispersion-type electroluminescence element
KR100308721B1 (en) Dispersed multicolor electro-luminescent lamp and electro-luminescent lamp unit employing thereof
EP1071313B1 (en) Electroluminescence element and lighting unit having the same
US20040183434A1 (en) Electroluminescent element with double-sided luminous surface and process for fabricating the same
KR20080033122A (en) Luminescent sheet having see-through property, luminescent decorative material, and method of producing luminescent sheet
JPH08203669A (en) El double-face luminescent display body
CN101536605A (en) Addressable and printable emissive display
US5623456A (en) Electroluminescent indicator hand
JP2002151270A (en) El lamp
US20070278943A1 (en) Multicolor Electroluminescent Element
JP2799964B2 (en) Double-sided EL display
JP3885371B2 (en) Dispersion type EL device
CN114071905A (en) Shell assembly and electronic equipment
JP3181712B2 (en) EL display module
JP2000277259A (en) El lamp and el lamp unit using the same
KR20040013503A (en) Electroluminescence device with high luminescence
JP2004063079A (en) El element
JPH11121169A (en) Dispersed type electroluminescent element and attaching method the same to instrument
JP2896977B2 (en) Electroluminescence device
CN114071906B (en) Shell assembly, manufacturing method thereof, method for driving shell assembly to emit light and electronic equipment
JPH10247434A (en) El luminescence switch
JPH09266071A (en) El lamp
JP2000150155A (en) Multilyaer electroluminescence element
JP2005116320A (en) Flexible el display device
KR200388575Y1 (en) Electroluminescence device with high luminescence

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees