JP3884836B2 - Isolation floor device - Google Patents

Isolation floor device Download PDF

Info

Publication number
JP3884836B2
JP3884836B2 JP26676797A JP26676797A JP3884836B2 JP 3884836 B2 JP3884836 B2 JP 3884836B2 JP 26676797 A JP26676797 A JP 26676797A JP 26676797 A JP26676797 A JP 26676797A JP 3884836 B2 JP3884836 B2 JP 3884836B2
Authority
JP
Japan
Prior art keywords
floor
spring
load
coil spring
buffer spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26676797A
Other languages
Japanese (ja)
Other versions
JPH11107503A (en
Inventor
武志 山崎
義幸 藤原
幸男 奥田
和夫 海老原
恒一 前田
正孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Osaka Gas Co Ltd
Original Assignee
Obayashi Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Osaka Gas Co Ltd filed Critical Obayashi Corp
Priority to JP26676797A priority Critical patent/JP3884836B2/en
Publication of JPH11107503A publication Critical patent/JPH11107503A/en
Application granted granted Critical
Publication of JP3884836B2 publication Critical patent/JP3884836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、床をその下方のスラブに弾性支持させて、このスラブから床に入力される上下振動を免振するようにした免振床装置に関する。
【0002】
【従来の技術】
電算機器や計測制御機器等の精密機器類を設置する部屋の場合、それらの設置床は外部からの上下振動を遮断(免振)可能な免振床とするのが望ましく、この様な免振床装置として、床の支持フレームをその下方の支持基盤であるスラブに対して上下変位自在に配置し、当該支持フレームをコイルばねを用いた多数の免振ユニットを介してスラブ上に弾性支持するようにした構造のものがある。
【0003】
ここで、このような免振床装置にあっては、床の固有周期はコイルばねのばね定数と床荷重とによって定まるが、従来にあっては、上記コイルばねには支持荷重に拘わらずばね定数が一定な線形特性を有するものを用い、そのばね定数は床面上に設置される機器類などの重量を含んだ床荷重に合わせて定めることにより、床の固有周期が免振に適した値となるようにしている。また、支持フレームと免振ユニットとの間には、床荷重に相応して縮むコイルばねの変位を吸収して床面を所定の高さに調整するためのレベル調整ボルトを介在させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の免振床装置では、免振ユニットのコイルばねには、ばね定数が一定な線形特性を有するものを使用しているので、室内に設置する機器類の入れ替えや増設、あるいはレイアウト変更などによって床荷重に変動が来されると、床の固有周期もこれに伴って変化してしまう。このため、このような床荷重の変動が来された後には、上記免振に適する床の固有周期を保持することができなくなって、免振機能が著しく低下されてしまうことになる。従って、このような場合には、変動後の床荷重に適したばね定数の免振ユニットに付け替えねばならず、極めて大がかりな作業が必要になってしまうといった課題があった。
【0005】
本発明は、上記従来の課題に鑑みてなされたものであり、その目的は、床荷重の大小に拘わらず床の固有周期を略一定の範囲内に維持することができる免振床装置を提供することにある。
【0006】
【課題を解決するための手段】
かかる目的を達成するために本発明の免振床装置は、床をその下方のスラブに対して上下変位自在に配置し、該床の荷重をこれら床とスラブとの間に介設した緩衝ばねで支持するとともに、スラブ側から床に伝達される振動を該緩衝ばねで免振するようにした免振床装置において、上記緩衝ばねは、そのばね定数が床荷重の増大に合わせて段階的に高まる非線形特性を付与してコイルばねで構成されており、前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、前記緩衝ばねの両側に配置されているフレームは、該緩衝ばねの上半分をU字状に跨ぐように相互に結合されていることを特徴とする。
【0007】
上記の構成でなる本発明の免振床装置では、床荷重が小さい時は、緩衝ばねは小さなばね定数で荷重を支持する一方、床荷重が大きくなると順次段階的にばね定数が大きくなって荷重を支持するから、[荷重/ばね定数]の平方根に比例する床の固有周期を、床荷重の大小に拘わりなく略一定の範囲内に維持することができ、地震などの振動外力に対する免振効果を床荷重の変動に拘わりなく良好に保持することができる。
【0008】
ここで、上記緩衝ばねは、コイルの巻回ピッチ間が密着状態に至る荷重の異なる複数のコイルばね要素を直列に配置して、多段に積み重ねた構成とすることで、あるいは、コイルの巻回ピッチを途中で段階的に変えて、ピッチ間が密着状態に至る荷重の異なる複数のコイルばね要素をもつ単体の不等ピッチコイルばねを用いる構成とすることで、上記非線形特性を付与できる。
【0009】
即ち、密着状態に至る荷重の異なる複数のコイルばね要素を直列に配置した構成の緩衝ばねは、床荷重が小さい時は、複数のコイルばね要素の全てが機能して、これらを直列に合成して得られる小さなばね定数で荷重を支持する一方、床荷重が大きくなるに従い、密着状態に至る荷重が小さいコイルばねが順次ばねとしての変位吸収機能を失っていき、これに伴い段階的に緩衝ばねのばね定数は大きくなっていく。従って、床荷重の変動に対する緩衝ばねのばね定数を順次段階的に増大させることができる。
【0010】
また、コイルの巻回ピッチを途中で段階的に変えて一体的に連続形成した単体の不等ピッチコイルばねを緩衝ばねとして用いた場合も同様に、床荷重が小さい時は、ピッチが狭くばね定数が小さい部分と、ピッチが広くばね定数が大きい部分とが全て機能し、全体としてピッチが狭いその小さなばね定数より更に小さなばね定数で加重を支持して変位を吸収する一方、床荷重が大きくなるに従い、密着状体に至る荷重が小さいコイルばね部分が順次ばねとしての変位吸収機能を失っていき、これに伴い段階的に緩衝ばねのばね定数は大きくなっていく。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しつつ詳細に説明する。図1から図4は本発明の免振床装置の一実施形態を示し、図1は免振床装置の拡大断面図、図2は免振床装置に用いられる緩衝ばねを示す拡大図、図3は緩衝ばねの変形量と荷重変動との関係を示す特性図、図4は床荷重と床の固有周期との関係を示す特性図である。
【0012】
図1に示すように本実施形態の免振床装置は、床12をその下方の支持基盤であるスラブ14に対して上下変位自在に配置し、これら床12とスラブ14との間に免振ユニット10を介在させて、この免振ユニット10に内蔵された緩衝ばね16により床荷重を支持するとともに、スラブ14側から床12に伝達される振動を免振するようになっている。
【0013】
ここで、本発明にあっては上記免振ユニット10の緩衝ばね16を、そのばね定数が床荷重の増大に合わせて段階的に高まる非線形特性を付与したコイルばねで構成することを基本としており、本実施形態では、ばね定数とコイルの巻回ピッチが密着状態に至る荷重とが共に異なる複数(本実施形態では2本)の第1コイルばね要素16aと第2コイルばね要素16bとを直列に配置して緩衝ばね16を構成することで、上記非線形特性を付与するようにしている。つまり、床12上に載置される機器の重量に応じた緩衝ばね16の縮み量に合わせて免振ユニット10内で変位の吸収機能を発揮するコイルばね要素16a,16bの数を段階的に変化させ、もって床荷重の変動に対する緩衝ばね16のばね定数を段階的に設定変更する構成となっている。
【0014】
更に、詳しく説明すると、上記免振ユニット10は、上記緩衝ばね16の下方に位置してスラブ14に設置されるベースプレート18と、緩衝ばね16の上方に配置される上方取付け板20とを備える。上記ベースプレート18の中心部からはガイド支柱22が立設されており、このガイド支柱22の上端は上方取付け板20の中央部を貫通し、上方取付け板20はガイド支柱22に摺動自在に挿通されている。
【0015】
また、このガイド支柱22を中心にして上記緩衝ばね16を構成する第1コイルばね要素16aと第2コイルばね要素16bとが上下に直列に配置されている。緩衝ばね16の上端には、ガイド支柱22に挿通されるガイド部21aを有するスプリングシート21が取り付けられる。また、ベースプレート18と上方取付け板20とにはそれぞれ緩衝ばね16の外周側を覆う筒状部18a,20aが設けられている。
【0016】
上記上方取付け板20の上面には、図示する左右方向に延びる矩形の連結板25が一体的に溶接されて立設されており、かつこの連結板25はガイド支柱22を避けてこれを挟むようにして図示する紙面の直交方向両側に並設されている。また、これらの連結板25の左右両側には、それぞれ側方から下方に向けて延びるL字状をした板材でなるフレーム連結部材24がボルトにより一体的に接合されており、このフレーム連結部材24の下端は水平配置されるS造のフレーム28の一端に一体的に溶接接合されている。即ち、免振ユニット10の左右両側に配置されている各フレーム28,28はそれぞれフレーム連結部材24と連結板25とを介して、免振ユニット10の上方取付け板20に結合されていて、しかも両フレーム28,28は上記フレーム連結部材24,24と連結板25とにより、ばね要素16の上半部をU字状に跨ぐようにして相互に結合されている。また、各フレーム28,28の他端は隣設する図外の免振ユニットに同様にフレーム連結部材等を介して結合され、両端が各々免振ユニット10により支持されて水平配置されるようになっている。
【0017】
また、上記上方取付け板20には、これに螺合されてレベル調整ボルト26が設けられ、その先端は上部取付け板20を貫通して、上記緩衝ばね16上端のスプリングシート21に当接している。一方、上記フレーム28の上側には支持脚30を介して床面材13が支持されるようになっており、床面材13,支持脚30,フレーム28,フレーム連結部材24等からなる床12自身の荷重及び床面上に載置される機器類等の荷重は、上記上部連結板25及びレベル調整ボルト26を介して免振ユニット10のスプリングシート21に伝達されるようになっている。
【0018】
尚、上記ガイド支柱22の上方に位置する床面材13には所定の面積をもって切り欠いた点検口13aが設けられ、この点検口13aは蓋13bによって着脱可能に閉止されている。
【0019】
ところで、上記緩衝ばね16は図2に示すように、直列配置された第1コイルばね要素16a,第2コイルばね要素16bのうち、例えば上方に配置される第1コイルばね要素16aのピッチP1 を下方に配置される第2コイルばね要素16bのピッチP2 より小さくすることにより、第1コイルばね要素16aが密着状体に至る荷重Waと第2コイルばね要素16bが密着状態に至る荷重Wbとを相違させて、第1コイルばね要素16aが密着状態に至った以後のばね定数を密着以前より大きくすることができる。
【0020】
ここで、本実施形態では、上記第1コイルばね要素16aと第2コイルばね要素16bとは線径が均一な単一のばね鋼を用いて、一体的な不等ピッチコイルばねとして連続形成してある。即ち、具体的には、SUP9,SUP9A等のばね鋼を用いて線径15mm,コイル平均径198mmにて連続的に巻回し、第1コイルばね要素16a部分はピッチP1 を32.8mmにして巻数4.9(長さ約160mm)とし、第2コイルばね要素16b部分はピッチP2 を89.8mmにして巻数3.35(長さ約300mm)として、全長約460mmの単一な不等ピッチコイルばねに一体形成してある。また、ばね定数は第1コイルばね要素16a部分がK1 =1.33kg/mmで、第2コイルばね要素16b部分がK2 =1.94kg/mmとなっている。
【0021】
従って、上記緩衝ばね16は、上記床12上に載置される機器類の重量などを含んだ床荷重Fに応じて、スラブ14とスプリングシート21との間で変位の吸収機能を発揮するコイルばね要素の数が段階的に変化する。即ち、第1コイルばね要素16aの各ピッチP1 間が押しつぶされて密着状態となる設定荷重Wa(約116kgf)よりも、床荷重Fの方が小さいF<Waの範囲では、第1コイルばね要素16aと第2コイルばね要素16bとがともに働いて床荷重Fを支持するとともに変位の吸収機能を発揮するが、床荷重Fが大きく上記設定荷重Waを超える場合には、第1コイルばね要素16aはそのピッチP1 間が密着した状態になって変位の吸収機能を失い、それ以後は第2コイルばね要素16bのみで増大する荷重を負担するとともに変位吸収機能を発揮する。
【0022】
また、上記床荷重Fによる緩衝ばね16の縮みに相応させて、レベル調整ボルト26の操作によりスプリングシート21と上部取付け板20との間隙を調整し、床12の高さを所定値Sに設定保持する。この際、載置する機器等の重量が重く、床荷重Fが設定荷重Waよりも大きくなって緩衝ばね16の縮み量も大きくなる場合には、レベル調整ボルト26は予め十分長いものにして取り付けておく。
【0023】
以上のような本実施形態の免振床装置にあっては、上述の如く床12上に載置した機器類等の重量を含めた床荷重Fが小さくて上記設定荷重Waに満たない場合には、第1,第2コイルばね要素16a,16bの両者が共に働いて荷重を支持するとともに変位の吸収機能を発揮するが、このときの緩衝ばね16の全体的なばね定数Kは、1/K=(1/K1 ) +( 1/K2 )として得られ、第1,第2コイルばね要素16a,16bのそれぞれのばね定数K1 またはK2 のいずれよりも小さな値になる。
【0024】
また、床荷重Fが上記設定荷重Wa以上の場合には、第1コイルばね要素16aは押し潰されて各ピッチP1 間が密着した状態となるので、このときの緩衝ばね16のばね定数Kは第2コイルばね要素16bの大きなばね定数K2 となる。
【0025】
図3は床荷重Fの変動と緩衝ばね16の縮み(変形)量との関係を示すもので、緩衝ばね16全体としてのばね特性を表す。同図に示すように緩衝ばね16のばね特性は2段の折れ線グラフとして得られる。即ち,このばね特性において、A点は第1コイルばね要素16aのピッチP1 間が密着状態に至った時点を示し、B点は第2コイルばね要素16bもそのピッチP2 間が密着状態に至った時点を示す。ここで、O点からA点の間では、2つのコイルばね要素16a,16bが共に働くからその全体としてのばね定数はK=K1 ・K2 /(K1 +K2 )となり、また、A点以後B点まではK=K2 となる。つまり、上記緩衝ばね16のばね特性は、縮み量(荷重変動)に対してばね定数Kが段階的に増大し、全体として不連続な非線形ばね特性を呈する設定となっている。
【0026】
ところで、上記床12の固有周期Tは一般に知られるように次の数式1によって得られる。同式中Wは荷重、Kはばね定数、gは重力加速度である。
[数式1]
T=2π(W/K・g)1/2
【0027】
そして、数式1によって得られる固有周期Tと床荷重Fとの関係は、図4に示すような特性図となる。即ち、この周期特性図は上記図3に示した各変位点O,Aに対応した点o,a,bがプロットされており、床荷重FがWaより小さい範囲F<Waでは、緩衝ばね16のばね定数Kは第1,第2コイルばね要素16a,16bを直列合成したばね定数K1 ・K2 /(K1 +K2 )となって一定である。このため当該F<Waの範囲では床荷重Fが大きいほど床12の固有周期Tは長くなる。
【0028】
そして、床荷重がWa(a点)以上の範囲F≧Waでは、緩衝ばね16のばね定数はK2 と高まってその固有周期Tは一旦低下し、このF≧Wbの範囲においても床荷重Fが大きいほど固有周期Tは長くなる。
【0029】
従って、床12の固有周期Tは床面荷重Fの通常の使用範囲で若干上下するものの略一定した範囲内に設定でき、例えば本実施形態で示すように緩衝ばね16を上記図3に示すばね特性とすることにより、図4に示すように床の固有周期Tを略0.5〜0.9秒前後の範囲内に収めることができる。
【0030】
このように、載置機器等の重量の増減範囲を考慮して予め想定した通常使用範囲の床荷重Fに合わせて、第1,第2コイルばね要素16a,16bのばね定数K1 ,K2 と、第1コイルばね要素16aのピッチP1 間が密着状態になる設定荷重Waとを適宜決定することで、当該通常使用範囲内で床荷重Fが如何様に変動されても、床12の固有周期Tを略0.5〜0.9秒前後のほぼ一定の範囲内に自動的に維持することができ、地震等の振動外力に対して良好な免振効果を保たせることができる。
【0031】
ここで、載置機器の増設や移設、並びにレイアウト変更等により床荷重Fが変動された場合には、当然に床12の沈みこみ量が変わってしまうが、床面の高さはレベル調整ボルト26によって容易に所定の高さSに再設定調節可能であるから、レベル調整ボルト26を操作して高さ調整をおこなうだけの簡単な作業ですみ、緩衝ばね16の交換といった大がかりな作業を行う必要がない。
【0032】
なお、本実施形態では、ばね性状の異なる2つのコイルばね要素16a,16bを直列に連続形成した単体の不等ピッチコイルばねを、緩衝ばね16として用いた場合を開示したが、本発明はこれに限られることはなく、3つ以上のコイルばね要素を直列配置した不等ピッチコイルばねを採用することもできる。このように直列配置するコイルばね要素の数を増加することにより、固有周期Tをより緻密に制御することができる。
【0033】
また、本実施形態では上記第1,第2コイルばね要素16a,16bを線径が均一な単一のばね鋼の線材で連続的に巻回形成した単体の不等ピッチコイルばねで緩衝ばね16を構成する場合を開示したが、図5に示すようにこれら第1,第2コイルばね要素16a,16bをそれぞれ分離して別体に形成し、それぞれをスプリングシート32などを介して直列に結合して緩衝ばね16を構成するようにしてもよいことは勿論である。そして、このようにばね性状の異なるコイルばね要素16a,16bを各々分離して別体に形成して、これらを直列配置して積み重ねることで、緩衝ばね16を構成するようにすると、個々のコイルばね要素16a,16bを、使用するばね鋼の材質や線材の太さなどを異ならせて作製できるから、その作製上の制約が大幅に緩和されて、緩衝ばね16の特性設定の自由度が高くなり、また廉価に作製できる。
【0034】
【発明の効果】
以上説明したように本発明の免振床装置は、緩衝ばねをばね定数が床荷重の増大に合わせて段階的に高まる非線形特性を有するコイルばねで構成したので、床荷重が小さい時は小さなばね定数で支持する一方、床荷重が大きくなると順次段階的にばね定数が高くなって荷重を支持するから、[荷重/ばね定数]の平方根に比例する床の固有周期を、略一定の範囲内に維持することができ、地震などの振動外力に対する免振効果を床荷重の変動に拘わりなく良好に保持することができる。また、床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ床面材を支持する支持脚とを有し、緩衝ばねの両側に配置されているフレームは、該緩衝ばねの上半分をU字状に跨ぐように相互に結合されているように構成したので、緩衝ばねを、床とスラブと間に効果的に設置できる。
【0035】
また、上記非線形特性を有するコイルばねは、コイルの巻回ピッチ間が密着状態に至る荷重の異なる複数のコイルばね要素を直列に配置した構成とすることで得ることができ、さらにはコイルの巻回ピッチを途中で段階的に変えて、ピッチ間が密着状体に至る荷重の異なる複数のコイルばね要素をもつ単体の不等ピッチコイルばねを用いる構成とすることができる。
【図面の簡単な説明】
【図1】本発明にかかる免振床装置の一実施形態を示す拡大断面図である。
【図2】図1の免振床装置に用いられている不等ピッチコイルばねの拡大図である。
【図3】本発明にかかる免振床装置の一実施形態に用いられている不等ピッチコイルばねの変形量と荷重変動との関係を示す特性図である。
【図4】本発明に係る免振床装置の一実施形態における床の固有周期と床荷重との関係を示す特性図である。
【図5】本発明の免振床装置に用いる非線形特性を有するコイルばねの別の形態例を示す図である。
【符号の説明】
10 免振ユニット
12 床
14 スラブ
16 緩衝ばね
16a 第1コイルばね要素
16b 第2コイルばね要素
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration-isolating floor device in which a floor is elastically supported by a slab below the floor so that vertical vibrations input from the slab to the floor are isolated.
[0002]
[Prior art]
In the case of a room where precision equipment such as computer equipment and measurement control equipment is installed, it is desirable that those floors be isolated floors that can block external vibrations (isolation). As a floor device, a floor support frame is disposed so as to be vertically displaceable with respect to a slab which is a support base below the floor apparatus, and the support frame is elastically supported on the slab via a number of vibration isolation units using coil springs. There is a thing of such a structure.
[0003]
Here, in such a vibration-isolating floor device, the natural period of the floor is determined by the spring constant of the coil spring and the floor load. Conventionally, the coil spring has a spring regardless of the supporting load. Using a constant constant linear characteristic, the spring constant is determined according to the floor load including the weight of equipment installed on the floor surface, so that the natural period of the floor is suitable for vibration isolation. Value. Further, a level adjustment bolt is interposed between the support frame and the vibration isolation unit to absorb the displacement of the coil spring that contracts in accordance with the floor load and adjust the floor surface to a predetermined height.
[0004]
[Problems to be solved by the invention]
However, in the above conventional vibration isolation floor device, the coil spring of the vibration isolation unit uses a linear spring with a constant spring constant, so that the equipment installed in the room is replaced, expanded, or laid out. When the floor load changes due to a change or the like, the natural period of the floor also changes accordingly. For this reason, after such a change in floor load occurs, the natural period of the floor suitable for the above-mentioned vibration isolation cannot be maintained, and the vibration isolation function is significantly deteriorated. Therefore, in such a case, it is necessary to replace the vibration isolator unit with a spring constant suitable for the changed floor load, and there is a problem that a very large work is required.
[0005]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a vibration-isolating floor device capable of maintaining the natural period of the floor within a substantially constant range regardless of the floor load. There is to do.
[0006]
[Means for Solving the Problems]
In order to achieve this object, the vibration-isolating floor device of the present invention has a shock absorber spring in which a floor is arranged so as to be vertically displaceable with respect to a slab below the floor, and a load on the floor is interposed between the floor and the slab. In the vibration isolating floor device, the vibration is transmitted in the vibration from the slab to the floor by the shock absorbing spring. The shock absorbing spring has a spring constant stepwise according to an increase in floor load. The floor comprises a floor material on which equipment is installed, a frame, and a support leg that is provided on the frame and supports the floor material. And the frames disposed on both sides of the buffer spring are connected to each other so as to straddle the upper half of the buffer spring in a U-shape .
