JP3885126B2 - Magnetic field generator for magnetic resonance imaging apparatus - Google Patents

Magnetic field generator for magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP3885126B2
JP3885126B2 JP34941497A JP34941497A JP3885126B2 JP 3885126 B2 JP3885126 B2 JP 3885126B2 JP 34941497 A JP34941497 A JP 34941497A JP 34941497 A JP34941497 A JP 34941497A JP 3885126 B2 JP3885126 B2 JP 3885126B2
Authority
JP
Japan
Prior art keywords
magnetic field
field generator
magnet cover
eddy current
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34941497A
Other languages
Japanese (ja)
Other versions
JPH11178808A (en
Inventor
真幸 中津
仁志 吉野
重生 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP34941497A priority Critical patent/JP3885126B2/en
Publication of JPH11178808A publication Critical patent/JPH11178808A/en
Application granted granted Critical
Publication of JP3885126B2 publication Critical patent/JP3885126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置(以下、「MRI装置」という)用の磁界発生装置に係わり、特に、静磁場発生装置の磁極片の外部に発生する渦電流を低減する磁界発生装置に関する。
【0002】
【従来の技術】
MRI装置用の磁界発生装置として、静磁場の発生に永久磁石を用いて磁気回路を構成した装置が知られている。この装置は、図5(a)の斜視図及び図5(b)の側面図に示すように、静磁場を発生させる一対の永久磁石構成体3a、3bと、永久磁石構成体3a及び永久磁石構成体3bの間の空間の静磁場を均一に保つための一対の磁極片2a、2bと、永久磁石構成体3a、3bを磁気結合するための一対の継鉄4a、4bと、継鉄4a、4bを所定の距離隔てて対向支持するカラム5a〜5dと、永久磁石構成体3a、3bを保護するためにこれらを取り囲んで設けられた磁石カバー8a、8bとを備えている。この永久磁石構成体3aと永久磁石構成体3bとは対向面側同士間で互いに極性を異ならせており、磁気回路は永久磁石構成体3a→磁極片2a→磁極片2b→永久磁石構成体3b→継鉄4b→カラム5a〜5d→継鉄4a→永久磁石構成体3aの間で形成される。さらに、対向する磁極片2a、2bの周辺部は、周辺への磁束の漏れを抑え内部空間の均一度を改善するのために、上下とも同一形状の環状突起部7を有する。
【0003】
この磁極片2aと磁極片2bとの間の空間には、被検体6の他に、被検体中にパルス状の電磁波を照射し被検体中のプロトンの核スピンを励起させるRF照射コイル(図示せず)、それによって発生するNMR信号を受信するRF受信コイル(図示せず)、及びNMR信号に位置情報を与えるために、上記静磁場に傾斜磁場を重畳する傾斜磁場コイル1が配置される。
【0004】
傾斜磁場コイル1は被検体6の入る空隙を広くとるために、多くの場合は磁極片2に形成された溝部分に収納されているので、傾斜磁場の磁束の多くは図6(a)に16で示すように磁極片2を通り、この部分に渦電流が発生する。この渦電流は、傾斜磁場の励磁を妨げるように作用するため、NMR信号に不正確な位置情報を与える原因となる。この結果この渦電流は、断層像にゴースト等のアーチファクトが現れ診断の妨げとなるばかりでなく、高速撮像に必要なパルス状の傾斜磁場の生成の妨げともなる。
【0005】
この磁極片に発生する渦電流低減のため、従来、磁極の材質や構造を改良することが提案されている(特開昭63-105745号、特開平2-87505号)。
【0006】
【発明が解決しようとする課題】
しかしながら、磁極片に発生する渦電流を低減しただけでは、十分に渦電流によるアーチファクトを除くことができない。このようなアーチファクトの原因は種々考えられるが、本発明者らの知見では、傾斜磁場の磁束が磁極片2の外部に漏れることが一因であることが明らかとなった。即ち、従来傾斜磁場の磁束は図6(a)に16で示すように磁極片2周辺には漏れないと考えられていたが、実際には同図中17で示すように、磁極片2の外部にまで広がり、永久磁石構成体を保護するために取り付けられている磁石カバー8にも達しており、そこで発生する渦電流が画質に影響を与え得ることがわかった。
【0007】
一般に、磁石カバー8は熱伝導性、強度等の観点からアルミニウムから成り、また図6(b)に示すように、組み立ての容易性から通常2つのパーツからなっており、パーツの接触部9は電気的に完全に導通している。このため、ここに渦電流が発生すると画質劣化を招く。この画質の劣化は、上下の渦電流の発生の仕方に差がある場合に特に顕著となる。
【0008】
本発明は、磁極片周囲に発生する渦電流を低減させたMRI装置用の磁界発生装置を提供することを目的とする。また本発明は、渦電流の影響を排除し、高品質のMR画像を得ることができるMRI装置用の磁界発生装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のMRI装置用の磁界発生装置は、空隙を形成して対向する一対の永久磁石構成体と、これら永久磁石構成体を磁気結合し磁気回路を形成する継鉄と、各永久磁石構成体の空隙の静磁場を均一に保つ磁極片と、各永久磁石構成体を保護する磁石カバーとを備えたものであって、磁石カバーが磁石カバーに生ずる渦電流を低減させる渦電流低減手段を備えたものである。
【0010】
本発明の好適な態様において、渦電流低減手段は磁石カバーに設けられたスリットである。磁石カバーにスリットを設けることにより、磁石カバーの渦電流の流れる面積を小さくし、これにより渦電流を低減できる。また本発明の別な態様では、渦電流低減手段として、磁石カバーの少なくとも一部を非導電材料で構成する。この場合にも、磁石カバーの渦電流の流れる面積を小さくし或いは磁石カバーに渦電流を流れないようにし、これにより渦電流を低減できる。
【0011】
更に別な態様では、磁石カバーと継鉄との間に非導電材料を設ける。これにより、磁石カバーと継鉄との間を電気的に不導通とし、電気的導通の不均一からくる渦電流発生の不均一をなくし、画質の劣化を防止する。
【0012】
尚、本発明の磁界発生装置は上述した各態様の渦電流低減手段を任意に組合せたものであってもよい。
【0013】
【発明の実施の形態】
以下、本発明のMRI装置用の磁界発生装置について、図面を参照して詳細に説明する。
【0014】
図1は、一対の永久磁石構成体をそれぞれ支持する一対の継鉄を2本の力ラムで支持した構成のMRI装置用磁界発生装置を示す図で、渦電流低減手段として磁石カバーにスリットを設けた第1の実施例を示している。図中上側の永久磁石構成体及び継鉄は省略されているが、この磁界発生装置は、図6(b)で示した従来のものと同様、空隙を挟んで上下対称の構造を有している。
【0015】
永久磁石構成体には、空隙に面した側にそれぞれ静磁場均一性を向上させるための磁極片2が固定されている。磁気回路は、上側の永久磁石構成体→上側の磁極片→下側の磁極片→下側の永久磁石構成体→継鉄→カラム5a、5b→継鉄→上側の永久磁石構成体の間に形成され、上下の永久磁石構成体に挟まれる空隙に均一な静磁場が形成される。この空隙に図示しないがMRI装置のRF照射コイルやRF受信コイルが組込まれる。また静磁場に勾配を与えるための傾斜磁場コイル1が、磁極片2の溝内に配置される。
【0016】
また永久磁石構成体の周囲には磁石を保護するための磁石カバー8が設けられている。磁石カバー8は継鉄4にネジ等で固定される。本実施例においては、磁石カバー8は図示するように複数個のスリット10を有している。スリット10は、図1(b)に示すように、磁石カバー8を完全に切り離すようなものであってもよい。この場合、磁石カバー8は複数のパーツから成り、それぞれを継鉄4にネジ等で固定する。またスリット10は図1(c)に示すように磁石カバー8の一部を切り離すことなく残した溝状のスリットでもよい。この場合には組み立てを容易にするために磁石カバーは従来と同様に2点以上のパーツから成ることが好ましい。
【0017】
このような構成の磁界発生装置において、MRI装置の傾斜磁場コイル1が駆動されて傾斜磁場パルスが発生すると、その磁束が図6(a)に17で示すように発生し、磁石カバーに到達する。この際、磁石カバー8が複数のスリット10で分割されていて、磁束17によって発生する渦電流の流れる面積が小さくなっているため、この部分で発生する渦電流を軽減することができる。
【0018】
尚、スリット10の数は特に限定されるものではないが、一般的にはスリット10の数が多いほど渦電流抑制効果は大きく、磁石カバーの強度は低下する。従って磁石カバー8の機械的強度とのかねあいから数個程度が好ましい。
【0019】
次に、本発明の第2の実施例について説明する。
【0020】
本実施例では、磁界発生装置の構造(配置)は従来と同様であるが、磁石カバーを構成する材料として非導電材料を用いる。磁石カバー全体に非導電材料を用いることにより、磁石カバーにおける渦電流の発生を全く無くすことができ、それによる画質への影響を排除することができる。
【0021】
このような非導電材料としては、絶縁性であって且つ磁石カバーとして十分な強度を有している材料が用いられ、具体的には、繊維強化プラスチック、ポリシロキサン、セラミックスを用いることができる。
【0022】
渦電流低減手段として非導電材料を用いる場合、磁石カバー全体ではなく一部のみを非導電材料としてもよい。例えば、図2に示すように2つのパーツから成る磁石カバーの間を非導電材料としてもよい。この場合でも隣接する磁石カバー間の導通を断つことができ、渦電流の流れる面積が小さくなるため、従来の磁石カバーに比べ渦電流の発生を低減することができる。またこの場合、非導電材料としては上記の第2の実施例と同様のプラスチックやセラミックスを用いることができるが、磁石カバー全体を非導電材料とする場合に比べ、強度的には緩和された条件の材料を選択することが可能である。
【0023】
また図1(a)に示すように磁石カバーを複数のパーツに分割した場合に、その一部のパーツを上記した非導電材料で構成してもよい。更に図3(a)に示すように、磁石カバー8に設けたスリット10の間に非導電材料11を充填してもよい。この場合にもスリット10は、図1に示す実施例と同様に、磁石カバーを完全に切り離すように設けても(図3(b))、途中まで設けてもよい(図3(c))。スリット10に非導電材料11を充填することにより磁石カバー8の強度が維持できるので、スリットだけを設ける場合よりもスリット数を増やすことができ、従って、渦電流の低減効果をよりいっそう向上させることができる。
【0024】
次に、図4を用いて、本発明の第3の実施例について説明する。
【0025】
本実施例の磁界発生装置も、継鉄4の上に永久磁石構成体、磁極片2が固定され、永久磁石構成体の周囲に磁石カバー8が配置されている構成は、従来の磁界発生装置と同様であるが、本実施例においては、図示するように、磁石カバー8と継鉄4との間に非導電材料11を介在させている。非導電材料11としては上述した第2の実施例に例示した材料を用いることができ、このような材料を介在させた状態で磁石カバー8を継鉄4にネジ止め等により固定する。
【0026】
このように、磁石カバー8と継鉄4との間に非導電材料11を介在させることにより、磁石カバー8から継鉄4に流れる電流を抑制して渦電流の発生を低減させることができるとともに、上下の磁石周囲における渦電流発生の不均一性をなくすこともできる。単に磁石カバー8と継鉄4をネジ等で固定した場合には、その接触状態に不均一が生じやすく、渦電流の発生に上下でばらつきが生じる可能性があるが、上下両方の磁石カバー8と継鉄4間に非導電材料11を介在させることにより、このばらつきを解消することができ、この結果、渦電流の不均一に起因する画像の劣化を防止することができる。
【0027】
尚、上述した各実施例はそれぞれ単独で実施しても、それぞれ渦電流低減効果を得ることができるが、複数を組合せて実施することができ、より効果的に渦電流を低減することができる。例えば複数のスリット10を設けた磁石カバー8を非導電材料を介して継鉄4に固定してもよく、また隣接する磁石カバー間に非導電材料を介在させるとともに磁石カバーと継鉄との間に非導電材料を介在させてもよい。
【0028】
また上記実施例では2本のカラムで継鉄及び永久磁石構成体を支持した構造の磁界発生装置を図示して説明したが、磁界発生装置の構造や配置は特許請求の範囲で任意に変更することができる。
【0029】
【発明の効果】
以上説明したように本発明のMRI装置用磁界発生装置によれば、磁石カバー部分にスリット又は非導電材料のような渦電流低減手段を設けたことにより、磁極片周囲に取付けた磁石カバーに発生する渦電流を低減させることが可能となり、その結果画質向上が実現でき、高速撮像が可能となる。また本発明の磁界発生装置によれば上下の磁石周辺の渦電流抑制効果を均一にすることができるので、不均一な渦電流発生による画質の劣化を防止することができる。
【図面の簡単な説明】
【図1】(a)は本発明の磁界発生装置の一実施例を示す部分斜視図、(b)及び(c)はそれぞれ要部を拡大した断面図。
【図2】本発明の磁界発生装置の別の実施例を示す部分斜視図。
【図3】本発明の磁界発生装置の別の実施例を示す部分斜視図、(b)及び(c)はそれぞれ要部を拡大した断面図。
【図4】本発明の磁界発生装置の別の実施例を示す斜視図。
【図5】従来の磁界発生装置を図示したもので、(a)は斜視図、(b)は側面図。
【図6】(a)は磁界発生装置の構造及び傾斜磁場の磁束の流れを図示したものであり、(b)は従来の磁界発生装置の一部を図示したもの。
【符号の説明】
2・・・・・・磁極片
3・・・・・・永久磁石構成体
4・・・・・・継鉄
8・・・・・・磁石カバー
10・・・・・・スリット
11・・・・・・非導電材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field generation apparatus for a magnetic resonance imaging apparatus (hereinafter referred to as “MRI apparatus”), and more particularly to a magnetic field generation apparatus that reduces eddy currents generated outside a magnetic pole piece of a static magnetic field generation apparatus.
[0002]
[Prior art]
As a magnetic field generator for an MRI apparatus, an apparatus in which a magnetic circuit is configured using a permanent magnet for generating a static magnetic field is known. As shown in the perspective view of FIG. 5 (a) and the side view of FIG. 5 (b), this apparatus includes a pair of permanent magnet components 3a and 3b that generate a static magnetic field, and a permanent magnet component 3a and a permanent magnet. A pair of magnetic pole pieces 2a, 2b for keeping the static magnetic field in the space between the constituent bodies 3b uniform, a pair of yokes 4a, 4b for magnetically coupling the permanent magnet constituent bodies 3a, 3b, and the yoke 4a , 4b are opposed to each other at a predetermined distance, and columns 5a to 5d are provided, and magnet covers 8a and 8b are provided so as to surround the permanent magnet components 3a and 3b so as to protect them. The permanent magnet structure 3a and the permanent magnet structure 3b are different in polarity from each other on the facing side, and the magnetic circuit is the permanent magnet structure 3a → the magnetic pole piece 2a → the magnetic pole piece 2b → the permanent magnet structural body 3b. → The yoke 4b → the columns 5a to 5d → the yoke 4a → the permanent magnet structure 3a. Further, the peripheral portions of the opposing magnetic pole pieces 2a and 2b have annular protrusions 7 having the same shape on both the upper and lower sides in order to suppress leakage of magnetic flux to the periphery and improve the uniformity of the internal space.
[0003]
In the space between the magnetic pole piece 2a and the magnetic pole piece 2b, in addition to the subject 6, an RF irradiation coil that irradiates the subject with pulsed electromagnetic waves and excites the nuclear spin of protons in the subject (see FIG. (Not shown), an RF receiving coil (not shown) that receives the NMR signal generated thereby, and a gradient coil 1 that superimposes the gradient magnetic field on the static magnetic field is provided to give position information to the NMR signal .
[0004]
In many cases, the gradient magnetic field coil 1 is housed in a groove formed in the magnetic pole piece 2 in order to make a space for the subject 6 to enter, so that most of the magnetic flux of the gradient magnetic field is shown in FIG. As indicated by 16, an eddy current is generated in this portion through the magnetic pole piece 2. Since this eddy current acts to prevent excitation of the gradient magnetic field, it causes inaccurate position information to the NMR signal. As a result, this eddy current not only interferes with diagnosis due to the appearance of artifacts such as ghosts in the tomographic image, but also prevents the generation of a pulsed gradient magnetic field necessary for high-speed imaging.
[0005]
In order to reduce the eddy current generated in the magnetic pole piece, it has been proposed to improve the material and structure of the magnetic pole (Japanese Patent Laid-Open Nos. 63-105745 and 2-87505).
[0006]
[Problems to be solved by the invention]
However, merely reducing the eddy current generated in the pole piece cannot sufficiently eliminate the eddy current artifact. Various causes for such an artifact are conceivable, but the inventors' knowledge has revealed that one of the causes is that the magnetic flux of the gradient magnetic field leaks to the outside of the pole piece 2. That is, it was thought that the magnetic flux of the gradient magnetic field did not leak around the magnetic pole piece 2 as indicated by 16 in FIG. 6 (a). It has also reached the magnet cover 8 which extends to the outside and is attached to protect the permanent magnet structure, and it has been found that the eddy current generated there can affect the image quality.
[0007]
In general, the magnet cover 8 is made of aluminum from the viewpoint of thermal conductivity, strength, and the like, and as shown in FIG. 6 (b), it usually consists of two parts for ease of assembly. It is completely electrically connected. For this reason, when an eddy current is generated here, the image quality is deteriorated. This deterioration in image quality is particularly noticeable when there is a difference in the way in which the upper and lower eddy currents are generated.
[0008]
An object of this invention is to provide the magnetic field generator for MRI apparatuses which reduced the eddy current which generate | occur | produces around a pole piece. Another object of the present invention is to provide a magnetic field generator for an MRI apparatus that can eliminate the influence of eddy currents and obtain high-quality MR images.
[0009]
[Means for Solving the Problems]
A magnetic field generator for an MRI apparatus according to the present invention includes a pair of permanent magnet structures opposed to each other by forming a gap, a yoke for magnetically coupling these permanent magnet structures to form a magnetic circuit, and each permanent magnet structure. A magnetic pole piece for keeping the static magnetic field of the air gap uniform and a magnet cover for protecting each permanent magnet structure, the magnet cover having eddy current reducing means for reducing eddy current generated in the magnet cover It is a thing.
[0010]
In a preferred aspect of the present invention, the eddy current reducing means is a slit provided in the magnet cover. By providing a slit in the magnet cover, the area of the magnet cover through which the eddy current flows can be reduced, thereby reducing the eddy current. In another aspect of the present invention, at least a part of the magnet cover is made of a nonconductive material as the eddy current reducing means. Also in this case, the area where the eddy current flows in the magnet cover can be reduced or the eddy current can be prevented from flowing through the magnet cover, thereby reducing the eddy current.
[0011]
In yet another aspect, a non-conductive material is provided between the magnet cover and the yoke. As a result, the magnet cover and the yoke are electrically non-conductive, the non-uniform eddy current generation resulting from the non-uniform electrical continuity is eliminated, and the deterioration of the image quality is prevented.
[0012]
The magnetic field generator of the present invention may be an arbitrary combination of the above-described eddy current reducing means.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a magnetic field generator for an MRI apparatus of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a diagram showing a magnetic field generator for an MRI apparatus having a structure in which a pair of yokes that respectively support a pair of permanent magnet structures is supported by two force rams. The provided 1st Example is shown. Although the upper permanent magnet structure and the yoke are omitted in the figure, this magnetic field generator has a vertically symmetrical structure with a gap in between, as in the conventional apparatus shown in FIG. Yes.
[0015]
A pole piece 2 for improving the static magnetic field uniformity is fixed to the permanent magnet structure on the side facing the air gap. The magnetic circuit consists of the upper permanent magnet structure → the upper magnetic pole piece → the lower magnetic pole piece → the lower permanent magnet structure → the yoke → the columns 5a and 5b → the yoke → the upper permanent magnet structure. A uniform static magnetic field is formed in the gap formed between the upper and lower permanent magnet structures. Although not shown in the figure, the RF irradiation coil and the RF receiving coil of the MRI apparatus are incorporated in the gap. A gradient coil 1 for applying a gradient to the static magnetic field is disposed in the groove of the pole piece 2.
[0016]
A magnet cover 8 for protecting the magnet is provided around the permanent magnet structure. The magnet cover 8 is fixed to the yoke 4 with screws or the like. In this embodiment, the magnet cover 8 has a plurality of slits 10 as shown. As shown in FIG. 1B, the slit 10 may be one that completely separates the magnet cover 8. In this case, the magnet cover 8 is composed of a plurality of parts, and each is fixed to the yoke 4 with screws or the like. The slit 10 may be a groove-like slit left without cutting off a part of the magnet cover 8 as shown in FIG. In this case, in order to facilitate assembly, the magnet cover is preferably composed of two or more parts as in the conventional case.
[0017]
In the magnetic field generator configured as described above, when the gradient magnetic field coil 1 of the MRI apparatus is driven to generate a gradient magnetic field pulse, the magnetic flux is generated as indicated by 17 in FIG. 6A and reaches the magnet cover. . At this time, since the magnet cover 8 is divided by the plurality of slits 10 and the area through which the eddy current generated by the magnetic flux 17 flows is reduced, the eddy current generated in this portion can be reduced.
[0018]
Although the number of slits 10 is not particularly limited, generally, the greater the number of slits 10, the greater the eddy current suppression effect and the lower the strength of the magnet cover. Therefore, about several are preferable in view of the mechanical strength of the magnet cover 8.
[0019]
Next, a second embodiment of the present invention will be described.
[0020]
In this embodiment, the structure (arrangement) of the magnetic field generator is the same as the conventional one, but a non-conductive material is used as the material constituting the magnet cover. By using a non-conductive material for the entire magnet cover, the generation of eddy currents in the magnet cover can be completely eliminated, and the influence on the image quality can be eliminated.
[0021]
As such a non-conductive material, a material that is insulative and has sufficient strength as a magnet cover is used, and specifically, fiber reinforced plastic, polysiloxane, or ceramics can be used.
[0022]
When a non-conductive material is used as the eddy current reducing means, only a part of the magnet cover may be used as the non-conductive material instead of the entire magnet cover. For example, as shown in FIG. 2, a non-conductive material may be provided between the two magnet cover parts. Even in this case, the conduction between the adjacent magnet covers can be cut off, and the area through which the eddy current flows can be reduced. Therefore, the generation of eddy current can be reduced as compared with the conventional magnet cover. In this case, the non-conductive material can be the same plastic or ceramic as in the second embodiment, but the strength is relaxed compared to the case where the entire magnet cover is non-conductive material. It is possible to select the material.
[0023]
In addition, when the magnet cover is divided into a plurality of parts as shown in FIG. 1A, some of the parts may be made of the above-described non-conductive material. Further, as shown in FIG. 3A, a non-conductive material 11 may be filled between the slits 10 provided in the magnet cover 8. Also in this case, the slit 10 may be provided so as to completely separate the magnet cover (FIG. 3B) or may be provided halfway (FIG. 3C), as in the embodiment shown in FIG. . Since the strength of the magnet cover 8 can be maintained by filling the slit 10 with the nonconductive material 11, the number of slits can be increased as compared with the case where only the slits are provided, and thus the effect of reducing the eddy current can be further improved. Can do.
[0024]
Next, a third embodiment of the present invention will be described with reference to FIG.
[0025]
The magnetic field generator of this embodiment also has a configuration in which the permanent magnet structure and the pole piece 2 are fixed on the yoke 4 and the magnet cover 8 is disposed around the permanent magnet structure. However, in this embodiment, a non-conductive material 11 is interposed between the magnet cover 8 and the yoke 4 as shown in the figure. As the non-conductive material 11, the material exemplified in the second embodiment can be used, and the magnet cover 8 is fixed to the yoke 4 with screws or the like with such a material interposed.
[0026]
Thus, by interposing the non-conductive material 11 between the magnet cover 8 and the yoke 4, the current flowing from the magnet cover 8 to the yoke 4 can be suppressed and the generation of eddy currents can be reduced. In addition, the non-uniformity of eddy current generation around the upper and lower magnets can be eliminated. If the magnet cover 8 and the yoke 4 are simply fixed with screws or the like, the contact state is likely to be uneven, and eddy currents may vary in the vertical direction. By interposing the non-conductive material 11 between the yoke 4 and the yoke 4, this variation can be eliminated. As a result, it is possible to prevent image deterioration due to eddy current non-uniformity.
[0027]
In addition, although each Example mentioned above can each implement | achieve independently, it can acquire an eddy current reduction effect, respectively, but it can implement in combination and can reduce an eddy current more effectively. . For example, a magnet cover 8 provided with a plurality of slits 10 may be fixed to the yoke 4 via a non-conductive material, and a non-conductive material is interposed between adjacent magnet covers and between the magnet cover and the yoke. A non-conductive material may be interposed between them.
[0028]
Moreover, in the said Example, although the magnetic field generator of the structure which supported the yoke and the permanent magnet structure with two columns was illustrated and demonstrated, the structure and arrangement | positioning of a magnetic field generator are changed arbitrarily in a claim. be able to.
[0029]
【The invention's effect】
As described above, according to the magnetic field generator for an MRI apparatus of the present invention, an eddy current reducing means such as a slit or a non-conductive material is provided in the magnet cover portion, so that it is generated in the magnet cover attached around the pole piece. Eddy current can be reduced. As a result, image quality can be improved and high-speed imaging can be achieved. Also, according to the magnetic field generator of the present invention, the effect of suppressing eddy currents around the upper and lower magnets can be made uniform, so that deterioration of image quality due to nonuniform eddy current generation can be prevented.
[Brief description of the drawings]
FIG. 1A is a partial perspective view showing an embodiment of a magnetic field generator according to the present invention, and FIGS.
FIG. 2 is a partial perspective view showing another embodiment of the magnetic field generator of the present invention.
FIGS. 3A and 3B are partial perspective views showing another embodiment of the magnetic field generator according to the present invention, and FIGS.
FIG. 4 is a perspective view showing another embodiment of the magnetic field generator of the present invention.
FIGS. 5A and 5B illustrate a conventional magnetic field generator, in which FIG. 5A is a perspective view and FIG. 5B is a side view.
6A is a diagram illustrating the structure of a magnetic field generator and the flow of magnetic flux of a gradient magnetic field, and FIG. 6B is a diagram illustrating a part of a conventional magnetic field generator.
[Explanation of symbols]
2 ... Magnetic pole piece 3 ... Permanent magnet structure 4 ... yoke 8 ... magnet cover 10 ... slit 11 ... ... Non-conductive materials

Claims (4)

空隙を形成して対向する一対の永久磁石構成体と、これら永久磁石構成体を磁気結合し磁気回路を形成する継鉄と、前記各永久磁石構成体の空隙の静磁場を均一に保つ磁極片と、前記永久磁石構成体の周囲を覆う磁石カバーとを備えた磁気共鳴イメージング装置用の磁界発生装置において、
前記磁石カバーは当該磁石カバーに生ずる渦電流を低減させる渦電流低減手段として、1ないし複数のスリットが形成されていることを特徴とする磁界発生装置。
A pair of permanent magnet structures opposed to each other by forming a gap, a yoke that magnetically couples these permanent magnet structures to form a magnetic circuit, and a pole piece that keeps the static magnetic field in the gap of each permanent magnet structure uniform And a magnetic field generator for a magnetic resonance imaging apparatus comprising a magnet cover that covers the periphery of the permanent magnet structure,
The magnetic field generator according to claim 1, wherein the magnet cover is formed with one or more slits as eddy current reducing means for reducing eddy current generated in the magnet cover.
請求項1記載の磁界発生装置において、
前記磁石カバーは、前記スリットによって分割された複数の部材からなり、前記複数の部材のうち1ないし2以上の部材が非導電性材料からなることを特徴とする磁界発生装置。
The magnetic field generator according to claim 1, wherein
The magnet cover is composed of a plurality of members divided by the slit, and one or more members among the plurality of members are composed of a non-conductive material.
請求項1記載の磁界発生装置において、
前記スリットはスリットの深さ方向の途中まで設けられていることを特徴とする磁界発生装置。
The magnetic field generator according to claim 1, wherein
The magnetic field generator according to claim 1, wherein the slit is provided partway along a depth direction of the slit.
請求項1ないし3いずれか1項に記載の磁界発生装置において、
前記スリットに繊維強化プラスチック、ポリシロキサンおよびセラミックスから選択される非導電材料が充填されていることを特徴とする磁界発生装置。
The magnetic field generator according to any one of claims 1 to 3,
A magnetic field generator characterized in that the slit is filled with a non-conductive material selected from fiber reinforced plastic, polysiloxane and ceramics.
JP34941497A 1997-12-18 1997-12-18 Magnetic field generator for magnetic resonance imaging apparatus Expired - Lifetime JP3885126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34941497A JP3885126B2 (en) 1997-12-18 1997-12-18 Magnetic field generator for magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34941497A JP3885126B2 (en) 1997-12-18 1997-12-18 Magnetic field generator for magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JPH11178808A JPH11178808A (en) 1999-07-06
JP3885126B2 true JP3885126B2 (en) 2007-02-21

Family

ID=18403595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34941497A Expired - Lifetime JP3885126B2 (en) 1997-12-18 1997-12-18 Magnetic field generator for magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP3885126B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642826B1 (en) 2000-08-09 2003-11-04 Sumitomo Special Metals Co., Ltd. Magnetic field generator and assembling method thereof
JP3939489B2 (en) * 2000-08-28 2007-07-04 株式会社日立メディコ Magnet apparatus and magnetic resonance imaging apparatus using the same
CN101031238B (en) * 2004-09-30 2010-07-28 日立金属株式会社 Magnet field generator for MRI
JP2007061528A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Magnetic resonance imaging device
US8584533B2 (en) 2008-03-03 2013-11-19 Honda Motor Co., Ltd. Magnetostrictive torque sensor device, manufacturing method thereof, and vehicle steering apparatus

Also Published As

Publication number Publication date
JPH11178808A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
JP3654463B2 (en) Magnetic resonance imaging system
JP4145398B2 (en) Self-shielded gradient coil assembly and method of manufacturing the same
JPH11244259A (en) Magnetic resonance tomographic image photographing device
JP5932815B2 (en) Magnetic resonance imaging system
JP3885126B2 (en) Magnetic field generator for magnetic resonance imaging apparatus
JP3266355B2 (en) Magnetic field generator for superconducting MRI
US7049920B2 (en) Open magnet device and magnetic resonance imaging apparatus comprising it
JP3794109B2 (en) Static magnetic field generator
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
JP3747981B2 (en) Magnetic resonance imaging system
JP4360662B2 (en) Magnetic resonance imaging system
JP7212578B2 (en) Magnetic resonance imaging device and superconducting magnet
JP4202564B2 (en) Magnetic field generator for magnetic resonance imaging equipment
US20060267715A1 (en) Magnetic field generating system applicable to nuclear magnetic resonance device
JP4146745B2 (en) Magnetic resonance imaging system
JP4651236B2 (en) Magnetic resonance imaging system
JP6663821B2 (en) Magnetic resonance imaging equipment
JP4202565B2 (en) Magnetic field generator for magnetic resonance imaging equipment
WO2016114198A1 (en) Magnetic resonance imaging device
JP3849824B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus provided with the same
JP4250479B2 (en) Magnetic resonance imaging system
JP3492003B2 (en) Static magnetic field generator for magnetic resonance imaging
JPH06319714A (en) Magnetic resonance imaging apparatus
US11946992B2 (en) Magnetic resonance apparatus with a main magnet disposed between examination rooms
JP7076339B2 (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term