[0007]
In the vibration-isolating floor device of the present invention configured as described above, when the floor load is small, the buffer spring supports the load with a small spring constant, while the spring constant gradually increases as the floor load increases. Therefore, the natural period of the floor, which is proportional to the square root of [Load / Spring constant], can be maintained within a substantially constant range regardless of the floor load. Can be satisfactorily maintained regardless of variations in floor load.
[0008]
Here, the buffer spring has a configuration in which a plurality of coil spring elements having different loads reaching a close contact state between coil winding pitches are arranged in series and stacked in multiple stages, or coil winding By changing the pitch stepwise in the middle and using a single unequal pitch coil spring having a plurality of coil spring elements with different loads that reach close contact between the pitches, the nonlinear characteristics can be imparted.
[0009]
In other words, a buffer spring having a configuration in which a plurality of coil spring elements having different loads reaching the close contact state are arranged in series, when the floor load is small, all of the plurality of coil spring elements function, and these are combined in series. While the load is supported with a small spring constant obtained in this way, as the floor load increases, the coil spring with a small load reaching the close contact state gradually loses its displacement absorbing function as a spring, and accompanying this, the buffer spring gradually The spring constant of increases. Therefore, the spring constant of the buffer spring with respect to the fluctuation of the floor load can be increased stepwise.
[0010]
Similarly, when a single unequal pitch coil spring continuously formed integrally by changing the coil winding pitch stepwise is used as a buffer spring, when the floor load is small, the pitch is narrow. The part with a small constant and the part with a large pitch and a large spring constant function, and the load is supported and absorbed by a spring constant smaller than the small spring constant with a narrow pitch as a whole, while the floor load is large. Accordingly, the coil spring portion having a small load reaching the close contact member loses its displacement absorbing function as a spring, and the spring constant of the buffer spring gradually increases accordingly.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 4 show an embodiment of the vibration isolation floor device according to the present invention, FIG. 1 is an enlarged sectional view of the vibration isolation floor device, and FIG. 2 is an enlarged view showing a buffer spring used in the vibration isolation floor device. 3 is a characteristic diagram showing the relationship between the amount of deformation of the buffer spring and the load fluctuation, and FIG. 4 is a characteristic diagram showing the relationship between the floor load and the natural period of the floor.
[0012]
As shown in FIG. 1, the vibration-isolating floor device according to the present embodiment arranges a floor 12 so as to be vertically displaceable with respect to a slab 14 that is a support base below the floor 12 and dampens the vibration between the floor 12 and the slab 14. A floor load is supported by a buffer spring 16 incorporated in the vibration isolation unit 10 with the unit 10 interposed therebetween, and vibration transmitted from the slab 14 side to the floor 12 is isolated.
[0013]
Here, in the present invention, the buffer spring 16 of the vibration isolation unit 10 is basically constituted by a coil spring having a non-linear characteristic that increases stepwise as the floor load increases. In the present embodiment, a plurality (two in the present embodiment) of the first coil spring element 16a and the second coil spring element 16b having different spring constants and loads at which the coil winding pitch reaches the close contact state are connected in series. The non-linear characteristics are imparted by arranging the buffer springs 16 in the above-described manner. In other words, the number of coil spring elements 16a and 16b that exhibit a function of absorbing displacement in the vibration isolation unit 10 in a stepwise manner according to the amount of contraction of the buffer spring 16 according to the weight of the device placed on the floor 12 is stepwise. Thus, the spring constant of the buffer spring 16 with respect to the variation of the floor load is changed and changed in stages.
[0014]
More specifically, the vibration isolation unit 10 includes a base plate 18 that is positioned below the buffer spring 16 and is installed on the slab 14, and an upper mounting plate 20 that is disposed above the buffer spring 16. A guide column 22 is erected from the center of the base plate 18, and the upper end of the guide column 22 passes through the center of the upper mounting plate 20. The upper mounting plate 20 is slidably inserted into the guide column 22. Has been.
[0015]
Further, the first coil spring element 16a and the second coil spring element 16b constituting the buffer spring 16 are arranged in series in the vertical direction with the guide column 22 as a center. A spring seat 21 having a guide portion 21 a inserted through the guide column 22 is attached to the upper end of the buffer spring 16. The base plate 18 and the upper mounting plate 20 are provided with cylindrical portions 18a and 20a that cover the outer peripheral side of the buffer spring 16, respectively.
[0016]
On the upper surface of the upper mounting plate 20, a rectangular connecting plate 25 extending in the left-right direction as shown in the figure is integrally welded, and this connecting plate 25 avoids the guide column 22 and sandwiches it. They are juxtaposed on both sides in the orthogonal direction of the paper surface shown. Further, frame connecting members 24 made of L-shaped plate members extending downward from the sides are integrally joined to the left and right sides of these connecting plates 25 by bolts. Is integrally welded to one end of an S frame 28 that is horizontally disposed. That is, the frames 28 and 28 arranged on the left and right sides of the vibration isolation unit 10 are coupled to the upper mounting plate 20 of the vibration isolation unit 10 via the frame coupling member 24 and the coupling plate 25, respectively. Both the frames 28 and 28 are connected to each other by the frame connecting members 24 and 24 and the connecting plate 25 so as to straddle the upper half of the spring element 16 in a U shape. Further, the other ends of the frames 28 and 28 are coupled to adjacent vibration-isolating units (not shown) via frame connecting members or the like, and both ends are respectively supported by the vibration-isolating unit 10 and horizontally disposed. It has become.
[0017]
Further, the upper mounting plate 20 is provided with a level adjusting bolt 26 which is screwed to the upper mounting plate 20, and the tip of the upper mounting plate 20 penetrates the upper mounting plate 20 and abuts against the spring seat 21 at the upper end of the buffer spring 16. . On the other hand, the floor material 13 is supported on the upper side of the frame 28 via the support legs 30, and the floor 12 comprising the floor material 13, the support legs 30, the frame 28, the frame connecting member 24, and the like. The own load and the load of the equipment and the like placed on the floor are transmitted to the spring seat 21 of the vibration isolation unit 10 via the upper connecting plate 25 and the level adjustment bolt 26.
[0018]
The floor member 13 located above the guide column 22 is provided with an inspection port 13a cut out with a predetermined area, and the inspection port 13a is detachably closed by a lid 13b.
[0019]
By the way, as shown in FIG. 2, the buffer spring 16 has, for example, the pitch P1 of the first coil spring element 16a disposed above the first coil spring element 16a and the second coil spring element 16b disposed in series. By making it smaller than the pitch P2 of the second coil spring element 16b disposed below, the load Wa that the first coil spring element 16a reaches the close contact state and the load Wb that the second coil spring element 16b reaches the close contact state are obtained. The spring constant after the first coil spring element 16a reaches the close contact state can be made larger than before the close contact.
[0020]
Here, in the present embodiment, the first coil spring element 16a and the second coil spring element 16b are continuously formed as an integral unequal pitch coil spring using a single spring steel having a uniform wire diameter. It is. More specifically, a spring steel such as SUP9 or SUP9A is continuously wound with a wire diameter of 15 mm and a coil average diameter of 198 mm, and the first coil spring element 16a portion has a pitch P1 of 32.8 mm and the number of turns. 4.9 (length: about 160 mm), the second coil spring element 16b portion has a pitch P2 of 89.8 mm, a number of turns of 3.35 (length: about 300 mm), and a single unequal pitch coil having a total length of about 460 mm. It is integrally formed with the spring. The spring constants of the first coil spring element 16a are K1 = 1.33 kg / mm, and the second coil spring element 16b is K2 = 1.94 kg / mm.
[0021]
Therefore, the buffer spring 16 is a coil that exhibits a function of absorbing displacement between the slab 14 and the spring seat 21 in accordance with the floor load F including the weight of the equipment mounted on the floor 12. The number of spring elements changes step by step. That is, in the range of F <Wa where the floor load F is smaller than the set load Wa (about 116 kgf) in which the pitches P1 of the first coil spring elements 16a are crushed and brought into close contact, the first coil spring elements 16a and the second coil spring element 16b work together to support the floor load F and exhibit a displacement absorbing function. When the floor load F is large and exceeds the set load Wa, the first coil spring element 16a Loses its displacement absorbing function when the pitch P1 is in close contact with it, and thereafter, it bears an increasing load only by the second coil spring element 16b and exhibits its displacement absorbing function.
[0022]
Further, the clearance between the spring seat 21 and the upper mounting plate 20 is adjusted by operating the level adjusting bolt 26 in accordance with the contraction of the buffer spring 16 due to the floor load F, and the height of the floor 12 is set to a predetermined value S. Hold. At this time, if the weight of the equipment to be placed is heavy, the floor load F is larger than the set load Wa and the amount of contraction of the buffer spring 16 is also large, the level adjustment bolt 26 is made sufficiently long in advance. Keep it.
[0023]
In the vibration isolation floor device of the present embodiment as described above, when the floor load F including the weight of the equipments and the like placed on the floor 12 as described above is small and does not satisfy the set load Wa. The first and second coil spring elements 16a and 16b work together to support the load and exhibit a displacement absorbing function. The overall spring constant K of the buffer spring 16 at this time is 1 / K = (1 / K1) + (1 / K2), which is smaller than either of the spring constants K1 or K2 of the first and second coil spring elements 16a and 16b.
[0024]
When the floor load F is equal to or greater than the set load Wa, the first coil spring element 16a is crushed and the pitches P1 are in close contact with each other. Therefore, the spring constant K of the buffer spring 16 at this time is A large spring constant K2 of the second coil spring element 16b is obtained.
[0025]
FIG. 3 shows the relationship between the fluctuation of the floor load F and the amount of contraction (deformation) of the buffer spring 16, and represents the spring characteristics of the buffer spring 16 as a whole. As shown in the figure, the spring characteristic of the buffer spring 16 is obtained as a two-stage line graph. That is, in this spring characteristic, the point A indicates the time when the pitch P1 of the first coil spring element 16a reaches the close contact state, and the point B indicates the contact between the pitch P2 of the second coil spring element 16b. Indicates the time. Here, between the point O and the point A, the two coil spring elements 16a and 16b work together, so the spring constant as a whole is K = K1 · K2 / (K1 + K2). Until K = K2. In other words, the spring characteristic of the buffer spring 16 is set so that the spring constant K increases stepwise with respect to the amount of contraction (load fluctuation) and exhibits a discontinuous non-linear spring characteristic as a whole.
[0026]
By the way, the natural period T of the floor 12 is obtained by the following formula 1 as generally known. In the equation, W is a load, K is a spring constant, and g is a gravitational acceleration.
[Formula 1]
T = 2π (W / K · g) 1/2
[0027]
Then, the relationship between the natural period T and the floor load F obtained by Equation 1 is a characteristic diagram as shown in FIG. That is, in this periodic characteristic diagram, points o, a, b corresponding to the respective displacement points O, A shown in FIG. 3 are plotted, and in the range F <Wa where the floor load F is smaller than Wa, the buffer spring 16 The spring constant K is constant as a spring constant K1 · K2 / (K1 + K2) obtained by combining the first and second coil spring elements 16a and 16b in series. For this reason, the natural period T of the floor 12 becomes longer as the floor load F is larger in the range of F <Wa.
[0028]
In a range F ≧ Wa where the floor load is equal to or greater than Wa (point a), the spring constant of the buffer spring 16 increases to K2, and its natural period T temporarily decreases. The floor load F also falls within this F ≧ Wb range. The larger the natural period T, the longer the natural period T becomes.
[0029]
Accordingly, the natural period T of the floor 12 can be set within a substantially constant range although it slightly rises and falls within the normal use range of the floor load F. For example, as shown in the present embodiment, the buffer spring 16 is a spring shown in FIG. By setting it as a characteristic, the natural period T of the floor can be within a range of about 0.5 to 0.9 seconds as shown in FIG.
[0030]
In this way, the spring constants K1, K2 of the first and second coil spring elements 16a, 16b are adjusted in accordance with the floor load F in the normal use range that is assumed in advance in consideration of the increase / decrease range of the weight of the mounting device, etc. By appropriately determining the set load Wa at which the pitch P1 between the first coil spring elements 16a is in close contact, the natural period T of the floor 12 can be obtained no matter how the floor load F varies within the normal use range. Can be automatically maintained within a substantially constant range of about 0.5 to 0.9 seconds, and a good vibration isolation effect can be maintained against external vibration forces such as earthquakes.
[0031]
Here, when the floor load F is fluctuated due to the addition or transfer of placement equipment, layout change, etc., the sinking amount of the floor 12 naturally changes, but the height of the floor surface is the level adjustment bolt. 26 can be easily reset and adjusted to a predetermined height S, so that it is only a simple operation of adjusting the height by operating the level adjusting bolt 26, and a large-scale operation such as replacement of the buffer spring 16 is performed. There is no need.
[0032]
In the present embodiment, a case where a single unequal pitch coil spring in which two coil spring elements 16a and 16b having different spring properties are continuously formed in series is used as the buffer spring 16 is disclosed. The present invention is not limited to this, and an unequal pitch coil spring in which three or more coil spring elements are arranged in series can also be adopted. The natural period T can be controlled more precisely by increasing the number of coil spring elements arranged in series in this way.
[0033]
In the present embodiment, the first and second coil spring elements 16a and 16b are a single non-uniform pitch coil spring formed by continuously winding a single spring steel wire having a uniform wire diameter. However, as shown in FIG. 5, the first and second coil spring elements 16a and 16b are separated and formed separately, and are connected in series via a spring seat 32 or the like. Of course, the buffer spring 16 may be configured. Then, when the coil spring elements 16a and 16b having different spring properties are separated from each other and formed separately, and these are arranged in series and stacked to constitute the buffer spring 16, individual coils are formed. Since the spring elements 16a and 16b can be manufactured by changing the material of the spring steel to be used and the thickness of the wire, the manufacturing restrictions are greatly eased, and the degree of freedom in setting the characteristics of the buffer spring 16 is high. And can be manufactured at low cost.
[0034]
【The invention's effect】
As described above, the vibration-isolating floor device of the present invention is constituted by the coil spring having a nonlinear characteristic in which the spring constant increases stepwise as the floor load increases, so that the spring is small when the floor load is small. On the other hand, when the floor load increases, the spring constant increases in a stepwise manner to support the load. Therefore, the natural period of the floor proportional to the square root of [Load / Spring constant] is within a substantially constant range. It can be maintained, and the vibration isolation effect against vibration external force such as earthquake can be maintained well regardless of the fluctuation of the floor load. Further, the floor has a floor surface material on which equipment is installed, a frame, and a support leg provided on the frame and supporting the floor surface material, and the frames disposed on both sides of the buffer spring are: Since the upper half of the buffer spring is connected to each other so as to straddle the U shape, the buffer spring can be effectively installed between the floor and the slab.
[0035]
In addition, the coil spring having the above non-linear characteristics can be obtained by arranging a plurality of coil spring elements having different loads that are in close contact with each other between coil winding pitches. By changing the turning pitch stepwise in the middle, a single unequal pitch coil spring having a plurality of coil spring elements having different loads reaching the close contact between the pitches can be used.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view showing an embodiment of a vibration isolation floor device according to the present invention.
FIG. 2 is an enlarged view of an unequal pitch coil spring used in the vibration isolation floor device of FIG. 1;
FIG. 3 is a characteristic diagram showing the relationship between the amount of deformation and load variation of an unequal pitch coil spring used in one embodiment of the vibration-isolating floor device according to the present invention.
FIG. 4 is a characteristic diagram showing a relationship between a floor natural period and a floor load in an embodiment of the vibration-isolating floor device according to the present invention.
FIG. 5 is a view showing another embodiment of a coil spring having a non-linear characteristic used in the vibration isolation floor device of the present invention.
[Explanation of symbols]
10 Isolation unit 12 Floor 14 Slab 16 Buffer spring 16a First coil spring element 16b Second coil spring element

Claims (3)

床をその下方のスラブに対して上下変位自在に配置し、該床の荷重をこれら床とスラブとの間に介設した緩衝ばねで支持するとともに、スラブ側から床に伝達される振動を該緩衝ばねで免振するようにした免振床装置において、
上記緩衝ばねは、そのばね定数が床荷重の増大に合わせて段階的に高まる非線形特性を付与してコイルばねで構成されており、
前記床は、機器類が設置される床面材と、フレームと、該フレーム上に設けられ前記床面材を支持する支持脚とを有し、
前記緩衝ばねの両側に配置されているフレームは、該緩衝ばねの上半分をU字状に跨ぐように相互に結合されていることを特徴とする免振床装置。
The floor is disposed so as to be vertically displaceable with respect to the slab below, and the load on the floor is supported by a buffer spring interposed between the floor and the slab, and vibration transmitted from the slab side to the floor is In a vibration isolation floor device that is isolated by a buffer spring,
The buffer spring is configured by a coil spring with a non-linear characteristic that increases in a stepwise manner as the floor load increases .
The floor has a floor surface material on which devices are installed, a frame, and a support leg that is provided on the frame and supports the floor surface material,
Frames arranged on both sides of the buffer spring are coupled to each other so as to straddle the upper half of the buffer spring in a U shape .
前記緩衝ばねは、コイルの巻回ピッチ間が密着状態に至る荷重の異なる複数のコイルばね要素を直列に配置して構成したことを特徴とする請求項1記載の免振床装置。  2. The vibration isolation floor device according to claim 1, wherein the buffer spring is configured by arranging a plurality of coil spring elements having different loads reaching a close contact state between coil winding pitches in series. 前記緩衝ばねは、コイルの巻回ピッチを途中で段階的に変えて、ピッチ間が密着状態に至る荷重の異なる複数のコイルばね要素をもつ単体の不等ピッチコイルばねで構成したことを特徴とする請求項1記載の免振床装置。  The shock-absorbing spring is composed of a single unequal pitch coil spring having a plurality of coil spring elements having different loads that change the winding pitch of the coil stepwise in the middle to reach a close contact between the pitches. The vibration isolation floor device according to claim 1.
JP26676797A 1997-09-30 1997-09-30 Isolation floor device Expired - Fee Related JP3884836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26676797A JP3884836B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26676797A JP3884836B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Publications (2)

Publication Number Publication Date
JPH11107503A JPH11107503A (en) 1999-04-20
JP3884836B2 true JP3884836B2 (en) 2007-02-21

Family

ID=17435427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26676797A Expired - Fee Related JP3884836B2 (en) 1997-09-30 1997-09-30 Isolation floor device

Country Status (1)

Country Link
JP (1) JP3884836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137555A (en) * 2013-02-04 2013-07-11 Naturaleza One Document platen opening/closing device and office machine including document platen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912084B2 (en) * 2001-11-26 2007-05-09 株式会社大林組 Uniaxial vibration absorption unit
JP4301837B2 (en) 2002-05-21 2009-07-22 三菱電機株式会社 Elevator shock absorber
JP4488420B2 (en) * 2004-11-15 2010-06-23 株式会社クボタ Ride type rice transplanter
JP5046888B2 (en) * 2007-11-28 2012-10-10 京セラドキュメントソリューションズ株式会社 Optical scanning device
JP2012047230A (en) * 2010-08-25 2012-03-08 Aisin Ai Co Ltd Operating device of gear type transmission
CN106702674A (en) * 2015-07-31 2017-05-24 青岛海尔洗衣机有限公司 Vibration detection device of washing machine
CN108523925B (en) * 2018-04-25 2020-08-28 合肥市第二人民医院 Uropoiesis surgery ultrasonic equipment protection architecture
US11536355B2 (en) 2019-08-28 2022-12-27 Koyo Bearings North America Llc Segmented spring for a ball screw

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108601A (en) * 1978-02-14 1979-08-25 Pioneer Electronic Corp Audio insulator
JPS636361Y2 (en) * 1980-09-05 1988-02-23
JPH01111837U (en) * 1988-01-21 1989-07-27
JPH0251760U (en) * 1988-10-07 1990-04-12
JPH02117287U (en) * 1989-03-09 1990-09-19
JPH0473631U (en) * 1990-11-07 1992-06-29
JPH0562640U (en) * 1992-02-04 1993-08-20 株式会社サンゴ Floor structure elastic support device
JPH0914316A (en) * 1995-06-27 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Coil spring for preventing horizontal deformation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137555A (en) * 2013-02-04 2013-07-11 Naturaleza One Document platen opening/closing device and office machine including document platen

Also Published As

Publication number Publication date
JPH11107503A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US5310157A (en) Vibration isolation system
EP0487637B1 (en) Vibration isolation system
EP2889877B1 (en) Seismic isolation assembly
JP3884836B2 (en) Isolation floor device
CA2814695A1 (en) Passive thermal control of negative-stiffness vibration isolators
JP3884837B2 (en) Isolation floor device
EP3066357A1 (en) Compact vertical-motion isolator
JP6463137B2 (en) Seismic reduction device
CA3003675C (en) Elastic foundation
JP3884835B2 (en) Isolation floor device
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP4299695B2 (en) Vibration reduction device
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP5106112B2 (en) Support structure and fixing element and method
JP2001082542A (en) Three-dimensional base isolation device
JPH1130278A (en) Base isolation construction
JPS6221946B2 (en)
JP2011038617A (en) Pantograph type base isolation system
JP2014001594A (en) Multistage vibration control device having multiple degree of freedom
JP4284743B2 (en) Seismic isolation display
JP2006029593A (en) Vibration eliminating device
JP6147114B2 (en) Vibration isolator
JPS5847583B2 (en) Vibration isolator
JPH01125464A (en) Cushioning floor structure and supporter for cushioning floor
KR101876286B1 (en) Seismic isolation device having multiple elastic restoring force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees